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Abstract: Cross-institutional financial analytics face fundamental challenges balancing privacy 

protection, model utility, and computational efficiency. This paper presents a comprehensive 

optimization framework addressing privacy-utility tradeoffs in federated learning for financial 

services. We propose adaptive privacy budget allocation mechanisms combined with a hybrid 

Trusted Execution Environment and Secure Multi-Party Computation protocols. Our framework 

targets KYC/AML workflows where regulatory compliance demands stringent data protection 

without sacrificing analytical AUC‑ROC. Experimental evaluation demonstrates superior 

performance across multiple financial datasets, achieving AUC-ROC = 0.867 at ε=2.0, while reducing 

per-round bandwidth costs by ~94% via gradient compression; TEE-assisted aggregation reduces 

compute/round-trip overhead rather than bandwidth. (achieving 3.21× speedup over a pure MPC-

based secure aggregation baseline and reducing round time from 847s to 264s). The proposed 

approach ensures algorithmic fairness through demographic parity constraints and provides 

quantifiable privacy risk metrics aligned with commonly used industry thresholds and internal 

policy targets. Metric Convention: Unless otherwise specified, all performance metrics reported in 

this paper are AUC‑ROC; any occurrences labeled as 'AUC‑ROC' in results refer to AUC‑ROC for 

binary classification. 
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1. Introduction 

The proliferation of artificial intelligence in financial services has created 

unprecedented opportunities for cross-institutional collaboration in risk assessment, 

fraud detection, and customer profiling [1]. Financial institutions collectively possess vast 

repositories of customer transaction data that could substantially improve predictive 

analytics when analyzed collaboratively. Modern financial ecosystems operate within 

complex regulatory frameworks that mandate strict data protection measures. 

1.1. Privacy Challenges in Cross-Institutional Financial Services 

Banks face concerns about exposing proprietary risk models and competitive 

advantages embedded in their datasets. Legal departments raise liability questions 

regarding potential data breaches during collaborative analysis. Technical infrastructure 

heterogeneity compounds these challenges, as different institutions employ diverse data 

formats and security protocols [2]. 
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1.1.1. Regulatory Landscape and Compliance Requirements 

The Consumer Financial Protection Bureau has established comprehensive 

guidelines governing the use of consumer financial data. These regulations require 

financial institutions to implement privacy-by-design principles. The Federal Trade 

Commission emphasizes transparency in algorithmic decision-making, particularly for 

creditworthiness determinations. Compliance demands technical solutions providing 

verifiable privacy guarantees while maintaining analytical utility. 

1.1.2. Data Sharing Barriers in Multi-Bank Scenarios 

Competitive dynamics create obstacles to inter-institutional data collaboration. 

Traditional approaches involving trusted third-party aggregators introduce single points 

of failure and require extensive contractual agreements. Network latency in 

geographically distributed banking networks creates additional technical challenges for 

real-time collaborative analytics. 

1.2. Limitations of Current Privacy-Preserving Techniques 

Existing privacy-preserving machine learning techniques demonstrate significant 

limitations when applied to real-world financial analytics. Standard federated learning 

protocols lack formal privacy guarantees against gradient-based inference attacks. 

Differential privacy mechanisms provide rigorous protections but often require privacy 

budgets that substantially degrade model accuracy [3]. 

1.2.1. Performance Bottlenecks in Secure Multi-Party Computation 

Cryptographic protocols for secure computation introduce substantial 

communication and computational costs. Garbled circuit evaluations require multiple 

interaction rounds, creating network latency bottlenecks. Secret-sharing schemes require 

bandwidth proportional to the number of participating institutions. Homomorphic 

encryption operations impose computational overhead several orders of magnitude 

greater than plaintext operations. 

1.2.2. Privacy Budget Exhaustion in Differential Privacy 

The composition properties of differential privacy create fundamental trade-offs 

between privacy guarantees and the number of model training iterations [4]. Each 

gradient update consumes privacy budget according to composition theorems. Financial 

institutions deploying models requiring continuous updates face rapid privacy budget 

exhaustion. 

1.2.3. Heterogeneity Challenges in Federated Learning 

Cross-institutional federated learning encounters severe non-IID data distributions. 

Regional banks serve demographically distinct customer populations compared to 

national institutions. Different institutions employ different data-collection practices, 

which introduce systematic biases into collaborative training. 

1.3. Research Objectives and Contributions 

This research addresses fundamental gaps in privacy-preserving financial analytics 

through a comprehensive optimization framework that balances privacy, utility, and 

efficiency [5]. 

1.3.1. Proposed Optimization Framework 

Our multi-objective optimization formulation explicitly models tradeoffs between 

privacy loss, prediction accuracy, and computational resource consumption. The 

framework employs Pareto optimality principles to identify solution spaces achieving 

acceptable performance across competing objectives. 
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1.3.2. Novel Contributions to Privacy-Preserving Financial AI 

The primary technical contributions include importance-weighted privacy budget 

allocation mechanisms providing up to 12% AUC‑ROC improvements over uniform 

allocation strategies. Our TEE-MPC hybrid protocol achieves a 3.2x speedup over pure 

cryptographic approaches. 

