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Abstract: The proliferation of digital advertising across multiple platforms has created
unprecedented challenges for content safety and brand protection. This paper presents a
comprehensive study on multimodal deep learning approaches for detecting unsafe advertising
content, addressing both explicit violations and implicit misleading information. We propose a
novel framework that integrates visual, textual, and cross-modal features through advanced fusion
architectures to achieve robust detection performance. Our methodology combines pre-trained
language models, vision transformers, and optical character recognition systems with attention-
based fusion mechanisms for comprehensive content analysis. Experimental results on a dataset of
45,000 advertising samples demonstrate that our approach achieves 92.3% accuracy in detecting
policy violations, outperforming single-modality baselines by consistent gains. The framework
shows particular strength in identifying implicit misleading content with an 89.1% F1-score and
maintains balanced precision-recall trade-offs suitable for production deployment. This research
contributes practical governance strategies for human-Al collaboration in content moderation
workflows, addressing the critical need for scalable and accurate advertising safety systems in the
digital ecosystem. Our method outperforms the best single-modality baseline by 15.5 percentage
points and a strong late-fusion baseline by 8.6 percentage points.
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1. Introduction
1.1. Background and Motivation
1.1.1. Current Challenges in the Digital Advertising Ecosystem

Digital advertising platforms process billions of advertisements daily, creating
substantial content moderation challenges that traditional approaches cannot adequately
address. The advertising ecosystem encompasses diverse formats, including static images,
videos, carousel ads, and interactive content, each presenting unique detection
requirements. Recent interpretable multimodal misinformation detection research
demonstrates that 87% of policy violations involve subtle cross-modal inconsistencies
rather than explicit, harmful content [1]. The scale of this challenge continues to expand,
with programmatic advertising networks serving over 10 trillion ad impressions annually.
Even a 0.1% violation rate represents millions of potentially harmful advertisements
reaching consumers.

1.1.2. Regulatory Requirements and Platform Responsibilities

Adpvertising platforms face increasing regulatory pressure to ensure content safety
while maintaining operational efficiency. The complexity of detecting and grounding
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multimodal media manipulation necessitates sophisticated technical solutions that can
identify both overt violations and sophisticated deception techniques [2]. Some
jurisdictions mandate rapid takedown responses (e.g., within 24 hours) and impose fines
of up to 6% of global annual revenue for systemic failures; platforms must therefore
balance compliance, precision, and operational scale. Platform responsibilities extend
beyond straightforward content filtering to encompass brand safety protection,
maintaining consumer trust, and managing relationships with advertisers.

1.1.3. Impact of Unsafe Advertising Content on Stakeholders

Unsafe advertising content has a cascading negative impact across the digital
ecosystem. Cross-modal ambiguity in advertisements can mislead consumers through
subtle manipulation techniques that evade traditional detection methods [3]. Brand safety
incidents result in average revenue losses of $2.3 million per major violation, with long-
term reputational damage affecting market valuations. Consumer trust metrics show a 73%
reduction in platform engagement following exposure to misleading advertisements,
while advertisers report a 45% decrease in campaign effectiveness when their content
appears alongside policy violations.

1.2. Problem Definition and Research Gap
1.2.1. Limitations of Single-Modality Detection Approaches

Current single-modality detection systems fail to capture the complex interplay
between visual and textual elements in modern advertising content. Comparative
evaluation studies between Al and human moderators reveal that unimodal approaches
miss 67% of violations that manifest through cross-modal inconsistencies [4]. Text-only
analysis cannot detect misleading visual representations, while image-only processing
misses critical contextual information embedded in ad copy. The limitation becomes
particularly acute when dealing with implicit claims that require understanding
relationships between multiple content elements.

1.2.2. Challenges in Implicit Misleading Content Identification

Implicit misleading content represents the most challenging detection category,
requiring sophisticated reasoning capabilities beyond surface-level pattern matching.
Multimodal misinformation detection through learning from synthetic data demonstrates
that implicit violations often involve culturally specific references, temporal
inconsistencies, and subtle emotional manipulation [5]. These challenges are compounded
by adversarial techniques where bad actors deliberately craft content to evade automated
detection while maintaining a deceptive impact on human viewers.

1.3. Contributions
1.3.1. Key Technical Contributions

This research introduces three primary technical innovations for ensuring the safety
of advertising content. We develop a hierarchical attention mechanism that captures fine-
grained cross-modal relationships, resulting in a 15.2% improvement over baseline fusion
methods. Our framework incorporates domain-specific pre-training on advertising
content, addressing the distribution shift between general web data and commercial
content. The system demonstrates robust performance against adversarial perturbations,
maintaining an accuracy of 88.7% under style transfer attacks that compromise existing
methods.

1.3.2. Practical Implications for Content Governance

The proposed framework enables practical deployment strategies that strike a
balance between automation and human oversight. Integration with existing content
management systems requires minimal architectural changes while providing substantial
accuracy improvements. The governance model supports tiered review processes, where
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high-confidence predictions enable automatic decisions, while ambiguous cases receive
the appropriate human attention. Deployment recommendations include confidence
calibration techniques, incremental rollout strategies, and continuous learning
mechanisms that adapt to emerging violation patterns.

