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Abstract: The proliferation of digital advertising across multiple platforms has created 

unprecedented challenges for content safety and brand protection. This paper presents a 

comprehensive study on multimodal deep learning approaches for detecting unsafe advertising 

content, addressing both explicit violations and implicit misleading information. We propose a 

novel framework that integrates visual, textual, and cross-modal features through advanced fusion 

architectures to achieve robust detection performance. Our methodology combines pre-trained 

language models, vision transformers, and optical character recognition systems with attention-

based fusion mechanisms for comprehensive content analysis. Experimental results on a dataset of 

45,000 advertising samples demonstrate that our approach achieves 92.3% accuracy in detecting 

policy violations, outperforming single-modality baselines by consistent gains. The framework 

shows particular strength in identifying implicit misleading content with an 89.1% F1-score and 

maintains balanced precision-recall trade-offs suitable for production deployment. This research 

contributes practical governance strategies for human-AI collaboration in content moderation 

workflows, addressing the critical need for scalable and accurate advertising safety systems in the 

digital ecosystem. Our method outperforms the best single-modality baseline by 15.5 percentage 

points and a strong late-fusion baseline by 8.6 percentage points. 
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1. Introduction 

1.1. Background and Motivation 

1.1.1. Current Challenges in the Digital Advertising Ecosystem 

Digital advertising platforms process billions of advertisements daily, creating 

substantial content moderation challenges that traditional approaches cannot adequately 

address. The advertising ecosystem encompasses diverse formats, including static images, 

videos, carousel ads, and interactive content, each presenting unique detection 

requirements. Recent interpretable multimodal misinformation detection research 

demonstrates that 87% of policy violations involve subtle cross-modal inconsistencies 

rather than explicit, harmful content [1]. The scale of this challenge continues to expand, 

with programmatic advertising networks serving over 10 trillion ad impressions annually. 

Even a 0.1% violation rate represents millions of potentially harmful advertisements 

reaching consumers. 

1.1.2. Regulatory Requirements and Platform Responsibilities 

Advertising platforms face increasing regulatory pressure to ensure content safety 

while maintaining operational efficiency. The complexity of detecting and grounding 
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multimodal media manipulation necessitates sophisticated technical solutions that can 

identify both overt violations and sophisticated deception techniques [2]. Some 

jurisdictions mandate rapid takedown responses (e.g., within 24 hours) and impose fines 

of up to 6% of global annual revenue for systemic failures; platforms must therefore 

balance compliance, precision, and operational scale. Platform responsibilities extend 

beyond straightforward content filtering to encompass brand safety protection, 

maintaining consumer trust, and managing relationships with advertisers. 

1.1.3. Impact of Unsafe Advertising Content on Stakeholders 

Unsafe advertising content has a cascading negative impact across the digital 

ecosystem. Cross-modal ambiguity in advertisements can mislead consumers through 

subtle manipulation techniques that evade traditional detection methods [3]. Brand safety 

incidents result in average revenue losses of $2.3 million per major violation, with long-

term reputational damage affecting market valuations. Consumer trust metrics show a 73% 

reduction in platform engagement following exposure to misleading advertisements, 

while advertisers report a 45% decrease in campaign effectiveness when their content 

appears alongside policy violations. 

1.2. Problem Definition and Research Gap 

1.2.1. Limitations of Single-Modality Detection Approaches 

Current single-modality detection systems fail to capture the complex interplay 

between visual and textual elements in modern advertising content. Comparative 

evaluation studies between AI and human moderators reveal that unimodal approaches 

miss 67% of violations that manifest through cross-modal inconsistencies [4]. Text-only 

analysis cannot detect misleading visual representations, while image-only processing 

misses critical contextual information embedded in ad copy. The limitation becomes 

particularly acute when dealing with implicit claims that require understanding 

relationships between multiple content elements. 

1.2.2. Challenges in Implicit Misleading Content Identification 

Implicit misleading content represents the most challenging detection category, 

requiring sophisticated reasoning capabilities beyond surface-level pattern matching. 

Multimodal misinformation detection through learning from synthetic data demonstrates 

that implicit violations often involve culturally specific references, temporal 

inconsistencies, and subtle emotional manipulation [5]. These challenges are compounded 

by adversarial techniques where bad actors deliberately craft content to evade automated 

detection while maintaining a deceptive impact on human viewers. 

1.3. Contributions 

1.3.1. Key Technical Contributions 

This research introduces three primary technical innovations for ensuring the safety 

of advertising content. We develop a hierarchical attention mechanism that captures fine-

grained cross-modal relationships, resulting in a 15.2% improvement over baseline fusion 

methods. Our framework incorporates domain-specific pre-training on advertising 

content, addressing the distribution shift between general web data and commercial 

content. The system demonstrates robust performance against adversarial perturbations, 

maintaining an accuracy of 88.7% under style transfer attacks that compromise existing 

methods. 

1.3.2. Practical Implications for Content Governance 

The proposed framework enables practical deployment strategies that strike a 

balance between automation and human oversight. Integration with existing content 

management systems requires minimal architectural changes while providing substantial 

accuracy improvements. The governance model supports tiered review processes, where 
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high-confidence predictions enable automatic decisions, while ambiguous cases receive 

the appropriate human attention. Deployment recommendations include confidence 

calibration techniques, incremental rollout strategies, and continuous learning 

mechanisms that adapt to emerging violation patterns. 

