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Abstract: Common transfer patterns exist across different sports disciplines in adolescents 

regarding abilities such as speed, explosiveness, and rhythm control. This study constructs a cross-

discipline prediction framework based on shared feature space, targeting throwing velocity, sprint 

performance, and jumping ability. The framework comprises a general ability feature layer, 

discipline-specific feature layer, and multi-task regression head. General features include motion 

rhythm statistics, velocity distribution, acceleration trends, and training load indicators, while the 

discipline layer incorporates discipline-specific motion information. Predictions are performed 

using multi-head LightGBM. Experiments on 2.1 million sequence data points from 619 athletes 

demonstrate an average MAPE of 6.5%, representing a 22.7% improvement over single-task models. 

The framework maintains stable advantages even under sparse data conditions, indicating that the 

shared feature structure effectively enhances cross-sport prediction capabilities for adolescent 

athletic performance. 

Keywords: cross-sport prediction; multi-task learning; shared feature space; athletic performance; 

LightGBM 

 

1. Introduction 

Adolescence represents a critical period where athletic ability structures rapidly form 

alongside multidimensional development. The latent commonalities in physical 

characteristics and rhythm control patterns across different sports provide a theoretical 

foundation for constructing a unified performance prediction system. Practical training 

and talent selection processes often encounter challenges such as difficulty in cross-sport 

ability assessment and low validity of metric conversion, necessitating data-driven 

methods for ability transfer modeling. To address this, this paper proposes a predictive 

model integrating shared feature spaces with multi-task regression. It systematically 

combines multi-source high-frequency time-series data (e.g., IMU and GPS) with a 

LightGBM multi-head regression architecture to achieve joint modeling across multiple 

tasks such as throwing, sprinting, and jumping. The model design focuses on extracting 

universal abilities while compensating for task-specific variations, with the core objectives 

of enhancing prediction accuracy and cross-sport generalization capabilities. This 

research aims to provide an extensible data modeling paradigm for evaluating multi-

event training in youth athletes, advancing athletic performance prediction systems 

toward multi-task collaboration and structured representation. 
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2. Theoretical Foundations for Predicting Adolescent Multi-Event Performance 

Youth athletic performance exhibits significant cross-event transferability, rooted in 

the common distribution of foundational motor abilities such as neuromuscular control, 

dynamic response, and rhythmic regulation. Within biokinesiology and multi-event 

training theory, metrics like speed, acceleration, and explosive power form transferable 

performance mappings across different motor skills [1]. The Multi-Task Learning (MTL) 

framework effectively captures these cross-sport capability correlations by 

simultaneously learning multiple prediction targets within a unified model. The Shared 

Feature Space theory emphasizes extracting stable, low-level physical movement patterns 

across multiple tasks to construct a unified capability representation layer, thereby 

enhancing the model's ability to model latent correlations between sports. 

3. Design of a Cross-Sport Performance Prediction Model for Adolescents 

3.1. Overall Model Architecture Design 

The model adopts a shared-specific dual-path structure. The general ability feature 

layer extracts action rhythm statistics, velocity change rates, triaxial acceleration trends, 

and cumulative training load sampled at 0.1-second intervals. A sliding window 

reconstruction of 2.1 million sequences from 619 athletes forms a stable low-dimensional 

feature space [2]. The sport-specific feature layer integrates 45 dimensions of sport-unique 

pose angles, periodic rhythm factors, and local extrema points. The multi-task regression 

head constructs three LightGBM submodules to predict throwing velocity, 30m sprint 

time, and vertical jump height respectively. These submodules share upstream inputs 

with parameter settings of tree depth 7, learning rate 0.05, and subsampling rate 0.9. The 

overall model architecture is shown in Figure 1. 

 

Figure 1. Architectural Diagram of the Youth Multi-Sport Performance Prediction Model. 

