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Abstract: Common transfer patterns exist across different sports disciplines in adolescents
regarding abilities such as speed, explosiveness, and rhythm control. This study constructs a cross-
discipline prediction framework based on shared feature space, targeting throwing velocity, sprint
performance, and jumping ability. The framework comprises a general ability feature layer,
discipline-specific feature layer, and multi-task regression head. General features include motion
rhythm statistics, velocity distribution, acceleration trends, and training load indicators, while the
discipline layer incorporates discipline-specific motion information. Predictions are performed
using multi-head LightGBM. Experiments on 2.1 million sequence data points from 619 athletes
demonstrate an average MAPE of 6.5%, representing a 22.7% improvement over single-task models.
The framework maintains stable advantages even under sparse data conditions, indicating that the
shared feature structure effectively enhances cross-sport prediction capabilities for adolescent
athletic performance.
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1. Introduction

Adolescence represents a critical period where athletic ability structures rapidly form
alongside multidimensional development. The latent commonalities in physical
characteristics and rhythm control patterns across different sports provide a theoretical
foundation for constructing a unified performance prediction system. Practical training
and talent selection processes often encounter challenges such as difficulty in cross-sport
ability assessment and low validity of metric conversion, necessitating data-driven
methods for ability transfer modeling. To address this, this paper proposes a predictive
model integrating shared feature spaces with multi-task regression. It systematically
combines multi-source high-frequency time-series data (e.g., IMU and GPS) with a
LightGBM multi-head regression architecture to achieve joint modeling across multiple
tasks such as throwing, sprinting, and jumping. The model design focuses on extracting
universal abilities while compensating for task-specific variations, with the core objectives
of enhancing prediction accuracy and cross-sport generalization capabilities. This
research aims to provide an extensible data modeling paradigm for evaluating multi-
event training in youth athletes, advancing athletic performance prediction systems
toward multi-task collaboration and structured representation.
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2. Theoretical Foundations for Predicting Adolescent Multi-Event Performance

Youth athletic performance exhibits significant cross-event transferability, rooted in
the common distribution of foundational motor abilities such as neuromuscular control,
dynamic response, and rhythmic regulation. Within biokinesiology and multi-event
training theory, metrics like speed, acceleration, and explosive power form transferable
performance mappings across different motor skills [1]. The Multi-Task Learning (MTL)
framework effectively captures these cross-sport capability correlations by
simultaneously learning multiple prediction targets within a unified model. The Shared
Feature Space theory emphasizes extracting stable, low-level physical movement patterns
across multiple tasks to construct a unified capability representation layer, thereby
enhancing the model's ability to model latent correlations between sports.

3. Design of a Cross-Sport Performance Prediction Model for Adolescents
3.1. Overall Model Architecture Design

The model adopts a shared-specific dual-path structure. The general ability feature
layer extracts action rhythm statistics, velocity change rates, triaxial acceleration trends,
and cumulative training load sampled at 0.1-second intervals. A sliding window
reconstruction of 2.1 million sequences from 619 athletes forms a stable low-dimensional
feature space [2]. The sport-specific feature layer integrates 45 dimensions of sport-unique
pose angles, periodic rhythm factors, and local extrema points. The multi-task regression
head constructs three LightGBM submodules to predict throwing velocity, 30m sprint
time, and vertical jump height respectively. These submodules share upstream inputs
with parameter settings of tree depth 7, learning rate 0.05, and subsampling rate 0.9. The
overall model architecture is shown in Figure 1.
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Figure 1. Architectural Diagram of the Youth Multi-Sport Performance Prediction Model.