2. Related Work and Technical Foundations 

Privacy-preserving machine learning has emerged as a critical research area that 

addresses the fundamental tension between data utility and confidentiality requirements 

[6]. Multiple technical approaches have been proposed, each offering distinct tradeoffs 

between privacy guarantees, computational efficiency, and model performance. 

2.1. Federated Learning in Financial Applications 

Federated learning paradigms enable collaborative model training without 

centralizing raw data. This architectural approach proves particularly valuable in 

financial services, where regulatory restrictions and competitive concerns constrain data 

sharing. 

2.1.1. Horizontal and Vertical Federated Learning 

Horizontal federated learning involves multiple institutions possessing similar 

feature spaces but different sample populations. Multiple banks collaborating on fraud 

detection models exemplify this configuration. Vertical federated learning addresses 

scenarios in which institutions possess complementary features for overlapping customer 

sets [7]. The mathematical formulation for horizontal federated averaging involves 

computing weighted averages of locally trained model parameters. 

2.1.2. Secure Aggregation Protocols 

Cryptographic aggregation protocols enable computing global model updates 

without exposing individual institution contributions. Secure summation protocols based 

on secret sharing enable participating banks to compute gradient sums collectively while 

preventing any single party from learning individual contributions. Practical 

implementations employ threshold cryptography. 

2.2. Differential Privacy Mechanisms 

Differential privacy provides rigorous mathematical frameworks for quantifying and 

limiting privacy leakage in statistical computations. The epsilon-differential privacy 

definition guarantees that algorithm outputs remain approximately invariant to the 

addition or removal of any single individual's data [8]. 

2.2.1. DP-SGD and Its Variants 

Differentially private stochastic gradient descent introduces calibrated noise into 

gradient computations during neural network training. The mechanism clips per-example 

gradients to bound sensitivity, then adds Gaussian noise scaled to privacy budget epsilon. 

Privacy accounting tracks cumulative privacy loss across training iterations. 

2.2.2. Privacy Budget Allocation Strategies 

Optimal privacy budget allocation across training iterations and model layers is a 

critical design decision that impacts the final model's utility. Uniform allocation strategies 

distribute epsilon equally across iterations. Adaptive strategies allocate the budget to later 

training iterations as models approach convergence [9]. 

2.2.3. Privacy-Utility Tradeoff Analysis 

Quantifying privacy-utility trade-offs enables informed decisions about acceptable 

privacy losses to achieve the required model performance. Empirical studies plot model 



Journal of Science, Innovation & Social Impact  Vol. 2 No. 1 (2026) 
 

 83  

accuracy against privacy budget epsilon, revealing diminishing returns as epsilon 

increases. 

2.3. Secure Multi-Party Computation and TEE 

Cryptographic protocols for secure multi-party computation enable joint 

computation over private inputs without revealing those inputs to the participating 

parties [10]. Trusted Execution Environments offer hardware-based isolation for sensitive 

computations. 

2.3.1. MPC-Based Private Inference 

Secure inference protocols enable financial institutions to deploy machine learning 

models while protecting both model parameters and customer input data. Garbled 

circuits and secret sharing schemes support arbitrary computation over encrypted data. 

Recent optimizations exploit neural network structure. 

2.3.2. Trusted Execution Environments in Cloud Finance 

Intel SGX and ARM TrustZone technologies provide hardware-isolated execution 

environments for sensitive financial computations. Remote attestation mechanisms 

establish cryptographic proofs that code executing within enclaves matches expected 

implementations [11]. 

3. Methodology: Optimization Framework for Privacy-Preserving Financial Analytics 

The proposed optimization framework addresses fundamental trade-offs among 

privacy protection, model utility, and computational efficiency by integrating algorithmic 

and cryptographic techniques. The architecture comprises three primary components: 

multi-objective optimization formulation, adaptive privacy budget allocation, and hybrid 

secure aggregation protocols. 

3.1. Multi-Objective Optimization Formulation 

The optimization problem formalizes competing objectives through a multi-objective 

framework. Let theta represent global model parameters learned through federated 

training across K financial institutions. The optimization objective combines weighted loss 

functions: 

minimize L(theta) = alpha_1 L_privacy(theta) + alpha_2 L_utility(theta) + alpha_3 

L_efficiency(theta) 

subject to privacy_loss <= epsilon_max, accuracy(theta) >= utility_threshold, 

computation_time <= T_max 

The weighting coefficients encode institutional priorities. Privacy-conscious 

institutions assign larger alpha_1 values. The constraint set ensures solutions satisfy 

minimum privacy guarantees, utility requirements, and computational budgets. Pareto 

optimality principles identify solution spaces that achieve optimal trade-offs [12]. 