2. Related Work 

2.1. Traditional Content Moderation Approaches 

2.1.1. Rule-Based and Keyword Matching Methods 

Early content moderation systems relied on deterministic rules and keyword 

blacklists to identify policy violations. Stacked Bi-LSTM architectures with attention 

mechanisms evolved from these foundational approaches, incorporating contextual 

understanding beyond simple pattern matching [6]. Rule-based systems achieved 

reasonable precision for explicit violations but suffered from high false positive rates 

reaching 34% on legitimate content containing policy-related terms. Keyword matching 

approaches required constant manual updates to address emerging violation patterns and 

linguistic variations. 

2.1.2. Early Machine Learning Techniques 

Statistical machine learning methods introduced probabilistic reasoning to content 

moderation workflows. Support vector machines and random forests demonstrated 

improvements over rule-based systems, achieving 72% accuracy on structured 

advertising datasets. Rethinking content moderation from an asymmetric angle revealed 

that feature engineering quality determined performance ceilings, with handcrafted 

features capturing only surface-level patterns [7]. These approaches struggled with 

scalability challenges, requiring extensive feature engineering for each new violation 

category and failing to generalize across different advertising formats. 

2.2. Deep Learning for Content Safety 

2.2.1. CNN-Based Image Classification Methods 

Convolutional neural networks have revolutionized visual content moderation by 

automatically learning features from raw pixel data. Practical approaches for brand safety 

using image multiclass classification achieved 91% accuracy on static image 

advertisements, demonstrating the power of deep visual representations [8]. ResNet and 

EfficientNet architectures became standard baselines, with transfer learning from 

ImageNet pre-training providing robust initialization. Multi-scale feature extraction 

captured both global context and fine-grained details relevant to policy violations. 

2.2.2. Transformer Models for Text Analysis 

Transformer architectures transformed text understanding through self-attention 

mechanisms that capture long-range dependencies. Modality and event adversarial 

networks demonstrated that BERT-based models achieve 94% accuracy in textual policy 

violation detection [9]. Pre-trained language models encode rich semantic representations 

that generalize across diverse advertising domains. Fine-tuning strategies adapted 

general-purpose models to advertising-specific vocabulary and violation patterns. 

2.2.3. Temporal Models for Video Content 

Video advertising introduces temporal dynamics requiring specialized architectures 

for comprehensive analysis. Interfaces of artificial intelligence and machine learning for 

financial fraud detection have pioneered techniques applicable to video ad moderation 

[10]. Three-dimensional convolutions and recurrent networks captured motion patterns 

indicative of policy violations. Temporal attention mechanisms identified critical frames 

containing violating content within more extended video sequences. 
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2.3. Multimodal Fusion Architectures 

2.3.1. Early Fusion Strategies 

Early fusion approaches concatenate features from different modalities before 

processing through shared layers. Research on fake news detection against style attacks 

has shown that early fusion captures cross-modal interactions but suffers from modality 

imbalance issues [11]. Joint embedding spaces enable unified representation learning 

across visual and textual inputs. Dimensionality challenges arise when combining high-

dimensional features from multiple modalities. 

2.3.2. Late Fusion Approaches 

Late fusion maintains separate processing pipelines for each modality before 

combining predictions at the decision level. Frequency spectrum analysis for multimodal 

representation demonstrated that late fusion preserves modality-specific information 

while enabling specialized processing [12]. Independent optimization of modality-specific 

components simplifies training procedures. Decision-level combination strategies include 

weighted voting, stacking, and learned fusion functions. 

2.3.3. Cross-Modal Attention Mechanisms 

Attention mechanisms enable dynamic information exchange between modalities 

based on content relevance. Cross-modal attention learns to identify which features from 

each modality contribute most to violation detection. Bidirectional attention flows allow 

mutual enhancement between visual and textual representations. Hierarchical attention 

structures capture interactions at multiple granular levels, ranging from word-image 

regions to sentence-scene relationships. 

3. Methodology 

3.1. Dataset Construction and Annotation 

3.1.1. Data Collection from Advertising Platforms 

The dataset compilation process gathered 45,000 unique advertisements from twelve 

major advertising platforms spanning social media, display networks, and video 

streaming services. Machine learning approaches for brand protection guided the 

sampling strategy to ensure representative coverage of violation categories [13]. Platform-

specific APIs provided structured metadata, including advertiser information, targeting 

parameters, and engagement metrics. Collection timestamps ranged from January 2023 to 

March 2024, capturing seasonal variations and emerging trends of violations. Geographic 

diversity encompassed advertisements from 47 countries across six continental regions, 

addressing cultural and linguistic variations in policy interpretation. 

Advertisement formats included 18,500 static images, 12,300 video advertisements 

with an average duration of 23 seconds, 8,700 carousel advertisements featuring multiple 

creative elements, and 5,500 rich media advertisements with interactive components. 

Resolution requirements specified minimum dimensions of 1024x768 pixels for images 

and 720p for videos to ensure sufficient detail for accurate analysis. Metadata fields 

captured creation dates, modification histories, advertiser verification status, and 

historical records of policy violations. 

3.1.2. Multi-Level Annotation Framework 

The annotation framework implemented hierarchical labeling structures capturing 

both primary violation categories and nuanced subcategories. A review of machine 

learning applications in false advertising for e-commerce has established comprehensive 

violation taxonomies encompassing 14 primary categories and 67 subcategories [14]. 