3.2. Construction of the General Ability Feature Layer

The general ability feature layer was designed based on a multimodal sequence
fusion strategy, focusing on low-order physical performance variables with stable
transferability across sports disciplines. Data sources comprised 2.1 million temporal
samples collected from 619 adolescent athletes using 3-axis IMUs and high-frequency GPS
devices. Each sample has a duration of T = 4s and a sampling frequency of 50Hz. These
samples are reorganized using a standard sliding window to form a fixed-dimensional
input matrix X € IR***** , where d = 18 represents the initial number of channels. These
channels encompass four feature categories: velocity vector magnitude, rhythm period
distribution, normalized acceleration rate of change, and unit-time training load [3]. The
process of constructing the general ability expression tensor Fgu,req is defined by the
following formula:

Foarea = ¢ (0= (€ ve + - Sty m+6-1,)) (1)

T
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Where v, denotes the velocity magnitude vector at time t, % represents the
acceleration change rate, r, indicates the action rhythm statistical factor, I, signifies the
training load metric, a,f,y,6 € IR is the feature weighting coefficient, and ¢(-)is the
regularized activation mapping. This structure achieves high-dimensional redundant
signal compression and cross-project representation extraction through temporal
averaging and weighted filtering mechanisms, providing a structurally stable and
semantically clear feature foundation for specificity compensation and multi-task
modeling [4].

3.3. Project-Specific Feature Layer Design

The project-specific feature layer constructs a differentiated action representation
matrix Fgpor € IRV*%s  after processing the shared feature base Fg;4peq, Where N =
2100000 represents the total number of sliding window samples and ds = 45 denotes the
dedicated channel dimension for project actions [5]. The design objective is to provide
fine-grained dynamic augmentation components for throwing, sprinting, and jumping
tasks while maintaining input compatibility with the multi-task regressor. This layer
employs a unified temporal alignment operator A(-)and a local action encoder (-)to
generate task inputsZ; (i € {1,2,3} corresponds to the three regression tasks):

Z; = W(A(Fenarea Sspore)), Zi € IR¥™% 2)

Where SsportIR200X3 represents the IMU three-axis angular velocity and attitude
differential sequences aligned to a shared window via Dynamic Time Warping (DTW);
A(-) denotes the temporal alignment fusion operator; and () signifies the action
encoding mapping adapted for LightGBM task inputs. To model the periodicity and
velocity pattern variations of project actions, the action rhythm distribution R and
velocity interval density function D are designed:

1 feycle,
R = Ezlg:l C;JOL k'K = 619:fcycle,k EN 3)

Where: K represents the number of athletes; f. ., denotesthe number of detected
peak main cycles within the 4-second window for the k th athlete; 200 corresponds to the
number of sampling points in the 50Hzx4s window.

D(u) = % YN_ (v, € [u,u+ Au]), v, € IR, Au=0.5m/s (4)

Where v, represents the velocity modulus within each window; II(-)denotes the
indicator function; [u,u + Au] indicates the velocity binning at 0.5 m/s intervals; and
D(u) signifies the sample density within this velocity interval. The interface between the
feature layer and the regressor is designed as a three-headed input projection Z; — h;(-).
The regressor is constructed using shared inputs and task-independent tree sets based on
multi-head LightGBM, ensuring compatibility between the specific layer's output
dimension and the regressor head parameters depth =7,lr=0.05,subsample=0.9.

3.4. Construction of Multi-Task Regression Head and Multi-Headed LightGBM Predictor

The multi-task regression head adopts a structurally parallel three-channel
submodule architecture, constructing independent regression functions f;(-)for each
target task: pitching velocity, 30m sprint time, and vertical jump height. Inputs are derived
from the fused feature tensor Z; € IR*""%  where ds=45 denotes the task-specific feature
dimension, and i € {1,2,3} corresponds to the three tasks. Each submodule employs
LightGBM to train a gradient-boosted tree ensemble comprising 200 base learners. A
multi-task joint objective function based on mean squared error loss is designed as follows:

Lyt = Yo w; -nliZ?il(f'i,- - ¥ij)? @)

Among these, y;; denotes the true performance value of the j th sample in the i th
task, ¥;; = fi(Z;;) represents the predicted value, w; is the task weighting factor, and n;
indicates the number of samples for the corresponding task. Internally, the Light GBM
model optimizes splitting complexity and residual fitting capability through structural
regularization. Its weak learner construction process satisfies the following gain

maximization criterion:
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1 (Zjengz) n (Zjengi) _ (Zjesgi)z (6)
2 [Bjes hj+2 ' Njesphj+d  Njeshj+A