3.2. Construction of the General Ability Feature Layer 

The general ability feature layer was designed based on a multimodal sequence 

fusion strategy, focusing on low-order physical performance variables with stable 

transferability across sports disciplines. Data sources comprised 2.1 million temporal 

samples collected from 619 adolescent athletes using 3-axis IMUs and high-frequency GPS 

devices. Each sample has a duration of T = 4s and a sampling frequency of 50Hz. These 

samples are reorganized using a standard sliding window to form a fixed-dimensional 

input matrix 𝑋 ∈ IR200×𝑑 , where d = 18 represents the initial number of channels. These 

channels encompass four feature categories: velocity vector magnitude, rhythm period 

distribution, normalized acceleration rate of change, and unit-time training load [3]. The 

process of constructing the general ability expression tensor 𝐹𝑠ℎ𝑎𝑟𝑒𝑑  is defined by the 

following formula: 

𝐹𝑠ℎ𝑎𝑟𝑒𝑑 = 𝜑 (
1

𝑇
∑ (𝛼 ⋅ 𝑣𝑡 + 𝛽 ⋅

𝑑𝑎𝑡

𝑑𝑡
+ 𝛾 ⋅ 𝑟𝑡 + 𝛿 ⋅ 𝑙𝑡)𝑇

𝑡=1 )      (1) 
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Where 𝑣𝑡  denotes the velocity magnitude vector at time t, 
𝑑𝑎𝑡

𝑑𝑡
 represents the 

acceleration change rate, 𝑟𝑡  indicates the action rhythm statistical factor, 𝑙𝑡 signifies the 

training load metric, 𝛼, 𝛽, 𝛾, 𝛿 ∈ IR is the feature weighting coefficient, and 𝜑(⋅)is the 

regularized activation mapping. This structure achieves high-dimensional redundant 

signal compression and cross-project representation extraction through temporal 

averaging and weighted filtering mechanisms, providing a structurally stable and 

semantically clear feature foundation for specificity compensation and multi-task 

modeling [4]. 

3.3. Project-Specific Feature Layer Design 

The project-specific feature layer constructs a differentiated action representation 

matrix 𝐹𝑠𝑝𝑜𝑟𝑡 ∈ IR𝑁×𝑑𝑠  after processing the shared feature base 𝐹𝑠ℎ𝑎𝑟𝑒𝑑 , where N = 

2100000 represents the total number of sliding window samples and ds = 45 denotes the 

dedicated channel dimension for project actions [5]. The design objective is to provide 

fine-grained dynamic augmentation components for throwing, sprinting, and jumping 

tasks while maintaining input compatibility with the multi-task regressor. This layer 

employs a unified temporal alignment operator 𝐴(⋅)and a local action encoder 𝜓(⋅)to 

generate task inputs𝑍𝑖  (𝑖 ∈ {1,2,3} corresponds to the three regression tasks): 

𝑍𝑖 = ψ(𝐴(𝐹𝑠ℎ𝑎𝑟𝑒𝑑,S𝑠𝑝𝑜𝑟𝑡)),Z𝑖 ∈ IR200×𝑑𝑠         (2) 

Where 𝑆𝑠𝑝𝑜𝑟𝑡IR200×3  represents the IMU three-axis angular velocity and attitude 

differential sequences aligned to a shared window via Dynamic Time Warping (DTW); 

𝐴(⋅) denotes the temporal alignment fusion operator; and 𝜓(⋅) signifies the action 

encoding mapping adapted for LightGBM task inputs. To model the periodicity and 

velocity pattern variations of project actions, the action rhythm distribution 𝑅  and 

velocity interval density function 𝐷 are designed: 

𝑅 =
1

𝐾
∑

𝑓𝑐𝑦𝑐𝑙𝑒,𝑘

200

𝐾
𝑘=1 , 𝐾 = 619, 𝑓𝑐𝑦𝑐𝑙𝑒,𝑘 ∈ 𝑁        (3) 

Where: 𝐾 represents the number of athletes; 𝑓𝑐𝑦𝑐𝑙𝑒,𝑘 denotes the number of detected 

peak main cycles within the 4-second window for the 𝑘 th athlete; 200 corresponds to the 

number of sampling points in the 50Hz×4s window. 