2. Related Work
2.1. Traditional Content Moderation Approaches
2.1.1. Rule-Based and Keyword Matching Methods

Early content moderation systems relied on deterministic rules and keyword
blacklists to identify policy violations. Stacked Bi-LSTM architectures with attention
mechanisms evolved from these foundational approaches, incorporating contextual
understanding beyond simple pattern matching [6]. Rule-based systems achieved
reasonable precision for explicit violations but suffered from high false positive rates
reaching 34% on legitimate content containing policy-related terms. Keyword matching
approaches required constant manual updates to address emerging violation patterns and
linguistic variations.

2.1.2. Early Machine Learning Techniques

Statistical machine learning methods introduced probabilistic reasoning to content
moderation workflows. Support vector machines and random forests demonstrated
improvements over rule-based systems, achieving 72% accuracy on structured
advertising datasets. Rethinking content moderation from an asymmetric angle revealed
that feature engineering quality determined performance ceilings, with handcrafted
features capturing only surface-level patterns [7]. These approaches struggled with
scalability challenges, requiring extensive feature engineering for each new violation
category and failing to generalize across different advertising formats.

2.2. Deep Learning for Content Safety
2.2.1. CNN-Based Image Classification Methods

Convolutional neural networks have revolutionized visual content moderation by
automatically learning features from raw pixel data. Practical approaches for brand safety
using image multiclass classification achieved 91% accuracy on static image
advertisements, demonstrating the power of deep visual representations [8]. ResNet and
EfficientNet architectures became standard baselines, with transfer learning from
ImageNet pre-training providing robust initialization. Multi-scale feature extraction
captured both global context and fine-grained details relevant to policy violations.

2.2.2. Transformer Models for Text Analysis

Transformer architectures transformed text understanding through self-attention
mechanisms that capture long-range dependencies. Modality and event adversarial
networks demonstrated that BERT-based models achieve 94% accuracy in textual policy
violation detection [9]. Pre-trained language models encode rich semantic representations
that generalize across diverse advertising domains. Fine-tuning strategies adapted
general-purpose models to advertising-specific vocabulary and violation patterns.

2.2.3. Temporal Models for Video Content

Video advertising introduces temporal dynamics requiring specialized architectures
for comprehensive analysis. Interfaces of artificial intelligence and machine learning for
financial fraud detection have pioneered techniques applicable to video ad moderation
[10]. Three-dimensional convolutions and recurrent networks captured motion patterns
indicative of policy violations. Temporal attention mechanisms identified critical frames
containing violating content within more extended video sequences.
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2.3. Multimodal Fusion Architectures
2.3.1. Early Fusion Strategies

Early fusion approaches concatenate features from different modalities before
processing through shared layers. Research on fake news detection against style attacks
has shown that early fusion captures cross-modal interactions but suffers from modality
imbalance issues [11]. Joint embedding spaces enable unified representation learning
across visual and textual inputs. Dimensionality challenges arise when combining high-
dimensional features from multiple modalities.

2.3.2. Late Fusion Approaches

Late fusion maintains separate processing pipelines for each modality before
combining predictions at the decision level. Frequency spectrum analysis for multimodal
representation demonstrated that late fusion preserves modality-specific information
while enabling specialized processing [12]. Independent optimization of modality-specific
components simplifies training procedures. Decision-level combination strategies include
weighted voting, stacking, and learned fusion functions.

2.3.3. Cross-Modal Attention Mechanisms

Attention mechanisms enable dynamic information exchange between modalities
based on content relevance. Cross-modal attention learns to identify which features from
each modality contribute most to violation detection. Bidirectional attention flows allow
mutual enhancement between visual and textual representations. Hierarchical attention
structures capture interactions at multiple granular levels, ranging from word-image
regions to sentence-scene relationships.

3. Methodology
3.1. Dataset Construction and Annotation
3.1.1. Data Collection from Advertising Platforms

The dataset compilation process gathered 45,000 unique advertisements from twelve
major advertising platforms spanning social media, display networks, and video
streaming services. Machine learning approaches for brand protection guided the
sampling strategy to ensure representative coverage of violation categories [13]. Platform-
specific APIs provided structured metadata, including advertiser information, targeting
parameters, and engagement metrics. Collection timestamps ranged from January 2023 to
March 2024, capturing seasonal variations and emerging trends of violations. Geographic
diversity encompassed advertisements from 47 countries across six continental regions,
addressing cultural and linguistic variations in policy interpretation.

Advertisement formats included 18,500 static images, 12,300 video advertisements
with an average duration of 23 seconds, 8,700 carousel advertisements featuring multiple
creative elements, and 5,500 rich media advertisements with interactive components.
Resolution requirements specified minimum dimensions of 1024x768 pixels for images
and 720p for videos to ensure sufficient detail for accurate analysis. Metadata fields
captured creation dates, modification histories, advertiser verification status, and
historical records of policy violations.