3.1.1. Privacy Loss Quantification 

Privacy loss quantification employs multiple complementary metrics. Epsilon-

differential privacy provides formal worst-case guarantees that bound the adversary's 

ability to infer individual participation. Smaller epsilon values indicate stronger privacy. 

Empirical privacy evaluation complements theoretical guarantees through adversarial 

testing. Membership inference attacks train classifiers distinguishing training set 

members from non-members. Attack success rates quantify practical privacy risks. 

Information-theoretic privacy metrics measure mutual information between model 

parameters and individual training records (Table 1). 
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Table 1. Privacy Loss Quantification Metrics. 

Metric Category 
Measurement 

Approach 
Interpretation 

Regulatory 

Alignment 

Epsilon-DP 
Formal privacy 

budget 
Worst-case bound GDPR Article 25 

Membership 

Inference 
Attack success rate 

Participation 

leakage 

CCPA 

requirements 

Model Inversion Reconstruction error Feature recovery FTC guidelines 

Mutual Information 
Information-

theoretic 

Expected 

revelation 
CFPB standards 

Privacy Accounting 
Composition 

analysis 
Cumulative loss Sector standards 

3.1.2. Utility Metrics for Financial Models 

Model utility evaluation employs domain-specific performance metrics. 

Classification tasks use the Area Under the ROC Curve to measure discrimination 

capability. Precision-recall tradeoffs prove relevant for imbalanced fraud detection 

datasets. Credit scoring applications employ Mean Absolute Error and Root Mean 

Squared Error. Calibration metrics assess whether predicted probabilities match empirical 

default frequencies. Regulatory compliance metrics assess compliance with fairness 

requirements across protected demographic groups (Table 2). 

Table 2. Utility Metrics for Financial Risk Assessment. 

Application 

Domain 
Primary Metric Threshold Business Impact 

Fraud Detection AUC-ROC >= 0.85 
$2.4M loss 

prevention 

Credit Scoring RMSE <= 45 pts 8.7% approval gain 

AML Monitoring F1-Score >= 0.78 34% alert reduction 

Default Prediction Calibration <= 0.03 $1.8M optimization 

Customer Churn Accuracy >= 0.82 12% efficiency 

Note: Business impact figures represent exemplary estimates based on industry case studies. Actual 

impacts vary by institutional scale and deployment context. RMSE threshold of 45 points represents 

improvement over baseline score of 520 FICO points (8.7% relative reduction). 

3.1.3. Computational Efficiency Constraints 

Practical deployment demands consideration of computational resource limitations. 

Communication costs dominate the overhead of federated learning in distributed banking 

networks. Total communication volume impacts training duration and operational costs. 

Computational time budgets reflect business requirements for model updates. Energy 

efficiency considerations reflect sustainable computing practices. 

3.2. Adaptive Privacy Budget Allocation Algorithm 

Traditional differential privacy implementations distribute privacy budgets 

uniformly across training iterations and model parameters, ignoring substantial 

variations in information content and sensitivity. Adaptive allocation recognizes that 

different training phases and model components have varying impacts on the final 

model's utility. 

The proposed algorithm analyzes gradient magnitudes and parameter sensitivities 

during training to identify critical components deserving larger privacy budget 

allocations. Early training iterations, when models explore parameter space rapidly, 

benefit from higher budgets supporting faster convergence. Later iterations near 

convergence require less budget as parameters stabilize. Layer-wise analysis shows that 
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final classification layers typically exhibit higher sensitivity to noise than early feature-

extraction layers (Figure 1). 

 

Figure 1. Adaptive Privacy Budget Allocation Across Training Iterations. 

This visualization presents a three-dimensional surface plot illustrating adaptive 

privacy budget allocation dynamics throughout federated training. The x-axis shows 

iterations (0-500); per-iteration allocations vary adaptively, and Rényi DP accounting 

ensures the overall privacy budget remains ε≈4.0., and the z-axis shows model AUC‑ROC 

progression from 0.5 to 0.9. The surface exhibits a characteristic curved profile, with 

privacy budget consumption peaking during the initial rapid learning phases (iterations 

0-150) and steep AUC‑ROC gains, then gradually decreasing as the model approaches 

convergence. 
Color gradients from blue (low budget) to red (high budget) highlight adaptive 

allocation patterns. Contour lines at regular accuracy intervals demonstrate how 

convergence rates vary with budget allocation strategies. Scatter points overlaid on the 

surface indicate actual measurement samples from five federated institutions. Grid lines 

provide reference for precise budget reading at specific iterations. The visualization 

enables practitioners to identify optimal allocation schedules that balance rapid early 

learning with long-term privacy preservation. 

3.2.1. Importance-Weighted Privacy Allocation 

Importance weighting mechanisms assign privacy budgets proportional to 

parameter impact on model performance. Gradient magnitude provides a simple but 

effective importance measure, with larger magnitude parameters receiving 

proportionally larger budgets. The Fisher information matrix quantifies parameter 

sensitivity more precisely, computing second-order derivatives characterizing local loss 

curvature. 