𝐷(𝑢) =
1

𝑁
∑ II(𝑣𝑛 ∈ [𝑢, 𝑢 + 𝛥𝑢]), 𝑣𝑛 ∈ IR, Δ𝑢=0.5m/s𝑁

𝑛=1      (4) 

Where 𝑣𝑛  represents the velocity modulus within each window; II(⋅)denotes the 

indicator function; [𝑢, 𝑢 + 𝛥𝑢] indicates the velocity binning at 0.5 m/s intervals; and 

𝐷(𝑢) signifies the sample density within this velocity interval. The interface between the 

feature layer and the regressor is designed as a three-headed input projection 𝑍𝑖 → ℎ𝑖(⋅). 

The regressor is constructed using shared inputs and task-independent tree sets based on 

multi-head LightGBM, ensuring compatibility between the specific layer's output 

dimension and the regressor head parameters 𝑑𝑒𝑝𝑡ℎ = 7,𝑙𝑟=0.05,𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒=0.9. 

3.4. Construction of Multi-Task Regression Head and Multi-Headed LightGBM Predictor 

The multi-task regression head adopts a structurally parallel three-channel 

submodule architecture, constructing independent regression functions 𝑓𝑖(⋅) for each 

target task: pitching velocity, 30m sprint time, and vertical jump height. Inputs are derived 

from the fused feature tensor 𝑍𝑖 ∈ IR200×𝑑𝑠  , where ds=45 denotes the task-specific feature 

dimension, and 𝑖 ∈ {1,2,3}  corresponds to the three tasks. Each submodule employs 

LightGBM to train a gradient-boosted tree ensemble comprising 200 base learners. A 

multi-task joint objective function based on mean squared error loss is designed as follows: 

𝐿𝑀𝑇𝐿 = ∑ 𝑤𝑖
3
𝑖=1 ⋅

1

𝑛𝑖
∑ (𝑦̂𝑖𝑗 − 𝑦𝑖𝑗)2𝑛𝑖

𝑗=1          (5) 

Among these, 𝑦𝑖𝑗 denotes the true performance value of the 𝑗 th sample in the 𝑖 th 

task, 𝑦̂𝑖𝑗 = 𝑓𝑖(𝑍𝑖𝑗) represents the predicted value, 𝑤𝑖  is the task weighting factor, and 𝑛𝑖 

indicates the number of samples for the corresponding task. Internally, the LightGBM 

model optimizes splitting complexity and residual fitting capability through structural 

regularization. Its weak learner construction process satisfies the following gain 

maximization criterion: 
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𝐺(𝑆) =
1

2
[

(∑ 𝑔𝑖𝑗∈𝑆𝐿
)

2

∑ ℎ𝑗+𝜆𝑗∈𝑆𝐿

+
(∑ 𝑔𝑖𝑗∈𝑆𝑅

)
2

∑ ℎ𝑗+𝜆𝑗∈𝑆𝑅

−
(∑ 𝑔𝑖𝑗∈𝑆 )

2

∑ ℎ𝑗+𝜆𝑗∈𝑆
]       (6) 

Where 𝑆𝐿、𝑆𝑅、𝑆 denote splitting into the left subset, right subset, and entire dataset, 

respectively; 𝑔𝑗  and ℎ𝑗  represent the first-order and second-order derivatives of the 

sample, respectively; and 𝜆  is the leaf node regularization factor, set to 1.0. Each 

LightGBM regression head is configured with a depth of 7, learning rate of 0.05, 

subsampling rate of 0.9, and maximum leaf count capped at 32. This ensures the model 

maintains generalization capability while avoiding overfitting under high-dimensional, 

heterogeneous features [6]. To clearly illustrate the three adolescent athletic performance 

modeling objectives and their structural differentiation logic within the multi-task 

regression model, we visualize the modeling expressions for the three tasks-pitching 

velocity, 30m sprint time, and vertical jump height-by integrating actual data collection 

paths with simulation workflows (as shown in Figure 2). 