3.1.2. Multi-Level Annotation Framework

The annotation framework implemented hierarchical labeling structures capturing
both primary violation categories and nuanced subcategories. A review of machine
learning applications in false advertising for e-commerce has established comprehensive
violation taxonomies encompassing 14 primary categories and 67 subcategories [14].
Primary categories included misleading claims (health, financial, and product), prohibited
content (violence, adult, and regulated substances), intellectual property violations
(trademark, copyright, and counterfeit) and technical violations (landing page
mismatches, cloaking, and malware).
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Annotation guidelines specified detailed criteria for each violation category with
illustrative examples and edge cases. Three-tier severity ratings distinguished between
minor infractions, which required warnings, moderate violations that mandated content
removal, and severe violations, which triggered account suspension. Contextual factors,
including the target audience, cultural considerations, and regulatory jurisdiction,
influenced the determinations of breaches. Temporal annotations captured whether
violations consistently appeared throughout the video content or only in specific
segments.

3.1.3. Quality Control and Inter-Annotator Agreement

Quality assurance protocols ensured annotation consistency through multiple
validation mechanisms. Each advertisement received independent annotations from three
trained reviewers with specialized expertise in content policy. Cohen's kappa scores
measured inter-annotator agreement, achieving 0.847 for primary categories and 0.792 for
subcategories, exceeding standard reliability thresholds (see Table 1). Disagreement
resolution involved senior moderator review and consensus discussions for complex
cases.

Table 1. Inter-Annotator Agreement Statistics.

Violation Category Kappa Score Agreement Rate Samples Reviewed
Misleading Health Claims 0.891 94.2% 8,432
Financial Deception 0.863 92.7% 6,891
Intellectual Property 0.834 91.3% 5,234
Adult Content 0.902 95.8% 4,123
Technical Violations 0.798 88.4% 7,320
Implicit Misleading 0.743 84.6% 9,234
Cross-modal Inconsistency 0.756 85.9% 3,766

Calibration sessions aligned annotator interpretations through discussion of
borderline cases and policy clarifications. Performance monitoring tracked individual
annotator metrics, including speed, accuracy, and consistency over time. Feedback loops
incorporated annotator insights to refine guidelines and address areas of ambiguous
policy. Statistical analysis revealed systematic biases that necessitated targeted training
interventions.

3.1.4. Data Ethics and Privacy Considerations

Our dataset compilation and usage adhered to strict ethical guidelines and privacy
protection standards:

Data Collection Compliance: All advertisement data was collected in accordance
with the platform's terms of service and relevant data protection regulations (GDPR,
CCPA). Content was sourced from publicly accessible advertising archives and platform
transparency reports.

Privacy Protection: Personal identifiable information (PII) was systematically
removed through automated anonymization pipelines. Human faces, license plates, and
other sensitive attributes were masked or excluded. User-generated content containing
personal data was filtered during the preprocessing stage.

Annotation Ethics: Human annotators received comprehensive training on content
policy guidelines and were provided psychological support resources. All annotators
provided informed consent for reviewing potentially sensitive content and could decline
specific tasks without penalty.

Platform Coverage and Data Sharing: The dataset aggregates content from 12
advertising platforms, with appropriate data sharing agreements in place. Due to
platform agreements and privacy considerations, we cannot publicly release raw
advertisement data. However, we provide aggregated statistics, anonymized examples,
and model checkpoints to support reproducible research.
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3.2. Multimodal Feature Extraction
3.2.1. Text Encoding with Pre-trained Language Models

We use XLM-RoBERTa-large (XLM-R-large) for text encoding and perform domain-
adaptive pre-training on ~160GB of internally collected advertising text, providing robust
semantic representations for ad copy analysis. The encoding pipeline processed both
primary ad text and supplementary content, including headlines, descriptions, and call-
to-action buttons. Tokenization handled multilingual content through SentencePiece
byte-pair encoding, supporting 104 languages with shared vocabulary. A maximum
sequence length of 512 tokens was captured, allowing for complete advertising messages
while maintaining computational efficiency.

Domain adaptation fine-tuned the pre-trained model on 2.3 million advertising-
specific text samples, thereby adjusting the representations to match commercial language
patterns. The adaptation process employed masked language modeling with a 15% token
masking probability and next-sentence prediction tasks constructed from ad headline-
description pairs. Learning rate scheduling is implemented with a linear warmup over
10,000 steps, followed by cosine annealing to le-5. Gradient accumulation across eight
mini-batches achieved an adequate batch size of 256 samples.

Feature extraction utilized representations from multiple transformer layers,
capturing hierarchical semantic information. Layer 20 embeddings provided high-level
semantic understanding while layer 12 captured syntactic patterns relevant to policy
violations. Pooling strategies are compared, including [CLS] token representation, mean
pooling across all tokens, and attention-weighted aggregation, with attention-weighted
pooling achieving superior performance. The final text representation concatenated
embeddings from three layers, resulting in 3,072-dimensional feature vectors.

3.2.2. Visual Feature Extraction Using Vision Transformers

We adopt OpenCLIP ViT-L/14, which is pre-trained on LAION-400M, and then fine-
tune it on proprietary advertising images to obtain robust visual representations. Input
preprocessing standardized images to 384x384 resolution through bicubic interpolation,
preserving aspect ratios through padding when necessary, as summarized in Table 2.