Where S, . Sg. S denote splitting into the left subset, right subset, and entire dataset,
respectively; g; and h; represent the first-order and second-order derivatives of the
sample, respectively; and A is the leaf node regularization factor, set to 1.0. Each
LightGBM regression head is configured with a depth of 7, learning rate of 0.05,
subsampling rate of 0.9, and maximum leaf count capped at 32. This ensures the model
maintains generalization capability while avoiding overfitting under high-dimensional,
heterogeneous features [6]. To clearly illustrate the three adolescent athletic performance
modeling objectives and their structural differentiation logic within the multi-task
regression model, we visualize the modeling expressions for the three tasks-pitching
velocity, 30m sprint time, and vertical jump height-by integrating actual data collection
paths with simulation workflows (as shown in Figure 2).
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Figure 2. Simulation diagram of three adolescent athletic performance metrics.

3.5. Model Training and Parameter Settings

Model training employs a stratified allocation strategy, dividing athletes into training
(70%), validation (15%), and test (15%) sets based on sport and gender proportions. All
input features are standardized and concatenated using sliding windows to form tensor
inputs Z; € IR***** | The training process constructs an optimization objective based on
L2 loss, incorporating regularization to control regressor complexity [7]. The loss function
is defined as:

J© = Y = 7|2 + Allel3 ?)

Where Y is the true label matrix, ¥ is the model prediction output, @ is the set of
all regressor parameters, and A is the L2 regularization coefficient (set to 0.01). Light GBM
trained for 200 epochs per task with an early-stopping window of 30 epochs. The boosting
strategy employed gradient boosting per tree, and training occurred on a single GPU with
32GB memory.

4. Experimental Results and Analysis
4.1. Experimental Setup and Evaluation Metrics

To validate the adaptability and stability of multi-task regression models in
predicting cross-event athletic performance among adolescents, this experiment design
fully integrates raw data with multi-dimensional metric requirements, with specific
settings as follows: Data was selected from 619 adolescent athletes across throwing,
sprinting, and jumping disciplines. The original dataset comprised 2.1 million sequences,
each 4 seconds long at 50Hz sampling rate, containing IMU triaxial data, GPS velocity,
and load information. After sliding window processing and standard normalization, the
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data were proportionally divided into training (70%), validation (15%), and test (15%) sets,
maintaining consistent gender and event type distributions; Evaluation metrics included
Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Inter-Task
Performance Variability. MAPE served as the primary evaluation criterion, measuring
relative regression errors across disciplines for cross-target comparisons [8].

4.2. Baseline Model Comparison Analysis

For each of the three target tasks, separate LightGBM models were constructed as
control groups, maintaining consistent input dimensions and dataset splits. Experimental
results are shown in Table 1.

Table 1. Performance Comparison Between Single-Task and Multi-Task Models Across Different
Tasks.

Model Structure Prediction Task MAPE MSE Task-to-Task Volatility

(%) (units?) (%)
Single-Task 1

Model Pitching Speed 8.25 1.82 2.71

30m Sprint Time 7.9 0.029

Vertlc.'al jump 9.34 .96

height

Multi-task model  Pitching Speed 6.42 1.55 1.12

30m Sprint Time 6.28 0.025

Jump height 6.8 3.31

Table 1 shows that the multi-task model achieved an average MAPE of 6.50% across
the three athletic performance predictions, representing a reduction of approximately 23.5%
compared to the single-task model's 8.50%. This corresponds to an overall relative error
reduction of 22.7%. Regarding the MSE metric, the values for throwing speed and jump
height tasks decreased to 1.55 and 3.31, respectively, indicating significant advantages in
both accuracy and stability. Concurrently, the inter-task performance variability
decreased from 2.71% to 1.12%, further validating the coordinated generalization
capability of the shared feature space structure in multi-objective modeling and providing
a solid foundation for robustness testing under sparse sample conditions [9,10].