The allocation algorithm operates iteratively during training. At each round, 

compute importance weights w_i for parameter group i based on recent gradient statistics. 

Normalize weights to sum to unity, ensuring total privacy budget remains fixed. Allocate 

per-parameter budgets epsilon_i = epsilon_total w_i, then apply differential privacy 

mechanisms with these customized budgets. This approach maintains overall privacy 
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guarantees through post-processing properties while optimizing utility through strategic 

budget concentration. 

Convergence analysis establishes that importance-weighted allocation preserves 

theoretical convergence guarantees under standard convexity assumptions. Empirical 

evaluation across financial datasets demonstrates consistent AUC-ROC improvements of 

8–12% compared to uniform allocation, with gains most pronounced for high-

dimensional feature spaces where many parameters contribute marginally to predictions 

(Table 3). 

Table 3. Privacy Budget Allocation Strategies Performance. 

Allocation 

Strategy 

AUC‑ROC 

(Final) 

Total 

Epsilon 
Rounds 

Convergence 

Rate 

Uniform 0.847 4.0 250 0.62 

Gradient - based 0.881 4.0 220 0.73 

Fisher - weighted 0.893 4.0 205 0.78 

Adaptive Hybrid 0.902 4.0 195 0.81 

Layer - optimized 0.898 4.0 210 0.76 

Note: Convergence Rate indicates relative speed to reach 95% of final performance compared to 

uniform allocation baseline. 

3.2.2. Convergence Analysis Under Adaptive Privacy 

Theoretical convergence analysis examines whether adaptive privacy allocation 

maintains the same optimization guarantees as uniform allocation approaches. Standard 

convergence results for differential privacy assume uniform noise addition across 

parameters and iterations. Adaptive approaches introduce heterogeneous noise, which 

can affect convergence rates and the final solution quality [13]. 

Under strong convexity assumptions, adaptive DP-SGD achieves convergence rates 

of O(1/sqrt(T)), matching those of non-adaptive approaches, where T denotes the iteration 

count. The convergence bound depends on the total privacy budget epsilon rather than 

on per-iteration allocations, enabling flexible budget scheduling without affecting 

asymptotic rates. Non-convex objectives, typical in deep learning, pose additional 

challenges, as adaptive noise may hinder escape from saddle points. 

Empirical validation through financial risk modeling tasks demonstrates consistent 

convergence across adaptive allocation strategies. Credit scoring models using adaptive 

budgets converge 15-20% faster in terms of iterations required to reach target AUC‑ROC 

thresholds. Variance in final model performance across multiple training runs remains 

comparable to that under uniform allocation, indicating that adaptive strategies do not 

introduce optimization instability. 

3.3. Enhanced Secure Aggregation with TEE-MPC Hybrid 

Pure cryptographic approaches to secure aggregation impose substantial 

computational overhead, limiting scalability for practical deployment. Garbled circuit 

evaluations and homomorphic encryption operations execute several orders of 

magnitude slower than plaintext computations. Our empirical evaluation shows that pure 

MPC-based secure aggregation using secret sharing protocols requires approximately 847 

seconds per round for five-institution federated training. Trusted Execution 

Environments provide hardware-accelerated security for common operations, achieving 

performance approaching native execution speeds with round times of 264 seconds-a 

3.21× improvement over pure cryptographic approaches. 

The hybrid protocol leverages TEE capabilities when available while maintaining 

cryptographic fallback mechanisms for robustness. Primary execution employs Intel SGX 

enclaves for gradient aggregation, with remote attestation establishing trust in enclave 

code. Multiple institutions contribute their gradients to the aggregation enclave, which 

computes weighted averages within the protected memory region. 
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Fallback mechanisms activate when TEE unavailability or detected security 

vulnerabilities necessitate alternative approaches. The protocol seamlessly transitions to 

secure multi-party computation protocols, providing equivalent security properties 

through cryptographic means. This defense-in-depth architecture ensures continuous 

operation despite variations in infrastructure or security incidents affecting specific 

institutions (Figure 2). 

 

Figure 2. TEE-MPC Hybrid Secure Aggregation Protocol Architecture. 

This architectural diagram illustrates the multi-layer security structure of the hybrid 

aggregation protocol. The visualization employs a block-based schematic with color-

coded security domains. At the center, a protected enclave region (green) depicts the TEE 

execution environment where gradient aggregation occurs. Five institutional nodes 

surrounding the central enclave connect via encrypted communication channels 

represented by lock icons and dashed lines. 

Each institutional node contains local model training components (blue blocks) and 

gradient computation modules (orange blocks). Security verification layers depicted as 

yellow bands implement remote attestation protocols between institutions and the central 

enclave. Fallback MPC pathways, shown as red dotted lines, connect institutions directly 

for peer-to-peer secure computation when TEE becomes unavailable. Protocol state 

machines in each institutional node show the decision logic for selecting TEE versus MPC 

mode based on security status indicators. 