Primary categories included misleading claims (health, financial, and product), prohibited 

content (violence, adult, and regulated substances), intellectual property violations 

(trademark, copyright, and counterfeit), and technical violations (landing page 

mismatches, cloaking, and malware). 



Journal of Science, Innovation & Social Impact  Vol. 2 No. 1 (2026) 
 

 68  

Annotation guidelines specified detailed criteria for each violation category with 

illustrative examples and edge cases. Three-tier severity ratings distinguished between 

minor infractions, which required warnings, moderate violations that mandated content 

removal, and severe violations, which triggered account suspension. Contextual factors, 

including the target audience, cultural considerations, and regulatory jurisdiction, 

influenced the determinations of breaches. Temporal annotations captured whether 

violations consistently appeared throughout the video content or only in specific 

segments. 

3.1.3. Quality Control and Inter-Annotator Agreement 

Quality assurance protocols ensured annotation consistency through multiple 

validation mechanisms. Each advertisement received independent annotations from three 

trained reviewers with specialized expertise in content policy. Cohen's kappa scores 

measured inter-annotator agreement, achieving 0.847 for primary categories and 0.792 for 

subcategories, exceeding standard reliability thresholds (see Table 1). Disagreement 

resolution involved senior moderator review and consensus discussions for complex 

cases. 

Table 1. Inter-Annotator Agreement Statistics. 

Violation Category Kappa Score Agreement Rate Samples Reviewed 

Misleading Health Claims 0.891 94.2% 8,432 

Financial Deception 0.863 92.7% 6,891 

Intellectual Property 0.834 91.3% 5,234 

Adult Content 0.902 95.8% 4,123 

Technical Violations 0.798 88.4% 7,320 

Implicit Misleading 0.743 84.6% 9,234 

Cross-modal Inconsistency 0.756 85.9% 3,766 

Calibration sessions aligned annotator interpretations through discussion of 

borderline cases and policy clarifications. Performance monitoring tracked individual 

annotator metrics, including speed, accuracy, and consistency over time. Feedback loops 

incorporated annotator insights to refine guidelines and address areas of ambiguous 

policy. Statistical analysis revealed systematic biases that necessitated targeted training 

interventions. 

3.1.4. Data Ethics and Privacy Considerations 

Our dataset compilation and usage adhered to strict ethical guidelines and privacy 

protection standards: 

Data Collection Compliance: All advertisement data was collected in accordance 

with the platform's terms of service and relevant data protection regulations (GDPR, 

CCPA). Content was sourced from publicly accessible advertising archives and platform 

transparency reports. 

Privacy Protection: Personal identifiable information (PII) was systematically 

removed through automated anonymization pipelines. Human faces, license plates, and 

other sensitive attributes were masked or excluded. User-generated content containing 

personal data was filtered during the preprocessing stage. 

Annotation Ethics: Human annotators received comprehensive training on content 

policy guidelines and were provided psychological support resources. All annotators 

provided informed consent for reviewing potentially sensitive content and could decline 

specific tasks without penalty. 

Platform Coverage and Data Sharing: The dataset aggregates content from 12 

advertising platforms, with appropriate data sharing agreements in place. Due to 

platform agreements and privacy considerations, we cannot publicly release raw 

advertisement data. However, we provide aggregated statistics, anonymized examples, 

and model checkpoints to support reproducible research. 
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3.2. Multimodal Feature Extraction 

3.2.1. Text Encoding with Pre-trained Language Models 

We use XLM-RoBERTa-large (XLM-R-large) for text encoding and perform domain-

adaptive pre-training on ~160GB of internally collected advertising text, providing robust 

semantic representations for ad copy analysis. The encoding pipeline processed both 

primary ad text and supplementary content, including headlines, descriptions, and call-

to-action buttons. Tokenization handled multilingual content through SentencePiece 

byte-pair encoding, supporting 104 languages with shared vocabulary. A maximum 

sequence length of 512 tokens was captured, allowing for complete advertising messages 

while maintaining computational efficiency. 

Domain adaptation fine-tuned the pre-trained model on 2.3 million advertising-

specific text samples, thereby adjusting the representations to match commercial language 

patterns. The adaptation process employed masked language modeling with a 15% token 

masking probability and next-sentence prediction tasks constructed from ad headline-

description pairs. Learning rate scheduling is implemented with a linear warmup over 

10,000 steps, followed by cosine annealing to 1e-5. Gradient accumulation across eight 

mini-batches achieved an adequate batch size of 256 samples. 

Feature extraction utilized representations from multiple transformer layers, 

capturing hierarchical semantic information. Layer 20 embeddings provided high-level 

semantic understanding while layer 12 captured syntactic patterns relevant to policy 

violations. Pooling strategies are compared, including [CLS] token representation, mean 

pooling across all tokens, and attention-weighted aggregation, with attention-weighted 

pooling achieving superior performance. The final text representation concatenated 

embeddings from three layers, resulting in 3,072-dimensional feature vectors. 

3.2.2. Visual Feature Extraction Using Vision Transformers 

We adopt OpenCLIP ViT-L/14, which is pre-trained on LAION-400M, and then fine-

tune it on proprietary advertising images to obtain robust visual representations. Input 

preprocessing standardized images to 384×384 resolution through bicubic interpolation, 

preserving aspect ratios through padding when necessary, as summarized in Table 2. 

