Crystal Engineering Strategies for Copper Coordination Polymer Synthesis: Molecular Design and Assembly

Main Article Content

Yu Wang

Abstract

Crystal engineering represents a fundamental approach to designing and synthesizing coordination polymers with predetermined structural properties and functionalities. This comprehensive review examines the molecular design principles and assembly strategies employed in copper coordination polymer synthesis, emphasizing the critical role of ligand selection, secondary building units, and crystallization conditions. The systematic exploration of copper-based coordination polymers reveals their exceptional versatility in forming diverse structural architectures, from one-dimensional chains to three-dimensional frameworks. Key design parameters including ligand geometry, coordination environment, and intermolecular interactions significantly influence the resulting crystal structures and their associated properties. Recent advances in crystal engineering have demonstrated the successful implementation of rational design strategies to achieve targeted topologies and enhanced functional properties such as luminescence, catalytic activity, and biological applications. The investigation of copper coordination polymers incorporating various organic ligands, including glutarate derivatives and auxiliary ligands, has revealed their potential for applications in urease inhibition and other biomedical fields. Furthermore, the development of sophisticated synthetic methodologies enables precise control over crystallization processes, leading to improved reproducibility and enhanced material properties. This review synthesizes current understanding of copper coordination polymer design principles while highlighting emerging trends in crystal engineering that promise to advance the field toward more predictable and application-oriented synthesis strategies.

Article Details

Section

Articles

How to Cite

Crystal Engineering Strategies for Copper Coordination Polymer Synthesis: Molecular Design and Assembly. (2025). Journal of Science, Innovation & Social Impact, 1(1), 33-43. https://sagespress.com/index.php/JSISI/article/view/10

References

1. G. Xie, W. Guo, Z. Fang, Z. Duan, X. Lang, D. Liu, G. Mei, Y. Zhai, X. Sun, and X. Lu, “Dual‐Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products,” Angewandte Chemie, vol. 136, no. 47, p. e202412568, 2024, doi: 10.1002/ange.202412568.

2. G. R. Desiraju, "Crystal Engineering: From Molecule to Crystal," J. Am. Chem. Soc., vol. 135, no. 27, pp. 9952–9967, 2013, doi: 10.1021/ja403264c.

3. Y. Cui, D. Wang, C. Zhou, X. Zhang, H. Ben, and X. Yang, "Interfacially synergistic Pd-supported Al-SiO₂ catalysts for selective hydrogenolysis of cellulose to ethanol," Applied Catalysis B: Environment and Energy, vol. 381, Art. no. 125818, Feb. 2026, doi: 10.1016/j.apcatb.2025.125818.

4. D. Ejarque, T. Calvet, Mercè Font-Bardia, and J. Pons, "Amide-Driven Secondary Building Unit Structural Transformations between Zn (II) Coordination Polymers," Cryst. Growth Des., vol. 22, no. 8, pp. 5012–5026, 2022, doi: 10.1021/acs.cgd.2c00520.

5. M. Guo, K. Liu, K. Wang, J. Liu, P. Wang, F. Zhao, X. Zhang, and L. Zhang, “Sacrificial Doping of Interstitial Lithium Facilitated Undoped Amorphous/Crystalline RuO2 Toward Boosted Acidic Water Oxidation,” Advanced Energy Materials, p. e03199, 2025, doi: 10.1002/aenm.202503199.

6. C. Lo Iacono, A. Pizzi, K. T. Mahmudov, R. M. Gomila, A. Frontera, and G. Resnati, "When CuCl42– and CuBr42– Form Anion···Anion Networks Assembled via Cu···Cl/Br Regium Bonds," Cryst. Growth Des., vol. 25, no. 12, pp. 4338–4347, 2025, doi: 10.1021/acs.cgd.5c00238.