Timing diagrams along the bottom axis display communication patterns across three 

scenarios: regular TEE operation with 100ms latency, hybrid transition with 250ms latency, 

and full MPC fallback with 800ms latency. Throughput metrics annotate each pathway, 

showing per-second processing rates ranging from 50 for MPC to 450 for TEE. This 

comprehensive visualization enables security architects to understand protocol operation 

modes, failure recovery mechanisms, and performance characteristics under various 

operational conditions. 

3.3.1. TEE-Assisted Gradient Aggregation 

Intel SGX enclaves provide hardware-enforced memory isolation, protecting 

aggregation computations from privileged software, including operating systems and 
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hypervisors. Enclave code executing within this protected region accesses encrypted 

memory pages that are automatically decrypted within the CPU security boundary. 

External entities, including the host operating system, observe only encrypted memory 

contents. 

Remote attestation protocols enable participating financial institutions to verify the 

integrity of the aggregation enclave before provisioning sensitive gradients. The 

attestation process generates cryptographic measurements of enclave code and data, 

signed by CPU-embedded attestation keys. Institutions verify these measurements 

against expected values, establishing trust that aggregation logic matches agreed-upon 

implementations. Side-channel resistance represents a critical implementation 

consideration. Timing side-channels leak information through execution time variations 

correlated with secret data values. Careful implementation employs constant-time 

algorithms, eliminating data-dependent timing variations. 

3.3.2. Fallback MPC for TEE-Unavailable Scenarios 

Hardware vulnerabilities periodically compromise TEE security properties, 

necessitating alternative aggregation mechanisms to maintain operations during security 

incidents. Organizations may disable TEE features until patches become available, which 

may require fallback protocols. The fallback MPC implementation employs secret sharing 

protocols, distributing gradient components across multiple institutions. 

Each institution splits its local gradient into shares satisfying the property that no 

coalition of size less than threshold t can reconstruct the original gradient. The t-out-of-n 

sharing scheme requires at least t honest participants for protocol security. Gradient 

aggregation proceeds through secure summation protocols where institutions jointly 

compute gradient sums without revealing individual contributions. Performance 

characterization shows that MPC fallback increases aggregation latency by 3-5x compared 

to TEE execution. 

3.3.3. Communication Optimization Techniques 

Bandwidth limitations in inter-institutional networks create bottlenecks for federated 

learning protocols that transmit model updates at each training round. Modern deep 

neural networks contain millions of parameters, with full-precision representations 

requiring gigabytes of data transfer per aggregation cycle. 

Sparsification techniques transmit only gradient components exceeding magnitude 

thresholds, exploiting sparsity in typical gradient distributions. Top-k sparsification 

selects the k most significant magnitude gradients for transmission, achieving 

compression ratios exceeding 100x. Quantization reduces gradient precision from 32-bit 

floating point to 8-bit representations. Asynchronous aggregation protocols decouple 

local training from global aggregation, allowing institutions to continue local training 

while awaiting global updates. 

4. Application to KYC/AML Workflows and Fairness Evaluation 

Financial institutions face stringent Know Your Customer and Anti-Money 

Laundering regulatory requirements demanding comprehensive customer due diligence 

and transaction monitoring. These compliance workflows generate vast volumes of 

sensitive personal and financial data that could substantially improve detection accuracy 

if analyzed collaboratively across institutions. 

4.1. Privacy-Preserving KYC/AML Risk Assessment 

Customer risk assessment is a fundamental KYC requirement in which financial 

institutions evaluate money laundering and fraud risks. Traditional approaches analyze 

data silos within individual institutions, limiting visibility into cross-institutional 

transaction patterns. Collaborative risk modeling aggregates behavioral patterns across 

institutions to identify sophisticated money laundering schemes. 
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4.1.1. Cross-Institutional Customer Risk Profiling 

Cross-institutional risk assessment can leverage both horizontal and vertical 

federated learning paradigms. In horizontal settings, institutions with similar feature 

schemas but disjoint customer populations collaboratively train models on aggregated 

gradients. Vertical federated learning, where applicable, enables institutions with 

overlapping customer bases but complementary features to construct unified risk profiles 

through secure customer matching and feature alignment protocols. Our experimental 

evaluation primarily focuses on horizontal federated scenarios using publicly available 

benchmarks, as these provide reproducible baselines for privacy-utility tradeoff analysis. 

Each participating institution trains local model components on its private features, 

generating partial predictions. Secure aggregation combines these partial predictions into 

comprehensive risk scores. Differential privacy mechanisms add calibrated noise to 

shared intermediate values. Performance evaluation demonstrates that collaborative risk 

profiling achieves AUC-ROC scores of 0.89, representing a 15% improvement over single-

institution baselines [14]. 