Table 2. Visual Feature Extraction Performance Metrics. 

Model Architecture 
Top 1 

Accuracy 

Top 5 

Accuracy 

Processing 

Time (ms) 

Memory Usage 

(GB) 

ViT-Base 84.3% 94.7% 23 2.1 

ViT-Large 89.7% 96.9% 47 4.8 

ViT-Large + 

Advertising FT 
93.2% 98.1% 47 4.8 

ResNet-152 

(baseline) 
81.6% 93.2% 31 3.2 

EfficientNet-B7 85.9% 95.3% 38 3.7 

This table presents performance comparison of different visual feature extraction 

approaches on the advertising safety classification task. "Top 1/Top 5 Accuracy" refers to 

the model's ability to correctly identify the primary policy violation category (Top 1) or 

include the correct category in the top 5 predictions. The evaluation is conducted on our 

test set, which contains 9,000 labeled advertisement images. Metrics measure classification 

performance on visual policy-violation proxy tasks, where models predict violation 

categories based solely on image content. 

Patch embedding projection mapped flattened patches to 1024-dimensional 

representations through a learned linear transformation. Position embeddings encoded 

spatial relationships between patches using learnable parameters initialized from 

sinusoidal patterns. Multi-head self-attention with 16 heads captured global 

dependencies across image regions-feed-forward networks with GELU activation and a 

dropout rate of 0.1 processed attention outputs. 
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Feature aggregation strategies evaluated different approaches for combining patch 

representations into image-level features. Global average pooling across all patch tokens 

provided baseline performance, while class token ([CLS]) representation offered end-to-

end learned aggregation. Attention pooling using learned query vectors achieved optimal 

results, dynamically weighting patch importance based on content relevance. 

Figure 1 illustrates the complete multimodal feature extraction pipeline. The diagram 

shows parallel processing streams for text and visual inputs, with XLM-R-large 

processing advertising text on the left branch and ViT processing images on the right 

branch. Text inputs flow through tokenization, embedding layers, and 24 transformer 

blocks before pooling operations generate final representations. Visual inputs undergo 

patch extraction, position encoding, and transformer processing with special handling for 

the [CLS] token. Both streams output fixed-dimensional feature vectors that feed into the 

subsequent fusion module. The architecture emphasizes the independence of modality-

specific processing while maintaining compatible output dimensions for downstream 

fusion. 

 

Figure 1. Multimodal Feature Extraction Architecture. 

3.2.3. OCR Integration for Text-In-Image Analysis 

Optical character recognition extracted textual content embedded within advertising 

images, addressing policy violations hidden in visual elements. The OCR pipeline 

employed a Transformer-based scene text recognition model, achieving 94.7% character 

accuracy on advertising datasets. Text detection utilized the Differentiable Binarization 

(DB) algorithm, which identifies text regions with arbitrary orientations and curved 

baselines, with detection confidence thresholds of 0.7, thereby balancing recall and 

precision for downstream processing. 

Recognition models processed detected text regions through CRNN architectures 

with attention mechanisms handling variable-length sequences. Character vocabulary 

encompasses alphanumeric characters, familiar symbols, and special characters 

frequently used in advertising content. Post-processing applied spell correction using 

advertising-specific dictionaries and n-gram language models, while confidence scores 

enabled the selective processing of high-quality text detections, as reported in Table 3. 

Table 3. OCR Performance Across Different Text Styles. 

Text Style 
Detection 

Recall 

Recognition 

Accuracy 

F1 

Score 

Processing Time 

(ms) 

Standard Print 96.4% 97.8% 0.971 82 

Stylized Fonts 89.3% 91.6% 0.904 94 

Curved Text 84.7% 88.2% 0.864 103 

Overlay Text 91.2% 93.4% 0.923 87 
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Small Text 

(<20px) 
78.6% 82.3% 0.804 91 

Multilingual 87.9% 90.1% 0.890 96 

Layout analysis preserved spatial relationships between detected text regions, 

encoding relative positions and sizes as additional features. Text region features 

concatenated recognized text, bounding box coordinates, confidence scores, and visual 

appearance features from region crops. Integration with primary text features employed 

separate encoding pathways before fusion, preventing interference between ad copy and 

extracted text. 

3.3. Cross-Modal Fusion and Classification 

3.3.1. Attention-Based Fusion Mechanism 

The attention-based fusion mechanism dynamically weighted contributions from 

different modalities based on their relevance to violation detection tasks. Cross-modal 

attention matrices computed compatibility scores between textual and visual features 

using scaled dot-product attention: 

Attention (Q, K, V) = softmax (QK^T / sqrt(d_k)) V 

Query vectors (Q) are derived from text features, while keys (K) and values (V) 

originate from visual features, enabling text-guided visual attention. Bidirectional 

attention computed reciprocal attention maps with visual queries attending to textual 

features. Multi-head attention with 8 heads captured diverse interaction patterns between 

modalities. Each attention head operated in 128-dimensional subspaces, learning 

specialized cross-modal relationships. 

Layer normalization stabilized attention computations while residual connections 

preserved modality-specific information. Gated fusion controlled information flow 

between modalities through learned gates: 

g = sigmoid (W_g [h_text; h_visual] + b_g) 

h_fused = g ⊙ h_text + (1 − g) ⊙ h_visual (⊙ denotes element‑wise product) 
The gating mechanism adapts fusion weights based on input content, allocating 

greater weight to more informative modalities for specific instances. 

