Deep Learning-Based Noise Suppression and Feature Enhancement Algorithm for LED Medical Imaging Applications

Main Article Content

Zonglei Dong
Fan Zhang

Abstract

Medical imaging systems employing light-emitting diodes are affected by signal degradation from photon noise, electronic interference, and wavelength-dependent tissue scattering. We present a deep learning framework integrating depthwise separable convolutions with dual-pathway attention mechanisms for noise suppression and feature enhancement in multi-spectral LED imaging. The network architecture incorporates physics-based constraints derived from LED emission profiles and tissue optical properties. Validation on 42,350 multi-spectral images from 847 patients demonstrates 34.7% signal-to-noise ratio improvement and 42.3% enhancement in diagnostic feature visibility. Processing speed reaches 28 frames per second on standard GPU hardware with 76% parameter reduction compared to baseline CNNs. Clinical evaluation shows diagnostic accuracy improvement from 76.3% to 89.7% across dermatological and vascular applications.

Article Details

Section

Articles

How to Cite

Deep Learning-Based Noise Suppression and Feature Enhancement Algorithm for LED Medical Imaging Applications. (2025). Journal of Science, Innovation & Social Impact, 1(1), 9-18. https://sagespress.com/index.php/JSISI/article/view/8

References

1. D. Shen, G. Wu, and H. I. Suk, “Deep learning in medical image analysis,” Annu. Rev. Biomed. Eng., vol. 19, no. 1, pp. 221–248, 2017, doi: 10.1146/annurev-bioeng-071516-044442.

2. J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, “Generative adversarial networks for noise reduction in low-dose CT,” IEEE Trans. Med. Imaging, vol. 36, no. 12, pp. 2536–2545, 2017, doi: 10.1109/TMI.2017.2708987.

3. J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image analysis,” IEEE Access, vol. 6, pp. 9375–9389, 2017, doi:10.1109/ACCESS.2017.2788044.

4. J. A. Bhutto, L. Tian, Q. Du, Z. Sun, L. Yu, and M. F. Tahir, “CT and MRI medical image fusion using noise-removal and con-trast enhancement scheme with convolutional neural network,” Entropy, vol. 24, no. 3, p. 393, 2022, doi: 10.3390/e24030393.

5. K. Suzuki, “Overview of deep learning in medical imaging,” Radiol. Phys. Technol., vol. 10, no. 3, pp. 257–273, 2017, doi 10.1007/s12194-017-0406-5.

6. P. C. Tripathi and S. Bag, “CNN-DMRI: a convolutional neural network for denoising of magnetic resonance images,” Pattern Recogn. Lett., vol. 135, pp. 57–63, 2020, doi: 10.1016/j.patrec.2020.03.036.

7. J. G. Lee, S. Jun, Y. W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim, “Deep learning in medical imaging: general overview,” Korean J. Radiol., vol. 18, no. 4, pp. 570–584, 2017, doi: :10.3348/kjr.2017.18.4.570.

8. Y. Chang, L. Yan, M. Chen, H. Fang, and S. Zhong, “Two-stage convolutional neural network for medical noise removal via image decomposition,” IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 2707–2721, 2019, doi: 10.1109/TIM.2019.2925881.

9. H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial deep learning in medical imaging: Overview and fu-ture promise of an exciting new technique,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1153–1159, 2016, doi: 10.1109/TMI.2016.2553401.

10. J. Su, R. Pellicer-Guridi, T. Edwards, M. Fuentes, M. S. Rosen, V. Vegh, and D. Reutens, “A CNN based software gradiometer for electromagnetic background noise reduction in low field MRI applications,” IEEE Trans. Med. Imaging, vol. 41, no. 5, pp. 1007–1016, 2022, doi: 10.1109/TMI.2022.3147450.

11. M. Kim, J. Yun, Y. Cho, K. Shin, R. Jang, H. J. Bae, and N. Kim, “Deep learning in medical imaging,” Neurospine, vol. 17, no. 2, p. 471, 2020, doi: 10.14245/ns.1938396.198.

12. S. Pradeep and P. Nirmaladevi, “A review on speckle noise reduction techniques in ultrasound medical images based on spa-tial domain, transform domain and CNN methods,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 1055, no. 1, p. 012116, Feb. 2021, doi: 10.1088/1757-899X/1055/1/012116.

13. L. Gondara, “Medical image denoising using convolutional denoising autoencoders,” in Proc. IEEE 16th Int. Conf. Data Mining Workshops (ICDMW), 2016, pp. 241–246, doi: 10.1109/ICDMW.2016.0041.

14. R. Aggarwal, V. Sounderajah, G. Martin, D. S. Ting, A. Karthikesalingam, D. King, … A. Darzi, “Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis,” NPJ Digit. Med., vol. 4, no. 1, p. 65, 2021, doi: 10.1038/s41746-021-00438-z.

15. M. Elhoseny and K. Shankar, “Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements,” Measurement, vol. 143, pp. 125–135, 2019, doi: doi:10.1016/j.measurement.2019.04.072.

16. M. Tsuneki, “Deep learning models in medical image analysis,” J. Oral Biosci., vol. 64, no. 3, pp. 312–320, 2022, doi: 10.1016/j.job.2022.03.003.