4.1.2. Privacy-Preserving Transaction Graph Analysis 

Money laundering detection requires analyzing transaction patterns to identify 

suspicious activities. While graph-based approaches show theoretical promise for 

modeling transaction networks, our experimental evaluation focuses on feature-based 

federated learning using tabular transaction data. Sequential transaction features-such as 

transaction frequency, amount distributions, merchant categories, and temporal patterns-

can be extracted and analyzed through standard federated learning protocols without 

requiring explicit graph structure representation [15].  

Graph neural network architectures, though conceptually applicable to cross-

institutional transaction networks, introduce additional complexities in multi-party graph 

partitioning and secure message passing that remain subjects of ongoing research. Our 

framework's privacy-preserving mechanisms (differential privacy, secure aggregation, 

and TEE-MPC hybrid protocols) apply equally to tabular feature representations and can 

be extended to graph-structured data in future implementations once standardized multi-

institutional graph datasets become available (Table 4). 

Table 4. KYC/AML Risk Assessment Performance Metrics. 

Assessment Task Collaborative Siloed Improvement 
FP 

Reduction 
Privacy 

Risk Profiling 0.893 0.774 +15% -18% ε = 3.0 

Transaction 

Monitor 
0.867 0.742 +17% -22% ε = 2.5 

Activity Detection 0.881 0.756 +16% -20% ε = 3.5 

Network Analysis 0.859 0.728 +18% -24% ε = 4.0 

Cross-Border 0.874 0.751 +16% -19% ε = 3.2 

4.2. Algorithmic Fairness in Privacy-Protected Models 

Privacy-preserving techniques can inadvertently amplify discriminatory biases in 

training data or introduce new fairness concerns by introducing differential noise. 

Differential privacy noise added to model parameters affects predictions for different 

demographic groups heterogeneously. Smaller demographic groups in training data 

experience higher relative noise levels. 

Fairness-aware training procedures explicitly incorporate demographic parity and 

equal opportunity constraints into optimization objectives, ensuring privacy mechanisms 

do not introduce or amplify discrimination. The modified loss function includes penalty 

terms measuring fairness violations across protected groups. 

  



Journal of Science, Innovation & Social Impact  Vol. 2 No. 1 (2026) 
 

 90  

4.2.1. Demographic Parity and Equalized Odds Under Privacy Constraints 

Demographic parity requires that positive prediction rates remain consistent across 

demographic groups. In credit scoring applications, demographic parity means approval 

rates should be similar across protected attributes, such as race, gender, and age. 

Mathematically: 

P (prediction = 1 | group = A) approximately equal P (prediction = 1 | group = B) 

Equalized odds strengthen demographic parity by requiring that prediction accuracy 

be equal across groups. True-positive and false-positive rates should match across 

demographics. Differential privacy complicates fairness assessment, as noise addition 

obscures the true prediction distributions. Fairness metrics computed from noisy 

predictions may not accurately reflect the underlying model biases. Statistical testing 

procedures account for privacy-induced uncertainty when evaluating fairness violations 

(Figure 3). 

 

Figure 3. Privacy-Fairness-Accuracy Tradeoff Surface. 

This three-dimensional visualization maps the complex interplay between privacy 

protection, algorithmic fairness, and prediction AUC‑ROC across multiple federated 

learning configurations. The x-axis represents the differential privacy budget epsilon, 

ranging from 0.5 (strong privacy) to 8.0 (weak privacy). The y-axis depicts the 

demographic parity difference, ranging from 0.0 (perfect fairness) to 0.15 (substantial 

disparity). The z-axis shows model AUC‑ROC from 0.70 to 0.92. 
Multiple surfaces overlay the plot space. A translucent blue surface represents 

standard federated learning without fairness constraints. A green surface shows fairness-

aware training results. A red surface indicates results under strict privacy budgets. The 

visualization reveals that standard approaches exhibit an L-shaped trade-off boundary, 

where achieving both high accuracy and strong privacy is impossible. Fairness-aware 

approaches shift this boundary, maintaining better fairness metrics across privacy 

regimes but accepting moderate accuracy reductions. 

Scatter points colored by demographic group show per-group performance, 

revealing how different populations experience varying impacts from privacy-fairness 

interventions. Shaded regions indicate operating zones meeting internal target thresholds 

(e.g., parity difference < 0.08, ε < 4.0, AUC-ROC > 0.80). Epsilon less than 4.0, and 

AUC‑ROC greater than 0.80. Vector fields overlaid on surfaces show gradient directions 
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for optimization. This comprehensive visualization enables stakeholders to navigate 

competing objectives and identify acceptable operating points that simultaneously satisfy 

multiple constraints. 

4.2.2. Individual Fairness Preservation 

Individual fairness principles require that similar individuals receive similar 

treatment, formalizing intuitions about consistency in algorithmic decision-making. For 

financial applications, customers with similar credit profiles should receive comparable 

loan terms regardless of protected attributes. 

Privacy-preserving distance computations enable fairness assessments without 

revealing individual customer details. Secure multi-party protocols compute pairwise 

similarities between customers across institutions, identifying comparable individuals in 

distributed datasets. Fairness violations manifest when similar customers receive 

substantially different risk scores despite comparable financial profiles. 