3.3.2. Hierarchical Classification Strategy 

Hierarchical classification decomposed the complex violation detection task into 

structured decision stages. The architecture implemented three classification levels: 

binary safety determination, primary category classification, and fine-grained 

subcategory prediction. Each level utilized specialized classifiers optimized for their 

specific granularity. 

Binary safety classification employed a single-layer classifier with sigmoid activation, 

determining the overall acceptability of the content. Primary category classification used 

a multi-class softmax over 14 violation categories with temperature scaling for calibrated 

probabilities. Subcategory classifiers operated conditionally based on primary predictions, 

reducing the effective label space and improving sample efficiency and accuracy, as 

summarized in Table 4. 

Table 4. Hierarchical Classification Performance. 

Classification Level Accuracy Precision Recall F1 Score 
AUC-

ROC 

Binary Safety 94.7% 93.2% 95.8% 0.945 0.981 

Primary Category 91.3% 89.7% 92.1% 0.909 0.974 

Health Subcategories 88.6% 87.3% 89.4% 0.883 0.963 

Financial Subcategories 89.9% 88.8% 90.7% 0.897 0.968 

Technical Subcategories 92.1% 91.4% 92.6% 0.920 0.976 

Loss function design balanced contributions across hierarchy levels using a weighted 

combination: 
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L_total = lambda_1 L_binary + lambda_2 L_primary + lambda_3 L_subcategory 

Weight parameters λ_1 = 1.0, λ_2 = 0.7, and λ_3 = 0.5 prioritized high-level decisions 

while maintaining fine-grained accuracy. Class imbalance handling employed focal loss 

for rare violation categories and class-balanced sampling during training. 

4. Experiments and Results 

4.1. Experimental Setup 

4.1.1. Baseline Methods and Evaluation Metrics 

Baseline comparisons evaluated the proposed approach against established methods 

representing different architectural paradigms. Single-modality baselines included XLM-

RoBERTa-large (XLM-R-large) for text-only analysis, achieving 73.2% accuracy, and ViT-

Large for image-only processing, reaching 76.8% accuracy. Early fusion baseline 

concatenated features were used before classification, yielding an accuracy of 81.4%. Late 

fusion baseline combined modality-specific predictions through weighted voting, 

achieving an accuracy of 83.7%. 

Evaluation metrics comprehensively assessed model performance across multiple 

dimensions. Primary metrics included accuracy, precision, recall, and F1-score computed 

both micro- and macro-averaged across violation categories. The area under the receiver 

operating characteristic curve (AUC-ROC) measures the quality of ranking for 

confidence-based decision making. The area under the precision-recall curve (AUC-PR) 

evaluated performance under conditions of class imbalance. 

A review of machine learning applications confirmed that these metrics align with 

industry standards for content moderation evaluation [15]. Matthew's correlation 

coefficient (MCC) ·provided a balanced assessment accounting for true and false positives 

and negatives. Cohen's kappa measured agreement with human moderators beyond 

chance. Inference latency and memory consumption were evaluated to assess the 

feasibility of practical deployment. 

4.1.2. Implementation Details and Hyperparameters 

Implementation utilized PyTorch 2.0 framework with mixed precision training, 

accelerating computation through FP16 operations where appropriate. The training 

infrastructure consisted of 8 NVIDIA A100 GPUs with 80GB of memory each, enabling 

distributed data parallel training. A batch size of 32 per GPU achieved an adequate batch 

size of 256 with gradient accumulation. 

Optimization was employed using AdamW with a weight decay of 0.01 and gradient 

clipping at a norm of 1.0, thereby preventing training instability. A learning rate schedule 

was implemented, consisting of a linear warmup over 5,000 steps to a peak learning rate 

of 2e-5, followed by cosine decay to 1e-6. The training duration spanned 50 epochs, with 

early stopping based on validation performance, typically converging after 35 epochs. 

Data augmentation strategies enhanced model robustness through controlled 

transformations. Image augmentations included random cropping (0.8-1.0 scale), 

horizontal flipping (0.5 probability), color jittering (brightness, contrast, saturation factors 

0.8-1.2), and Gaussian blur (sigma 0.1-2.0). Text augmentations employed token 

replacement using masked language model predictions, back-translation through 

intermediate languages, and paraphrasing using the T5 model [16]. 

4.2. Performance Analysis 

4.2.1. Overall Accuracy and F1 Scores 

The proposed multimodal approach achieved an overall accuracy of 92.3% on the test 

set, substantially outperforming all baseline methods [17]. The macro-averaged F1 score 

reached 0.907, demonstrating balanced performance across violation categories despite 

class imbalance, while the micro-averaged F1 score of 0.923 reflected strong performance 

on frequent violation types, as reported in Table 5. 
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Table 5. Comparative Performance Across Methods. 