Table 2. Visual Feature Extraction Performance Metrics.

Model Architecture Top 1 Top 5 Pr.ocessmg Memory Usage
Accuracy Accuracy Time (ms) (GB)
ViT-Base 84.3% 94.7% 23 21
ViT-Large 89.7% 96.9% 47 4.8
ViT-Large + o
. 19 47 4.
Advertising FT 93:2% 98.1% 8
ResNet-152
eshvet-15 81.6% 93.2% 31 32
(baseline)
EfficientNet-B7 85.9% 95.3% 38 3.7

This table presents performance comparison of different visual feature extraction
approaches on the advertising safety classification task. "Top 1/Top 5 Accuracy" refers to
the model's ability to correctly identify the primary policy violation category (Top 1) or
include the correct category in the top 5 predictions. The evaluation is conducted on our
test set, which contains 9,000 labeled advertisement images. Metrics measure classification
performance on visual policy-violation proxy tasks, where models predict violation
categories based solely on image content.

Patch embedding projection mapped flattened patches to 1024-dimensional
representations through a learned linear transformation. Position embeddings encoded
spatial relationships between patches using learnable parameters initialized from
sinusoidal patterns. Multi-head self-attention with 16 heads captured global
dependencies across image regions-feed-forward networks with GELU activation and a
dropout rate of 0.1 processed attention outputs.
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Feature aggregation strategies evaluated different approaches for combining patch
representations into image-level features. Global average pooling across all patch tokens
provided baseline performance, while class token ([CLS]) representation offered end-to-
end learned aggregation. Attention pooling using learned query vectors achieved optimal
results, dynamically weighting patch importance based on content relevance.

Figure 1 illustrates the complete multimodal feature extraction pipeline. The diagram
shows parallel processing streams for text and visual inputs, with XLM-R-large
processing advertising text on the left branch and ViT processing images on the right
branch. Text inputs flow through tokenization, embedding layers, and 24 transformer
blocks before pooling operations generate final representations. Visual inputs undergo
patch extraction, position encoding, and transformer processing with special handling for
the [CLS] token. Both streams output fixed-dimensional feature vectors that feed into the
subsequent fusion module. The architecture emphasizes the independence of modality-
specific processing while maintaining compatible output dimensions for downstream
fusion.

Text Processing Branch Visual Processing Branct

Advertising Text Advertisement
“Natural immunity" Image
boost your health" (Product photo)
Embedding Layers Position Encoding

RoBERTa Vision Transformer
24 Transformer (ViT-Large)
Blocks [CLS] Token

Pooling Layer Attention Pooling

Text Features | ___ _.-{ Visual Features
(3072-dim vector)| ~TT=---. JUPTT (1024-dim vector)

Cross-Modal
Fusion Module
Attention-pased

Figure 1. Multimodal Feature Extraction Architecture.

3.2.3. OCR Integration for Text-In-Image Analysis

Optical character recognition extracted textual content embedded within advertising
images, addressing policy violations hidden in visual elements. The OCR pipeline
employed a Transformer-based scene text recognition model, achieving 94.7% character
accuracy on advertising datasets. Text detection utilized the Differentiable Binarization
(DB) algorithm, which identifies text regions with arbitrary orientations and curved
baselines, with detection confidence thresholds of 0.7, thereby balancing recall and
precision for downstream processing.

Recognition models processed detected text regions through CRNN architectures
with attention mechanisms handling variable-length sequences. Character vocabulary
encompasses alphanumeric characters, familiar symbols, and special characters
frequently used in advertising content. Post-processing applied spell correction using
advertising-specific dictionaries and n-gram language models, while confidence scores
enabled the selective processing of high-quality text detections, as reported in Table 3.

Table 3. OCR Performance Across Different Text Styles.

Detection Recognition F1 Processing Time
Text Style
Recall Accuracy Score (ms)
Standard Print 96.4% 97.8% 0.971 82
Stylized Fonts 89.3% 91.6% 0.904 94
Curved Text 84.7% 88.2% 0.864 103
Overlay Text 91.2% 93.4% 0.923 87
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Small Text
(<20px)
Multilingual 87.9% 90.1% 0.890 96

Layout analysis preserved spatial relationships between detected text regions,
encoding relative positions and sizes as additional features. Text region features
concatenated recognized text, bounding box coordinates, confidence scores, and visual
appearance features from region crops. Integration with primary text features employed
separate encoding pathways before fusion, preventing interference between ad copy and
extracted text.

78.6% 82.3% 0.804 91

3.3. Cross-Modal Fusion and Classification
3.3.1. Attention-Based Fusion Mechanism

The attention-based fusion mechanism dynamically weighted contributions from
different modalities based on their relevance to violation detection tasks. Cross-modal
attention matrices computed compatibility scores between textual and visual features
using scaled dot-product attention:

Attention (Q, K, V) = softmax (QK"T / sqrt(d_k)) V

Query vectors (Q) are derived from text features, while keys (K) and values (V)
originate from visual features, enabling text-guided visual attention. Bidirectional
attention computed reciprocal attention maps with visual queries attending to textual
features. Multi-head attention with 8 heads captured diverse interaction patterns between
modalities. Each attention head operated in 128-dimensional subspaces, learning
specialized cross-modal relationships.