 

Figure 2. Simulation diagram of three adolescent athletic performance metrics. 

3.5. Model Training and Parameter Settings 

Model training employs a stratified allocation strategy, dividing athletes into training 

(70%), validation (15%), and test (15%) sets based on sport and gender proportions. All 

input features are standardized and concatenated using sliding windows to form tensor 

inputs 𝑍𝑖 ∈ IR200×45 . The training process constructs an optimization objective based on 

L2 loss, incorporating regularization to control regressor complexity [7]. The loss function 

is defined as: 

𝐽(𝜃) = ‖𝑌 − 𝑌̂‖
2

2
+ 𝜆‖𝜃‖2

2          (7) 

Where 𝑌 is the true label matrix, 𝑌̂ is the model prediction output, 𝜃 is the set of 

all regressor parameters, and 𝜆 is the L2 regularization coefficient (set to 0.01). LightGBM 

trained for 200 epochs per task with an early-stopping window of 30 epochs. The boosting 

strategy employed gradient boosting per tree, and training occurred on a single GPU with 

32GB memory. 

4. Experimental Results and Analysis 

4.1. Experimental Setup and Evaluation Metrics 

To validate the adaptability and stability of multi-task regression models in 

predicting cross-event athletic performance among adolescents, this experiment design 

fully integrates raw data with multi-dimensional metric requirements, with specific 

settings as follows: Data was selected from 619 adolescent athletes across throwing, 

sprinting, and jumping disciplines. The original dataset comprised 2.1 million sequences, 

each 4 seconds long at 50Hz sampling rate, containing IMU triaxial data, GPS velocity, 

and load information. After sliding window processing and standard normalization, the 
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data were proportionally divided into training (70%), validation (15%), and test (15%) sets, 

maintaining consistent gender and event type distributions; Evaluation metrics included 

Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Inter-Task 

Performance Variability. MAPE served as the primary evaluation criterion, measuring 

relative regression errors across disciplines for cross-target comparisons [8]. 

4.2. Baseline Model Comparison Analysis 

For each of the three target tasks, separate LightGBM models were constructed as 

control groups, maintaining consistent input dimensions and dataset splits. Experimental 

results are shown in Table 1. 

Table 1. Performance Comparison Between Single-Task and Multi-Task Models Across Different 

Tasks. 

Model Structure Prediction Task 
MAPE 

(%) 

MSE 

(units²) 

Task-to-Task Volatility 

(%) 

Single-Task 

Model 
Pitching Speed 8.25 1.82 2.71 

 30m Sprint Time 7.9 0.029  

 
Vertical jump 

height 
9.34 3.96  

Multi-task model Pitching Speed 6.42 1.55 1.12 

 30m Sprint Time 6.28 0.025  

 Jump height 6.8 3.31  

Table 1 shows that the multi-task model achieved an average MAPE of 6.50% across 

the three athletic performance predictions, representing a reduction of approximately 23.5% 

compared to the single-task model's 8.50%. This corresponds to an overall relative error 

reduction of 22.7%. Regarding the MSE metric, the values for throwing speed and jump 

height tasks decreased to 1.55 and 3.31, respectively, indicating significant advantages in 

both accuracy and stability. Concurrently, the inter-task performance variability 

decreased from 2.71% to 1.12%, further validating the coordinated generalization 

capability of the shared feature space structure in multi-objective modeling and providing 

a solid foundation for robustness testing under sparse sample conditions [9,10]. 

4.3. Performance Validation of Shared Feature Space 

The effectiveness of the shared feature space was further validated by constructing a 

"de-shared" control group. While maintaining identical task structures and samples, the 

general capability layer was removed, and independent regression heads were trained 

solely using project-specific inputs. Results are shown in Figure 3. 

 

Figure 3. Structural diagram of model performance differences before and after introducing the 

shared feature space. 
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Experimental results show that the Mean Absolute Percentage Error (MAPE) 

increased to 8.21%, and the inter-task prediction volatility rose to 2.58%. This indicates 

that the absence of low-order general physical variables in the input features significantly 

weakens the model's stability and generalization ability for sequence prediction. 