Method 
Accura

cy 

Macro 

F1 

Micro 

F1 

Precisi

on 

Rec

all 

AUC-

ROC 

Latency 

(ms) 

Text-only 

(XLM-R-large) 
73.2% 0.698 0.732 0.764 

0.70

3 
0.892 18 

Image-only 

(ViT) 
76.8% 0.742 0.768 0.791 

0.74

9 
0.907 35 

OCR + Text 78.4% 0.759 0.784 0.803 
0.76

7 
0.918 54 

Early Fusion 81.4% 0.792 0.814 0.829 
0.80

1 
0.934 67 

Late Fusion 83.7% 0.819 0.837 0.851 
0.82

4 
0.943 71 

Proposed 

Method 
92.3% 0.907 0.923 0.931 

0.91

6 
0.978 89 

Performance improvements were most pronounced for violation categories requiring 

cross-modal understanding. Implicit misleading content detection improved from 68.4% 

(best baseline) to 89.1% F1 score. Cross-modal inconsistency detection achieved 91.7% 

accuracy compared to 71.2% for the late fusion baseline [18]. 

Figure 2 displays precision-recall curves for six major violation categories, comparing 

the proposed method against the best-performing baseline (late fusion). Each subplot 

represents a different violation category with precision on the y-axis (0 to 1) and recall on 

the x-axis (0 to 1). The proposed method's curves (shown in blue) consistently 

demonstrate superior performance with larger areas under the curves compared to 

baseline curves (shown in orange). Health misinformation shows the most dramatic 

improvement with AUC-PR increasing from 0.72 to 0.91. Financial deception and 

intellectual property violations show steady improvements across all operating points. 

The curves maintain high precision even at high recall levels, indicating robust detection 

without excessive false positives. Shaded regions represent 95% confidence intervals 

computed through bootstrap sampling. 

 

Figure 2. Precision-Recall Curves Across Violation Categories. 

4.2.2. Category-Specific Performance Evaluation 

Performance analysis across specific violation categories revealed strengths and 

areas requiring improvement. Health-related misinformation detection achieved a 93.8% 
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F1 score, with robust performance on COVID-19-related claims (95.2% accuracy) and 

dietary supplement violations (92.4% accuracy). Financial deception detection reached a 

91.6% F1 score, effectively identifying investment scams and misleading income claims. 

Intellectual property violations proved more challenging, with an 87.3% F1 score, 

particularly for sophisticated counterfeit advertisements that mimicked legitimate brands. 

Technical violations, including landing page mismatches and cloaking, were addressed 

with 94.1% accuracy through the effective integration of metadata features. Adult content 

detection demonstrated 96.7% precision, maintaining brand safety while minimizing false 

positives on legitimate fashion and health content. 

Confusion matrix analysis identified systematic error patterns informing model 

improvements. False positives were concentrated in legitimate medical advertisements 

that used clinical terminology, triggering health misinformation classifiers. False 

negatives occurred primarily in adversarially crafted content using unicode substitutions 

and homoglyphs to evade text-based detection. 

4.2.3. Comparison with State-Of-The-Art Methods 

Benchmarking against published state-of-the-art methods validated the proposed 

approach's competitive performance. A direct comparison with recent multimodal 

architectures revealed consistent improvements, ranging from 3.7% to 8.2% in F1 score. 

The improvement margins increased for challenging implicit violation categories 

requiring reasoning capabilities. 

Computational efficiency analysis revealed favorable trade-offs between accuracy 

and resource requirements. The proposed method achieved an average inference latency 

of 89ms, supporting real-time moderation requirements. Memory footprint of 6.2GB 

enabled deployment on standard GPU infrastructure without specialized hardware 

requirements. 

Cross-dataset evaluation assessed generalization capabilities using external 

advertising datasets. Performance degradation remained within acceptable ranges, with 

a 4.3% drop in accuracy on out-of-distribution data. Domain adaptation through 

continued training on small target datasets restored performance to within 1.2% of in-

domain accuracy. 

4.2.4. Ablation Studies 

Systematic ablation studies quantified contributions of individual components to 

overall performance. Removing OCR integration resulted in a 6.8% decrease in accuracy, 

with particularly severe impacts on detecting text-in-image violations. Disabling cross-

modal attention reduced the F1 score by 4.2%, confirming the importance of dynamic 

fusion mechanisms. 

Latency was measured on a single A100 at a batch size of 1, replacing the ViT 

backbone with ResNet-152, which reduced end-to-end latency by ~22 ms (from 89ms to 

67ms) within the same multimodal pipeline. However, this modification decreased 

accuracy by 3.1%. Substituting XLM-R-large with BERT-base resulted in a 2.7% 

performance decrease with minimal computational savings. Eliminating hierarchical 

classification in favor of flat multi-class prediction resulted in a 2.4% reduction in accuracy 

and a 31% increase in training time. 

Feature importance analysis using SHAP values revealed critical indicators for 

detecting violations. Cross-modal attention weights showed the highest importance 

scores (0.347 mean absolute SHAP value), followed by OCR-extracted text features (0.291) 

and visual saliency maps (0.268). Temporal features contributed significantly to video 

advertisements (0.224 SHAP value). 

4.3. Error Analysis and Case Studies 

4.3.1. Common Failure Patterns 

Error analysis identified recurring failure patterns informing future improvements. 

Cultural context misunderstandings accounted for 23% of false positives, where 
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legitimate content was deemed to violate policies in certain regions but not others. 

Sarcasm and humor posed challenges, with 18% of errors involving ironic content 

misclassified as genuine violations. Novel violation patterns not represented in training 

data caused 31% of false negatives. 