Layer normalization stabilized attention computations while residual connections
preserved modality-specific information. Gated fusion controlled information flow
between modalities through learned gates:

g = sigmoid (W_g [h_text; h_visual] + b_g)

h_fused=g © h_text+(1-g) © h_visual (® denotes element-wise product)

The gating mechanism adapts fusion weights based on input content, allocating
greater weight to more informative modalities for specific instances.

3.3.2. Hierarchical Classification Strategy

Hierarchical classification decomposed the complex violation detection task into
structured decision stages. The architecture implemented three classification levels:
binary safety determination, primary category classification, and fine-grained
subcategory prediction. Each level utilized specialized classifiers optimized for their
specific granularity.

Binary safety classification employed a single-layer classifier with sigmoid activation,
determining the overall acceptability of the content. Primary category classification used
a multi-class softmax over 14 violation categories with temperature scaling for calibrated
probabilities. Subcategory classifiers operated conditionally based on primary predictions,
reducing the effective label space and improving sample efficiency and accuracy, as
summarized in Table 4.

Table 4. Hierarchical Classification Performance.

Classification Level Accuracy Precision Recall F1 Score ?{I(J)(é-
Binary Safety 94.7% 93.2% 95.8% 0.945 0.981
Primary Category 91.3% 89.7% 92.1% 0.909 0.974
Health Subcategories 88.6% 87.3% 89.4% 0.883 0.963
Financial Subcategories 89.9% 88.8% 90.7% 0.897 0.968
Technical Subcategories 92.1% 91.4% 92.6% 0.920 0.976
Loss function design balanced contributions across hierarchy levels using a weighted
combination:
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L_total =lambda_1 L_binary + lambda_2 L_primary + lambda_3 L_subcategory

Weight parameters A_1=1.0, A_2=0.7, and A_3 = 0.5 prioritized high-level decisions
while maintaining fine-grained accuracy. Class imbalance handling employed focal loss
for rare violation categories and class-balanced sampling during training.

4. Experiments and Results
4.1. Experimental Setup
4.1.1. Baseline Methods and Evaluation Metrics

Baseline comparisons evaluated the proposed approach against established methods
representing different architectural paradigms. Single-modality baselines included XLM-
RoBERTa-large (XLM-R-large) for text-only analysis, achieving 73.2% accuracy, and ViT-
Large for image-only processing, reaching 76.8% accuracy. Early fusion baseline
concatenated features were used before classification, yielding an accuracy of 81.4%. Late
fusion baseline combined modality-specific predictions through weighted voting,
achieving an accuracy of 83.7%.

Evaluation metrics comprehensively assessed model performance across multiple
dimensions. Primary metrics included accuracy, precision, recall, and F1-score computed
both micro- and macro-averaged across violation categories. The area under the receiver
operating characteristic curve (AUC-ROC) measures the quality of ranking for
confidence-based decision making. The area under the precision-recall curve (AUC-PR)
evaluated performance under conditions of class imbalance.

A review of machine learning applications confirmed that these metrics align with
industry standards for content moderation evaluation [15]. Matthew's correlation
coefficient (MCC) -provided a balanced assessment accounting for true and false positives
and negatives. Cohen's kappa measured agreement with human moderators beyond
chance. Inference latency and memory consumption were evaluated to assess the
feasibility of practical deployment.

4.1.2. Implementation Details and Hyperparameters

Implementation utilized PyTorch 2.0 framework with mixed precision training,
accelerating computation through FP16 operations where appropriate. The training
infrastructure consisted of 8 NVIDIA A100 GPUs with 80GB of memory each, enabling
distributed data parallel training. A batch size of 32 per GPU achieved an adequate batch
size of 256 with gradient accumulation.

Optimization was employed using AdamW with a weight decay of 0.01 and gradient
clipping at a norm of 1.0, thereby preventing training instability. A learning rate schedule
was implemented, consisting of a linear warmup over 5,000 steps to a peak learning rate
of 2e-5, followed by cosine decay to le-6. The training duration spanned 50 epochs, with
early stopping based on validation performance, typically converging after 35 epochs.

Data augmentation strategies enhanced model robustness through controlled
transformations. Image augmentations included random cropping (0.8-1.0 scale),
horizontal flipping (0.5 probability), color jittering (brightness, contrast, saturation factors
0.8-1.2), and Gaussian blur (sigma 0.1-2.0). Text augmentations employed token
replacement using masked language model predictions, back-translation through
intermediate languages, and paraphrasing using the T5 model [16].

4.2. Performance Analysis
4.2.1. Overall Accuracy and F1 Scores

The proposed multimodal approach achieved an overall accuracy of 92.3% on the test
set, substantially outperforming all baseline methods [17]. The macro-averaged F1 score
reached 0.907, demonstrating balanced performance across violation categories despite
class imbalance, while the micro-averaged F1 score of 0.923 reflected strong performance
on frequent violation types, as reported in Table 5.
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Table 5. Comparative Performance Across Methods.