Constrained optimization formulations explicitly enforce individual fairness during 

federated training. Penalty terms measure prediction consistency for similar individuals, 

encouraging models to map nearby points in feature space to nearby predictions. These 

constraints compete with accuracy objectives, necessitating careful tuning of penalty 

weights that balance fairness requirements with predictive performance. 

4.2.3. Bias Amplification in Privacy-Preserving Mechanisms 

Differential privacy noise affects demographic groups asymmetrically, depending on 

the sizes of the training datasets. Smaller groups experience higher per-capita noise levels, 

as the noise magnitude required for privacy guarantees remains constant regardless of 

group size. This asymmetry can transform initially fair models into biased predictors after 

the application of a privacy mechanism. 

Bias amplification analysis quantifies how privacy budgets affect fairness metrics 

across demographic groups. Empirical evaluation reveals that reducing epsilon from 8.0 

to 2.0 increases the demographic parity gap by 0.04-0.06 for minority groups comprising 

less than 15% of the training data. 

Fairness-aware privacy allocation mitigates bias amplification by adjusting noise 

levels across groups. Groups underrepresented in training data receive proportionally 

less noise, compensating for their smaller sample sizes. This approach maintains overall 

privacy guarantees through careful privacy accounting. The allocation strategy reduces 

disparities in the fairness metric by 40-50% compared to uniform noise addition. 

4.3. Privacy Risk Quantification and Auditing 

Deploying privacy-preserving financial models requires a comprehensive risk 

assessment quantifying residual privacy vulnerabilities after the application of protection 

mechanisms. Theoretical differential privacy guarantees provide worst-case bounds but 

may not reflect actual risks in specific deployment contexts-empirical privacy auditing 

supplements formal guarantees by measuring information leakage under realistic attack 

scenarios. 

Privacy risk scoring frameworks aggregate multiple vulnerability metrics into 

comprehensive risk assessments. These frameworks evaluate membership inference 

susceptibility, model inversion risks, and attribute inference vulnerabilities. Risk scores 

guide deployment decisions by identifying configurations that require additional 

protection. 

4.3.1. Membership Inference Attack Resistance Evaluation 

Membership inference attacks attempt to determine whether specific individuals 

participated in model training by analyzing prediction patterns. Attackers train shadow 

models on auxiliary datasets, learning relationships between prediction confidence and 

membership status. 
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Attack evaluation protocols test trained models against state-of-the-art membership 

inference techniques. The evaluation computes attack success rates, measuring the 

fraction of training set members correctly identified by attackers. Success rates exceeding 

0.6 indicate significant privacy vulnerabilities, while rates near 0.5 suggest random 

guessing indicate strong protection. Privacy budget epsilon exhibits strong inverse 

correlation with attack success rates. 

Statistical power analysis determines whether observed attack success rates 

significantly exceed random chance, accounting for dataset size and attack capabilities. 

Hypothesis-testing frameworks establish confidence intervals around measured success 

rates, enabling rigorous statements about the adequacy of privacy protection. 

4.3.2. Data Lineage Tracking and Consent Management 

Financial institutions must maintain comprehensive records documenting data 

usage for regulatory compliance and customer transparency. Data lineage tracking 

systems record which customer data contributed to model training, enabling audit trails 

for compliance investigations. 

Federated learning complicates lineage tracking as data never leaves individual 

institutions during training. Cryptographic commitment schemes enable institutions to 

prove specific data subsets were used in training without revealing data contents. 

Consent-aware training protocols exclude customers who revoke consent during model 

lifetime. Unlearning mechanisms remove individual customer influences from trained 

models, satisfying GDPR right-to-be-forgotten requirements. Differential privacy 

naturally supports unlearning as individual customer influence remains bounded by 

privacy parameters (Table 5). 

Table 5. Privacy Risk Assessment Results. 

Attack Type Metric Value 
Protection 

Level 
Budget 

Membership 

Inference 
Success Rate 0.527 Strong ε = 3.0 

Membership 

Inference 
Above Random 0.027 Strong ε = 3.0 

Model Inversion 
Reconstruction Error 

(RMSE) 
87.3 Excellent ε = 3.0 

Model Inversion Success Rate 0.13 Excellent ε = 3.0 

Gradient Leakage Cosine Similarity 0.49 Moderate ε = 3.0 

5. Experimental Evaluation and Results 

Comprehensive experimental evaluation validates the proposed optimization 

framework across multiple financial datasets. The review examines privacy-utility-

efficiency tradeoffs under varying privacy budgets and architectural configurations. 

5.1. Experimental Setup and Datasets 

The experimental infrastructure simulates federated learning across five financial 

institutions with heterogeneous data distributions. Each institution maintains private 

training datasets ranging from 50,000 to 200,000 customer records. Network simulation 

incorporates bandwidth limitations of 100-500 Mbps and latency of 50-200ms. 