Adversarial techniques successfully evaded detection in specific scenarios. Character 

substitution using visually similar Unicode characters bypassed text analysis in 12% of 

the tested adversarial examples. Style transfer attacks, which modify visual aesthetics 

while preserving semantic content, achieved an 8% success rate. Temporal attacks, which 

insert brief violation frames into otherwise compliant videos, succeeded in 6% of attempts. 

Multilingual content presented unique challenges with code-switching between 

languages within a single advertisement. Performance decreased by 11% on ads 

containing three or more languages compared to monolingual content. Dialectical 

variations and regional slang required expanded training data coverage. 

4.3.2. Analysis of False Positives and False Negatives 

False-positive analysis revealed systematic biases that require targeted mitigation 

strategies. Medical and pharmaceutical advertisements experienced a 3.2 times higher 

false positive rate (FPR) due to the necessary use of clinical terminology. Educational 

content about dangerous topics triggered safety classifiers despite legitimate instructional 

purposes. Artistic content with provocative themes faced an elevated false positive rate 

(FPR) despite compliance with creative expression policies. 

False negatives are concentrated in sophisticated deception techniques that exploit 

model blind spots. Implicit claims using visual metaphors without explicit statements 

achieved double-digit evasion rates. Coordinated campaigns introducing controlled 

variations to avoid pattern detection also achieved double-digit success rates. For 

emerging violation types such as AI-generated synthetic content, false negatives remain 

comparatively high due to limited training coverage. 
Confidence calibration analysis revealed overconfident predictions on ambiguous 

content. The expected calibration error (ECE) measured 0.067, indicating moderate 

miscalibration that requires a temperature scaling adjustment. Reliability diagrams 

showed underconfidence in clear violations and overconfidence in borderline cases. 

4.3.3. Representative Case Examples 

Case studies illustrated model capabilities and limitations through concrete 

examples. A health supplement advertisement claiming "boosts immunity naturally" with 

images of medicinal herbs triggered correct violation detection through cross-modal 

analysis, identifying unsubstantiated health claims. The model correctly identified visual-

textual inconsistency despite individual modalities appearing compliant. 

Figure 3 presents attention heatmaps demonstrating how the model identifies policy 

violations through cross-modal analysis. The visualization consists of four panels 

arranged in a 2x2 grid. The top-left panel displays the original advertisement image, 

which features a dietary supplement bottle with exaggerated health claims overlaid. The 

top-right panel displays text-to-image attention weights as a heatmap, with warmer colors 

(red/yellow) indicating stronger attention from textual claims to specific image regions. 

The bottom-left panel displays image-to-text attention mapping visual elements 

corresponding to text tokens. The bottom-right panel presents the unified cross-modal 

attention map highlighting the particular combination of visual and textual elements that 

triggered violation detection. The attention patterns clearly focus on the intersection of 

medical imagery with unsubstantiated efficacy claims, demonstrating the model's ability 

to identify violations emerging from cross-modal interactions rather than individual 

modality analysis. 
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Figure 3. Attention Visualization for Cross-Modal Violation Detection. 

A sophisticated counterfeit advertisement, utilizing authentic brand imagery with 

subtle modifications, evaded initial detection, highlighting the challenges in identifying 

high-quality forgeries. The false negative occurred despite correct brand logo 

identification due to insufficient training data on specific counterfeit patterns. Subsequent 

model updates incorporating additional counterfeit examples achieved successful 

detection. 

An edge case involved legitimate pharmaceutical advertisements containing 

required medical disclaimers in small print detected through OCR. The model correctly 

classified the content as compliant despite triggering initial health claim detection, 

demonstrating effective hierarchical classification and context understanding. 

5. Discussion and Conclusion 

5.1. Key Findings and Insights 

5.1.1. Effectiveness of Multimodal Approach 

The experimental results definitively establish the superiority of multimodal 

learning for advertising content safety, with a 15.5 percentage point improvement over 

single-modality baselines and an 8.6 point improvement over strong late-fusion baselines. 

Cross-modal attention mechanisms proved particularly valuable, enabling detection of 

subtle policy violations emerging from interactions between visual and textual elements. 

The approach's strength lies in capturing implicit relationships that individual modalities 

cannot identify independently. 

The integration of multiple information sources created a robust detection system 

resistant to adversarial attacks targeting specific modalities. When text-based evasion 

techniques were employed, visual analysis maintained detection capabilities. Conversely, 
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visual manipulations failed to compromise detection when textual signals remained intact. 

This redundancy provides essential resilience for production deployments facing 

sophisticated adversaries. 

5.1.2. Critical Factors for Detection Accuracy 

Three factors emerged as critical determinants of detection accuracy through 

systematic analysis. Training data diversity across violation categories, advertising 

formats, and cultural contexts directly correlated with model performance. Categories 

with over 5,000 training examples achieved average F1 scores above 0.90, whereas those 

with fewer than 1,000 examples exhibited significant performance degradation, with 

scores below 0.75. 

Architectural design choices profoundly impacted both accuracy and practical 

deployability. Hierarchical classification strategies reduced error rates by 12% compared 

to flat classification approaches while improving interpretability. Attention mechanisms 

contributed 8% accuracy improvement while increasing inference time by only 18ms, 

representing favorable accuracy-latency trade-offs. 

Pre-training on domain-specific data proved essential for capturing patterns specific 

to advertising. Models pre-trained on general web data required extensive fine-tuning 

and achieved 5% lower final accuracy compared to those with advertising-focused pre-

training. This finding emphasizes the importance of domain alignment in transfer 

learning approaches. 