7. Y. Song, X. Zhang, Z. Xiao, Y. Wang, P. Yi, M. Huang, and L. Zhang, “Coupled amorphous NiFeP/cystalline Ni3S2 nanosheets enables accelerated reaction kinetics for high current density seawater electrolysis,”Applied Catalysis B: Environment and Energy, vol. 352, p. 124028, 2024, doi: 10.1016/j.apcatb.2024.124028.

8. Y. V. Matveychuk, A. S. Yurchenko, and E. V. Bartashevich, "Combining the Static and Dynamic Approaches to Mechanical Property Recognition for Coumarin Polymorphic Forms," Cryst. Growth Des., vol. 25, no. 12, 2025, doi: 10.1021/acs.cgd.5c00410.

9. G. Xie, Z. Zhu, D. Liu, W. Gao, Q. Gong, W. Dong, Y. Zhai, W. Guo, and X. Sun, “3D gas diffusion layer with dual-metal sites for enhanced CO₂ electrolysis to C₂⁺ products,” Angewandte Chemie, p. e202510167, 2025, doi: 10.1002/ange.202510167.

10. N. Craciun, E. Melnic, A. V. Siminel, N. V. Costriucova, D. Chisca, and M. S. Fonari, "Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties," Inorganics, vol. 13, no. 3, pp. 90–90, 2025, doi: 10.3390/inorganics13030090.

11. C. Chen, L. Jiao, D. Yan, X. Jia, R. Li, L. Hu, X. Li, P. Zong, C. Zhu, Y. Zhai, et al., “Metastable Sn-O-Pd sites modulating the seesaw effect specifically activate H₂O₂ for the identification of plasticizers,” Advanced Functional Materials, p. e06250, 2025, doi: 10.1002/adfm.202506250.

12. L. Hu, R. Li, C. Chen, X. Jia, X. Li, L. Jiao, C. Zhu, X. Lu, Y. Zhai, and S. Guo, “Cu single sites on BO₂ as thyroid peroxidase mimicking for iodotyrosine coupling and pharmaceutical assess,” Science Bulletin, 2025, doi: 10.1016/j.scib.2025.03.010.

13. N. Guo, L. Jiao, L. Hu, D. Yan, C. Chen, P. Zong, X. Shi, Y. Zhai, Z. Zhu, and X. Lu, “Deciphering pyridinic N-mediated inhibition mode in platinum nanozymes for pesticide distinction,” Small, p. 2505731, 2025, doi: 10.1002/smll.202505731.

14. G. Mei, Z. Sun, Z. Fang, Y. Dan, X. Lu, J. Tang, W. Guo, Y. Zhai, and Z. Zhu, “CoNi alloy nanoparticles encapsulated within N-doped carbon nanotubes for efficiently pH-universal CO₂ electroreduction,” Small, vol. 21, no. 31, p. 2504086, 2025, doi: 10.1002/smll.202504086.

15. X. Shi, L. Jiao, P. Zong, X. Jia, C. Chen, N. Guo, Y. Zhai, Z. Zhu, and X. Lu, “Single-atom cobalt sites efficient activation of H₂O₂ with enhanced O₂ tolerance for electrochemiluminescence sensing of plasticizers,” Small, vol. 21, no. 34, p. 2504692, 2025, doi: 10.1002/smll.202504692.

16. F. Ding, C. Ma, W.-L. Duan, and J. Luan, "Second auxiliary ligand induced two coppor-based coordination polymers and urease inhibition activity," Journal of Solid State Chemistry, vol. 331, pp. 124537–124537, 2023, doi: 10.1016/j.jssc.2023.124537.

17. R. Meena, P. Pandey, C. Zuffa, Petr Brázda, E. Samolova, and N. McIntosh et al., "Crystal Engineering in Oligorylenes: The Quest for Optimized Crystal Packing and Enhanced Charge Transport," Crystal growth & design, vol. 25, no. 9, pp. 3087–3099, 2025, doi: 10.1021/acs.cgd.5c00145.