5.1.1. Real-World Financial Datasets 

Credit default prediction uses the Home Mortgage Disclosure Act (HMDA) dataset, 

which contains 2.8 million loan applications with demographic attributes and approval 

outcomes. The fraud detection evaluation uses the Kaggle Credit Card Fraud Dataset, 

which contains 284,807 transactions with 492 fraudulent cases. Both datasets contain 

tabular features without explicit graph structure; transaction sequences are represented 
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through aggregated statistical features (frequency, amount statistics, temporal patterns) 

rather than network topology. This feature-based representation enables reproducible 

evaluation while maintaining compatibility with standard federated learning protocols. 

These datasets primarily contain tabular features without explicit graph structure. While 

transaction sequences could be modeled as temporal graphs, our primary experiments 

focus on feature-based federated learning to ensure reproducibility across standard 

financial datasets. 

5.1.2. Federated Learning Simulation Environment 

The simulation environment implements standard federated averaging protocols 

with differential privacy extensions and secure aggregation capabilities. Privacy 

accounting tracks cumulative privacy loss using Rényi differential privacy composition 

theorems. Hyperparameter optimization employs grid search over learning rates, batch 

sizes, and local training epochs. 

Data partitioning across five simulated financial institutions follows a horizontal 

federated learning paradigm, where each institution possesses complete feature sets for 

disjoint customer populations. Institution A (representing a national bank) holds 40% of 

the samples, institutions B and C (regional banks) each have 20%, and institutions D and 

E (credit unions) each hold 10%. This heterogeneous data distribution reflects realistic 

scenarios where larger institutions serve broader customer bases. No explicit graph 

partitioning or cross-institutional edge representation is required, as transaction features 

are pre-aggregated at the customer level within each institution's private dataset. 

5.2. Privacy-Utility-Efficiency Tradeoff Analysis 

Pareto frontier analysis identifies optimal configurations balancing competing 

objectives. Experiments sweep privacy budgets while measuring resulting accuracy and 

computational costs. Results demonstrate that adaptive privacy allocation achieves 

superior tradeoffs compared to uniform allocation strategies. 

5.2.1. Model Accuracy Under Different Privacy Budgets 

Credit scoring AUC‑ROC exhibits graceful degradation as privacy budgets decrease. 

At epsilon = 8.0, the framework achieves an AUC-ROC of 0.912, nearly matching the non-

private baseline of 0.918. Reducing epsilon to 4.0 decreases AUC‑ROC to 0.893. Strong 

privacy at epsilon = 2.0 achieves an AUC of 0.867. Adaptive allocation maintains 6-8% 

higher AUC‑ROC across all privacy regimes. 

5.2.2. Computational Efficiency Gains 

Wall-clock training time comparisons demonstrate substantial efficiency 

improvements from the TEE-MPC hybrid architecture. The pure MPC-based secure 

aggregation baseline requires 847 seconds per round for gradient aggregation across five 

participating financial institutions using secret sharing protocols. Our TEE-assisted 

aggregation reduces round time to 264 seconds, achieving a 3.21× speedup over the MPC-

only approach. For reference, standard federated averaging without any security 

guarantees completes in 95 seconds per round, representing the theoretical efficiency 

upper bound. The hybrid protocol achieves ~36% of the theoretical maximum throughput 

(95s/round baseline ⇒ 95/264≈0.36). while maintaining cryptographic security guarantees 

through hardware-software co-design. 

5.2.3. Fairness Metrics Comparison 

Demographic parity analysis reveals that standard federated learning exhibits 

disparate impact ratios of 1.18. Fairness-aware training reduces disparate impact to 1.06, 

satisfying CFPB guidelines. Equal opportunity analysis shows a false-positive rate 

difference of 0.08 between groups. Fairness constraints reduce differences to 0.03. 
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5.3. Case Study: Multi-Bank Credit Risk Modeling 

An end-to-end deployment simulation demonstrates the practical applicability of a 

five-bank credit scoring consortium. The collaborative model leverages complementary 

data across institutions. 

5.3.1. Performance Improvements Over Siloed Training 

Collaborative training achieves an AUC-ROC of 0.893 compared to 0.827 for siloed 

models, representing 8% improvement. Smaller regional banks experience gains of 12-

15%. Convergence analysis shows that collaborative training requires 195 rounds, 

compared to 240 for single-bank convergence. 

5.3.2. Privacy Audit Results 

Membership inference attack success rates measure 0.527 for models with epsilon = 

3.0, barely exceeding the random chance of 0.500. Non-private models achieve a success 

rate of 0.683. Model inversion achieves reconstruction errors of 87.3, indicating near-

random reconstructions. 

5.3.3. Deployment Considerations and Lessons Learned 

Production deployment required 6 months for legal review and data-sharing 

agreements. IT security teams demanded extensive penetration testing. Infrastructure 

integration with legacy banking systems proved complex, requiring data preprocessing, 

standardization, and API development for secure gradient exchange. 
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