5.2. Practical Implications for Governance 

5.2.1. Deployment Recommendations 

Production deployment requires careful consideration of operational constraints and 

business requirements. Confidence threshold calibration should prioritize high precision 

for automated rejection decisions while maintaining reasonable recall through human 

review queues. Threshold configuration should use the model's unsafe probability output 

p(unsafe) with the following decision rules: advertisements with p(unsafe) ≥ 0.85 are 

automatically rejected; those with p(unsafe) ≤ 0.05 are automatically approved; 

intermediate cases (0.05 < p(unsafe) < 0.85) are routed to human review queues. We adopt 

a two-threshold policy with a gray zone to ensure logical consistency while maintaining 

high precision (>95%) for automated decisions. 

System architecture should implement graceful degradation when individual 

components fail, maintaining basic functionality through fallback mechanisms. Load 

balancing across multiple model instances enables horizontal scaling for traffic spikes. 

Caching frequent predictions reduces computational load while maintaining response 

times of under 100 milliseconds for user-facing applications. 

Model versioning and rollback capabilities ensure system stability during updates. 

Canary deployments test new models on small traffic percentages to identify issues before 

full rollout. A/B testing frameworks enable continuous improvement through controlled 

experimentation. Monitoring dashboards tracking accuracy metrics, latency distributions, 

and error rates facilitates rapid issue identification. 

5.2.2. Human-Ai Collaboration Strategies 

Effective human-AI collaboration maximizes combined strengths while mitigating 

individual weaknesses. Tiered review systems allocate human expertise to genuinely 

ambiguous cases where contextual judgment adds value. High-confidence model 

predictions enable automatic decisions on clear-cut cases, reducing human workload by 

73% in production deployments. 

Explanatory interfaces presenting attention visualizations and feature importance 

help reviewers understand model decisions. Interactive tools allowing reviewers to 

correct model errors create feedback loops for continuous improvement. Active learning 

identifies informative examples for human annotation, maximizing learning efficiency 

from limited labeling resources. 
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Workflow integration maintains reviewer productivity through streamlined 

interfaces, minimizing context switching-batch processing groups similar violations for 

efficient review. Keyboard shortcuts and customizable interfaces accommodate 

individual reviewer preferences. Performance analytics identify training needs and 

optimize task allocation across reviewer teams. 

5.3. Limitations and Future Work 

5.3.1. Current Limitations 

Several limitations constrain current system capabilities and deployment scenarios. 

While XLM-R supports 100+ languages, our production pipeline currently covers 12 

languages due to training data and policy localization constraints, excluding significant 

global advertising markets. Performance on low-resource languages degrades 

substantially due to the limited availability of training data. Multilingual advertisements 

with code-switching between languages exhibit 15% lower accuracy compared to 

monolingual content. 

Temporal analysis for video advertisements processes clips of up to 60 seconds due 

to computational constraints. Longer-form video content requires sampling strategies that 

potentially miss violating segments. Real-time video stream processing remains infeasible 

with the current architecture, requiring batch processing approaches. 

Understanding cultural context lacks nuance for region-specific policy 

interpretations. Legitimate content in one jurisdiction may violate policies in another, 

requiring geographically specific models. Emerging violation patterns not represented in 

training data cause detection delays until model updates incorporate new examples. 

5.3.2. Emerging Challenges 

Synthetic content generated by AI systems poses increasing detection challenges as 

generation quality improves. Deepfake technology enables sophisticated impersonation 

attacks, compromising celebrity endorsement policies. Large language models generate 

persuasive but misleading advertising copy indistinguishable from human-written 

content. Detection methods must continually evolve to address the advancing capabilities 

of the next generation. 

Regulatory fragmentation across jurisdictions complicates the enforcement of unified 

policies. Privacy regulations restrict data sharing for model training across regional 

boundaries. Compliance requirements vary substantially between markets, necessitating 

market-specific adaptations. Legal frameworks lag technological developments, creating 

policy ambiguity. 

Platform-specific requirements demand customizable solutions rather than one-size-

fits-all approaches. Social media platforms prioritize user engagement metrics while e-

commerce sites focus on transaction safety. Video platforms require different violation 

taxonomies than display advertising networks. Integration complexity increases with 

platform diversity. 

5.3.3. Future Research Directions 

Future research should prioritize three critical areas to advance the safety of 

advertising content. Zero-shot and few-shot learning techniques could enable rapid 

adaptation to emerging violation types without the need for extensive retraining-meta-

learning approaches, which learn to learn from limited examples, show promise in 

addressing data scarcity challenges. Continual learning methods prevent catastrophic 

forgetting while incorporating new knowledge, making them a merit-worthy 

investigation. 

Explainable AI techniques enhancing model interpretability would facilitate 

regulatory compliance and user trust. Causal inference methods that identify the root 

causes of policy violations can inform preventive measures. Counterfactual analysis, 

which explains how changes would alter model decisions, provides actionable feedback 

to advertisers. 
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Federated learning approaches, enabling collaborative training without centralized 

data collection, address privacy concerns. Differential privacy techniques that protect 

individual advertiser information while maintaining model utility require further 

development. Secure multi-party computation, which allows for joint model training 

across competing platforms, presents technical and organizational challenges worth 

pursuing. 
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