18. V. K. Brel, O. I. Artyushin, E. V. Smirnova, E. E. Kim, A. V. Vologzhanina, and M. T. Metlin et al., "New coordination polymers of 1,2,4,5-tetrakis (diphenylphosphino)pyridine with Eu (III), Tb (III), and Gd (III). Synthesis and luminescent properties," Inorganic Chemistry Communications, vol. 175, p. 114156, 2025, doi: 10.1016/j.inoche.2025.114156.

19. S. Abtahi, Nayanathara Hendeniya, S. T. Mahmud, G. Mogbojuri, Chizoba Livina Iheme, and B. Chang, "Metal-Coordinated Polymer–Inorganic Hybrids: Synthesis, Properties, and Application," Polymers, vol. 17, no. 2, pp. 136–136, 2025, doi: 10.3390/polym17020136.

20. F. Ding, N. Su, C. Ma, B. Li, W.-L. Duan, and J. Luan, "Fabrication of two novel two-dimensional copper-based coordination polymers regulated by the 'V'-shaped second auxiliary ligands as high-efficiency urease inhibitors," Inorganic Chemistry Communications, vol. 170, p. 113319, 2024, doi: 10.1016/j.inoche.2024.113319.

21. S. Zhang, W. Yang, D. Jia, L. Zhou, and Q. Yin, "Investigation on the Solvent Effect in Vanillin Habit Evolution," Crystal Growth & Design, vol. 22, no. 7, pp. 4086–4093, 2022, doi: 10.1021/acs.cgd.1c01445.

22. M. Riad, Y. Chen, Anuluxan Santhiran, E. Gi, Kerly Ochoa-Romero, and G. J. Miller et al., "Coloring Tetrahedral Semiconductors: Synthesis and Photoluminescence Enhancement of Ternary II-III2-VI4 Colloidal Nanocrystals," ACS Energy Letters, vol. 9, no. 10, pp. 5012–5018, 2024, doi: 10.1021/acsenergylett.4c02032.

23. O. W. Steward, M. V. Kaltenbach, A. B. Biernesser, M. J. Taylor, K. J. Hovan, and J. J. S. VerPlank et al., "Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties," Polymers, vol. 3, no. 4, pp. 1662–1672, 2011, doi: 10.3390/polym3041662.

24. S. A. Ullah, A. Saeed, M. Azeem, M. B. Haider, and M. F. Erben, "Exploring the latest trends in chemistry, structure, coordination, and diverse applications of 1-acyl-3-substituted thioureas: a comprehensive review," RSC advances, vol. 14, no. 25, pp. 18011–18063, 2024, doi: 10.1039/d4ra02567a.

25. L. W. T. Parsons and L. A. Berben, "Expanding the Scope of Aluminum Chemistry with Noninnocent Ligands," Accounts of Chemical Research, vol. 57, no. 8, pp. 1087–1097, 2024, doi: 10.1021/acs.accounts.3c00714.

26. D. Mani, T. K. Roy, J. Khatri, G. Schwaab, S. Blach, and C. Hölzl et al., "Internal Electric Field-Induced Formation of Exotic Linear Acetonitrile Chains," The Journal of Physical Chemistry Letters, vol. 13, no. 29, pp. 6852–6858, 2022, doi: 10.1021/acs.jpclett.2c01482.

27. A. A. Harraq, B. D. Choudhury, and Bhuvnesh Bharti, "Field-Induced Assembly and Propulsion of Colloids," Langmuir, vol. 38, no. 10, pp. 3001–3016, 2022, doi: 10.1021/acs.langmuir.1c02581.

28. S. Demir, Y. Kılıç, F. T. Çoşkun, F. A. Biçer, and O. Z. Yeşilel, "Synthesis and Characterization of Four Cu(II) Coordination Polymers Based on Glutarate and 3,3′-Dimethylglutarate Ligands," Journal of Molecular Structure, p. 143438, 2025, doi: 10.1016/j.molstruc.2025.143438.