4.3. Performance Validation of Shared Feature Space

The effectiveness of the shared feature space was further validated by constructing a
"de-shared" control group. While maintaining identical task structures and samples, the
general capability layer was removed, and independent regression heads were trained
solely using project-specific inputs. Results are shown in Figure 3.
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Figure 3. Structural diagram of model performance differences before and after introducing the
shared feature space.
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Experimental results show that the Mean Absolute Percentage Error (MAPE)
increased to 8.21%, and the inter-task prediction volatility rose to 2.58%. This indicates
that the absence of low-order general physical variables in the input features significantly
weakens the model's stability and generalization ability for sequence prediction.
Particularly in jump-type tasks, the Mean Squared Error (MSE) increased from 3.31 to 4.12,
with a noticeable decline in model output accuracy, revealing insufficient adaptability to
dynamically abrupt action patterns. Further analysis indicates that the absence of unified
physical priors hinders the model's ability to form consistent cross-task abstractions,
impeding the capture of generalizable patterns such as rhythm control and velocity
changes within time series. Introducing the shared spatial structure effectively
compressed frequently occurring noise redundancy in high-dimensional inputs,
enhancing the compactness and distinctiveness of feature representations. This enabled
the model to more stably extract common features across various tasks, strengthening its
understanding of intrinsic patterns between different movement modes and its transfer
capabilities. Overall, incorporating the sharing mechanism positively improved multi-
task modeling performance, validating the critical value of universal physical information
in sequence modeling.

4.4. Analysis of Transfer Effects Across Different Tasks

Under the shared feature space, asymmetric transfer pathways emerge between
different motion tasks, revealing pronounced structural feature sharing. Results are
shown in Figure 4.
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Figure 4. Task Transfer Results.

Results indicate that the sprint task exhibits positive transfer enhancement for the
jump task. The MAPE of the 30m sprint time prediction model decreased by 1.32% after
incorporating jump ability variables.The jump task had relatively limited influence on the
throwing task, showing only minor error convergence during high-load training
segments. Transfer residual analysis indicated the most significant rhythm-frequency
coupling between throwing and sprinting, with residual cross-correlation rising to 0.42-
significantly higher than throwing-jumping (0.17) and jumping-sprinting (0.21).Further
construction of a three-dimensional transfer gain matrix revealed that the sprint task
exhibited the strongest output contribution in feature sharing, while the jump task was
most dependent on shared input representations, highlighting the dominant transfer role
of speed and rhythm-related capability variables.
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4.5. Robustness Testing in Sparse Sample Scenarios

The prediction stability of the multi-task model under sparse data conditions was
evaluated by progressively reducing the sample size. When the training sample
proportion decreased from 70% to 50%, the average MAPE across all three tasks increased
from 6.50% to 7.12%, with the increase controlled within 0.62 percentage points. Further
reduction to 30% samples increased the average MAPE to 7.84%, representing a 20.6%
error increase relative to the full-sample condition. Corresponding MSE metrics showed:
throwing speed task increased from 1.55 to 1.93, 30m sprint time from 0.025 to 0.031, and
jump height from 3.31 to 4.02. Meanwhile, the inter-task performance variability remained
stable at 1.86% under the 30% sample condition, showing no significant dispersion. Error
growth rates varied across tasks: the jump task exhibited greater sensitivity to sample
reduction, while the sprint task demonstrated relatively stable error variation. This
reflects the shared feature space's robust support for fundamental motor ability
representation under low sample density.

5. Conclusions

This research aims to provide an extensible data modeling paradigm for evaluating
multi-event training in youth athletes, thereby advancing athletic performance prediction
systems toward multi-task collaboration and structured representation. The proposed
model is designed to extract universal athletic abilities while compensating for task-
specific variations, with the core objectives of improving prediction accuracy and cross-
sport generalization. The feature fusion mechanism effectively enhances model stability
and generalization during multi-task modeling. General physical variables-represented
by rhythm, speed, and acceleration-demonstrate critical value in cross-task learning,
exhibiting significant advantages under high-dimensional feature compression and
sparse sample conditions. Although the current model has achieved empirical progress in
accuracy and transfer directionality, it still faces limitations in complex action semantic
recognition and dynamic feedback adaptation. Future research can further expand in
three dimensions: higher-order cross-attention mechanisms, multimodal perception
collaborative modeling, and online learning frameworks, driving the evolution of
adolescent athletic ability prediction systems toward real-time and intelligent capabilities.
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