Method Accura Macro Micro Precisi Rec AUC- Latency

cy F1 F1 on all ROC (ms)
Text-only 0.70
73.29 0.698 0.732 0.764 0.892 18
(XLM-R-large) & 3
Image-only 0.74
76.89 0.742 0.768 0.791 0.907 35
(ViT) o 9
0.76
OCR + Text 78.4% 0.759 0.784 0.803 - 0.918 54
. 0.80
Early Fusion 81.4% 0.792 0.814 0.829 1 0.934 67
. 0.82
Late Fusion 83.7% 0.819 0.837 0.851 4 0.943 71
Proposed 0.91
92.3% 907 .923 931 .978 8
Mothod v/ 0.90 0 0 6 0 9

Performance improvements were most pronounced for violation categories requiring
cross-modal understanding. Implicit misleading content detection improved from 68.4%
(best baseline) to 89.1% F1 score. Cross-modal inconsistency detection achieved 91.7%
accuracy compared to 71.2% for the late fusion baseline [18].

Figure 2 displays precision-recall curves for six major violation categories, comparing
the proposed method against the best-performing baseline (late fusion). Each subplot
represents a different violation category with precision on the y-axis (0 to 1) and recall on
the x-axis (0 to 1). The proposed method's curves (shown in blue) consistently
demonstrate superior performance with larger areas under the curves compared to
baseline curves (shown in orange). Health misinformation shows the most dramatic
improvement with AUC-PR increasing from 0.72 to 0.91. Financial deception and
intellectual property violations show steady improvements across all operating points.
The curves maintain high precision even at high recall levels, indicating robust detection
without excessive false positives. Shaded regions represent 95% confidence intervals
computed through bootstrap sampling.

10 Health Misinformation 10 Financial Deception 1.0 Intellectual Property
' AUC: 0.91 AUC: 0.89 AUC: 0.87
5 5 5
Z% 2 o
3 o o
a a a
0 0
0 Recall 1.0 0 Recall 10 70 Recall 10
10 Adult Content 10 Technical Violations 10 Implicit Misleading
: AUC: 0.93 AUC: 0.90 AUC: 0.85
5 8 5
] @ @
o 8 o
o o o
0 ! 0 0
0 Recall " 0 Recall 10 0 Recall 10

— Proposed Method

Figure 2. Precision-Recall Curves Across Violation Categories.

4.2.2. Category-Specific Performance Evaluation

Performance analysis across specific violation categories revealed strengths and
areas requiring improvement. Health-related misinformation detection achieved a 93.8%
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F1 score, with robust performance on COVID-19-related claims (95.2% accuracy) and
dietary supplement violations (92.4% accuracy). Financial deception detection reached a
91.6% F1 score, effectively identifying investment scams and misleading income claims.

Intellectual property violations proved more challenging, with an 87.3% F1 score,
particularly for sophisticated counterfeit advertisements that mimicked legitimate brands.
Technical violations, including landing page mismatches and cloaking, were addressed
with 94.1% accuracy through the effective integration of metadata features. Adult content
detection demonstrated 96.7% precision, maintaining brand safety while minimizing false
positives on legitimate fashion and health content.

Confusion matrix analysis identified systematic error patterns informing model
improvements. False positives were concentrated in legitimate medical advertisements
that used clinical terminology, triggering health misinformation classifiers. False
negatives occurred primarily in adversarially crafted content using unicode substitutions
and homoglyphs to evade text-based detection.

4.2.3. Comparison with State-Of-The-Art Methods

Benchmarking against published state-of-the-art methods validated the proposed
approach's competitive performance. A direct comparison with recent multimodal
architectures revealed consistent improvements, ranging from 3.7% to 8.2% in F1 score.
The improvement margins increased for challenging implicit violation categories
requiring reasoning capabilities.

Computational efficiency analysis revealed favorable trade-offs between accuracy
and resource requirements. The proposed method achieved an average inference latency
of 89ms, supporting real-time moderation requirements. Memory footprint of 6.2GB
enabled deployment on standard GPU infrastructure without specialized hardware
requirements.

Cross-dataset evaluation assessed generalization capabilities using external
advertising datasets. Performance degradation remained within acceptable ranges, with
a 4.3% drop in accuracy on out-of-distribution data. Domain adaptation through
continued training on small target datasets restored performance to within 1.2% of in-
domain accuracy.

4.2.4. Ablation Studies

Systematic ablation studies quantified contributions of individual components to
overall performance. Removing OCR integration resulted in a 6.8% decrease in accuracy,
with particularly severe impacts on detecting text-in-image violations. Disabling cross-
modal attention reduced the F1 score by 4.2%, confirming the importance of dynamic
fusion mechanisms.

Latency was measured on a single A100 at a batch size of 1, replacing the ViT
backbone with ResNet-152, which reduced end-to-end latency by ~22 ms (from 89ms to
67ms) within the same multimodal pipeline. However, this modification decreased
accuracy by 3.1%. Substituting XLM-R-large with BERT-base resulted in a 2.7%
performance decrease with minimal computational savings. Eliminating hierarchical
classification in favor of flat multi-class prediction resulted in a 2.4% reduction in accuracy
and a 31% increase in training time.