Particularly in jump-type tasks, the Mean Squared Error (MSE) increased from 3.31 to 4.12, 

with a noticeable decline in model output accuracy, revealing insufficient adaptability to 

dynamically abrupt action patterns. Further analysis indicates that the absence of unified 

physical priors hinders the model's ability to form consistent cross-task abstractions, 

impeding the capture of generalizable patterns such as rhythm control and velocity 

changes within time series. Introducing the shared spatial structure effectively 

compressed frequently occurring noise redundancy in high-dimensional inputs, 

enhancing the compactness and distinctiveness of feature representations. This enabled 

the model to more stably extract common features across various tasks, strengthening its 

understanding of intrinsic patterns between different movement modes and its transfer 

capabilities. Overall, incorporating the sharing mechanism positively improved multi-

task modeling performance, validating the critical value of universal physical information 

in sequence modeling. 

4.4. Analysis of Transfer Effects Across Different Tasks 

Under the shared feature space, asymmetric transfer pathways emerge between 

different motion tasks, revealing pronounced structural feature sharing. Results are 

shown in Figure 4. 

 

Figure 4. Task Transfer Results. 

Results indicate that the sprint task exhibits positive transfer enhancement for the 

jump task. The MAPE of the 30m sprint time prediction model decreased by 1.32% after 

incorporating jump ability variables.The jump task had relatively limited influence on the 

throwing task, showing only minor error convergence during high-load training 

segments. Transfer residual analysis indicated the most significant rhythm-frequency 

coupling between throwing and sprinting, with residual cross-correlation rising to 0.42-

significantly higher than throwing-jumping (0.17) and jumping-sprinting (0.21).Further 

construction of a three-dimensional transfer gain matrix revealed that the sprint task 

exhibited the strongest output contribution in feature sharing, while the jump task was 

most dependent on shared input representations, highlighting the dominant transfer role 

of speed and rhythm-related capability variables. 
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4.5. Robustness Testing in Sparse Sample Scenarios 

The prediction stability of the multi-task model under sparse data conditions was 

evaluated by progressively reducing the sample size. When the training sample 

proportion decreased from 70% to 50%, the average MAPE across all three tasks increased 

from 6.50% to 7.12%, with the increase controlled within 0.62 percentage points. Further 

reduction to 30% samples increased the average MAPE to 7.84%, representing a 20.6% 

error increase relative to the full-sample condition. Corresponding MSE metrics showed: 

throwing speed task increased from 1.55 to 1.93, 30m sprint time from 0.025 to 0.031, and 

jump height from 3.31 to 4.02. Meanwhile, the inter-task performance variability remained 

stable at 1.86% under the 30% sample condition, showing no significant dispersion. Error 

growth rates varied across tasks: the jump task exhibited greater sensitivity to sample 

reduction, while the sprint task demonstrated relatively stable error variation. This 

reflects the shared feature space's robust support for fundamental motor ability 

representation under low sample density. 

5. Conclusions 

This research aims to provide an extensible data modeling paradigm for evaluating 

multi-event training in youth athletes, thereby advancing athletic performance prediction 

systems toward multi-task collaboration and structured representation. The proposed 

model is designed to extract universal athletic abilities while compensating for task-

specific variations, with the core objectives of improving prediction accuracy and cross-

sport generalization. The feature fusion mechanism effectively enhances model stability 

and generalization during multi-task modeling. General physical variables-represented 

by rhythm, speed, and acceleration-demonstrate critical value in cross-task learning, 

exhibiting significant advantages under high-dimensional feature compression and 

sparse sample conditions. Although the current model has achieved empirical progress in 

accuracy and transfer directionality, it still faces limitations in complex action semantic 

recognition and dynamic feedback adaptation. Future research can further expand in 

three dimensions: higher-order cross-attention mechanisms, multimodal perception 

collaborative modeling, and online learning frameworks, driving the evolution of 

adolescent athletic ability prediction systems toward real-time and intelligent capabilities. 
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