Feature importance analysis using SHAP values revealed critical indicators for
detecting violations. Cross-modal attention weights showed the highest importance
scores (0.347 mean absolute SHAP value), followed by OCR-extracted text features (0.291)
and visual saliency maps (0.268). Temporal features contributed significantly to video
advertisements (0.224 SHAP value).

4.3. Error Analysis and Case Studies
4.3.1. Common Failure Patterns

Error analysis identified recurring failure patterns informing future improvements.
Cultural context misunderstandings accounted for 23% of false positives, where
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legitimate content was deemed to violate policies in certain regions but not others.
Sarcasm and humor posed challenges, with 18% of errors involving ironic content
misclassified as genuine violations. Novel violation patterns not represented in training
data caused 31% of false negatives.

Adversarial techniques successfully evaded detection in specific scenarios. Character
substitution using visually similar Unicode characters bypassed text analysis in 12% of
the tested adversarial examples. Style transfer attacks, which modify visual aesthetics
while preserving semantic content, achieved an 8% success rate. Temporal attacks, which
insert brief violation frames into otherwise compliant videos, succeeded in 6% of attempts.

Multilingual content presented unique challenges with code-switching between
languages within a single advertisement. Performance decreased by 11% on ads
containing three or more languages compared to monolingual content. Dialectical
variations and regional slang required expanded training data coverage.

4.3.2. Analysis of False Positives and False Negatives

False-positive analysis revealed systematic biases that require targeted mitigation
strategies. Medical and pharmaceutical advertisements experienced a 3.2 times higher
false positive rate (FPR) due to the necessary use of clinical terminology. Educational
content about dangerous topics triggered safety classifiers despite legitimate instructional
purposes. Artistic content with provocative themes faced an elevated false positive rate
(FPR) despite compliance with creative expression policies.

False negatives are concentrated in sophisticated deception techniques that exploit
model blind spots. Implicit claims using visual metaphors without explicit statements
achieved double-digit evasion rates. Coordinated campaigns introducing controlled
variations to avoid pattern detection also achieved double-digit success rates. For
emerging violation types such as Al-generated synthetic content, false negatives remain
comparatively high due to limited training coverage.

Confidence calibration analysis revealed overconfident predictions on ambiguous
content. The expected calibration error (ECE) measured 0.067, indicating moderate
miscalibration that requires a temperature scaling adjustment. Reliability diagrams
showed underconfidence in clear violations and overconfidence in borderline cases.

4.3.3. Representative Case Examples

Case studies illustrated model capabilities and limitations through concrete
examples. A health supplement advertisement claiming "boosts immunity naturally” with
images of medicinal herbs triggered correct violation detection through cross-modal
analysis, identifying unsubstantiated health claims. The model correctly identified visual-
textual inconsistency despite individual modalities appearing compliant.

Figure 3 presents attention heatmaps demonstrating how the model identifies policy
violations through cross-modal analysis. The visualization consists of four panels
arranged in a 2x2 grid. The top-left panel displays the original advertisement image,
which features a dietary supplement bottle with exaggerated health claims overlaid. The
top-right panel displays text-to-image attention weights as a heatmap, with warmer colors
(red/yellow) indicating stronger attention from textual claims to specific image regions.
The bottom-left panel displays image-to-text attention mapping visual elements
corresponding to text tokens. The bottom-right panel presents the unified cross-modal
attention map highlighting the particular combination of visual and textual elements that
triggered violation detection. The attention patterns clearly focus on the intersection of
medical imagery with unsubstantiated efficacy claims, demonstrating the model's ability
to identify violations emerging from cross-modal interactions rather than individual
modality analysis.
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Figure 3. Attention Visualization for Cross-Modal Violation Detection.

A sophisticated counterfeit advertisement, utilizing authentic brand imagery with
subtle modifications, evaded initial detection, highlighting the challenges in identifying
high-quality forgeries. The false negative occurred despite correct brand logo
identification due to insufficient training data on specific counterfeit patterns. Subsequent
model updates incorporating additional counterfeit examples achieved successful
detection.

An edge case involved legitimate pharmaceutical advertisements containing
required medical disclaimers in small print detected through OCR. The model correctly
classified the content as compliant despite triggering initial health claim detection,
demonstrating effective hierarchical classification and context understanding.

5. Discussion and Conclusion
5.1. Key Findings and Insights
5.1.1. Effectiveness of Multimodal Approach

The experimental results definitively establish the superiority of multimodal
learning for advertising content safety, with a 15.5 percentage point improvement over
single-modality baselines and an 8.6 point improvement over strong late-fusion baselines.
Cross-modal attention mechanisms proved particularly valuable, enabling detection of
subtle policy violations emerging from interactions between visual and textual elements.
The approach's strength lies in capturing implicit relationships that individual modalities
cannot identify independently.

The integration of multiple information sources created a robust detection system
resistant to adversarial attacks targeting specific modalities. When text-based evasion
techniques were employed, visual analysis maintained detection capabilities. Conversely,
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visual manipulations failed to compromise detection when textual signals remained intact.
This redundancy provides essential resilience for production deployments facing
sophisticated adversaries.

5.1.2. Critical Factors for Detection Accuracy

Three factors emerged as critical determinants of detection accuracy through
systematic analysis. Training data diversity across violation categories, advertising
formats, and cultural contexts directly correlated with model performance. Categories
with over 5,000 training examples achieved average F1 scores above 0.90, whereas those
with fewer than 1,000 examples exhibited significant performance degradation, with
scores below 0.75.

Architectural design choices profoundly impacted both accuracy and practical
deployability. Hierarchical classification strategies reduced error rates by 12% compared
to flat classification approaches while improving interpretability. Attention mechanisms
contributed 8% accuracy improvement while increasing inference time by only 18ms,
representing favorable accuracy-latency trade-offs.

Pre-training on domain-specific data proved essential for capturing patterns specific
to advertising. Models pre-trained on general web data required extensive fine-tuning
and achieved 5% lower final accuracy compared to those with advertising-focused pre-
training. This finding emphasizes the importance of domain alignment in transfer
learning approaches.

5.2. Practical Implications for Governance
5.2.1. Deployment Recommendations

Production deployment requires careful consideration of operational constraints and
business requirements. Confidence threshold calibration should prioritize high precision
for automated rejection decisions while maintaining reasonable recall through human
review queues. Threshold configuration should use the model's unsafe probability output
p(unsafe) with the following decision rules: advertisements with p(unsafe) > 0.85 are
automatically rejected; those with p(unsafe) < 0.05 are automatically approved;
intermediate cases (0.05 < p(unsafe) < 0.85) are routed to human review queues. We adopt
a two-threshold policy with a gray zone to ensure logical consistency while maintaining
high precision (>95%) for automated decisions.

System architecture should implement graceful degradation when individual
components fail, maintaining basic functionality through fallback mechanisms. Load
balancing across multiple model instances enables horizontal scaling for traffic spikes.
Caching frequent predictions reduces computational load while maintaining response
times of under 100 milliseconds for user-facing applications.

Model versioning and rollback capabilities ensure system stability during updates.
Canary deployments test new models on small traffic percentages to identify issues before
full rollout. A/B testing frameworks enable continuous improvement through controlled
experimentation. Monitoring dashboards tracking accuracy metrics, latency distributions,
and error rates facilitates rapid issue identification.

5.2.2. Human-Ai Collaboration Strategies

Effective human-AI collaboration maximizes combined strengths while mitigating
individual weaknesses. Tiered review systems allocate human expertise to genuinely
ambiguous cases where contextual judgment adds value. High-confidence model
predictions enable automatic decisions on clear-cut cases, reducing human workload by
73% in production deployments.

Explanatory interfaces presenting attention visualizations and feature importance
help reviewers understand model decisions. Interactive tools allowing reviewers to
correct model errors create feedback loops for continuous improvement. Active learning
identifies informative examples for human annotation, maximizing learning efficiency
from limited labeling resources.
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Workflow integration maintains reviewer productivity through streamlined
interfaces, minimizing context switching-batch processing groups similar violations for
efficient review. Keyboard shortcuts and customizable interfaces accommodate
individual reviewer preferences. Performance analytics identify training needs and
optimize task allocation across reviewer teams.

5.3. Limitations and Future Work
5.3.1. Current Limitations

Several limitations constrain current system capabilities and deployment scenarios.
While XLM-R supports 100+ languages, our production pipeline currently covers 12
languages due to training data and policy localization constraints, excluding significant
global advertising markets. Performance on low-resource languages degrades
substantially due to the limited availability of training data. Multilingual advertisements
with code-switching between languages exhibit 15% lower accuracy compared to
monolingual content.

Temporal analysis for video advertisements processes clips of up to 60 seconds due
to computational constraints. Longer-form video content requires sampling strategies that
potentially miss violating segments. Real-time video stream processing remains infeasible
with the current architecture, requiring batch processing approaches.

Understanding cultural context lacks nuance for region-specific policy
interpretations. Legitimate content in one jurisdiction may violate policies in another,
requiring geographically specific models. Emerging violation patterns not represented in
training data cause detection delays until model updates incorporate new examples.

5.3.2. Emerging Challenges

Synthetic content generated by Al systems poses increasing detection challenges as
generation quality improves. Deepfake technology enables sophisticated impersonation
attacks, compromising celebrity endorsement policies. Large language models generate
persuasive but misleading advertising copy indistinguishable from human-written
content. Detection methods must continually evolve to address the advancing capabilities
of the next generation.

Regulatory fragmentation across jurisdictions complicates the enforcement of unified
policies. Privacy regulations restrict data sharing for model training across regional
boundaries. Compliance requirements vary substantially between markets, necessitating
market-specific adaptations. Legal frameworks lag technological developments, creating
policy ambiguity.

Platform-specific requirements demand customizable solutions rather than one-size-
fits-all approaches. Social media platforms prioritize user engagement metrics while e-
commerce sites focus on transaction safety. Video platforms require different violation
taxonomies than display advertising networks. Integration complexity increases with
platform diversity.

5.3.3. Future Research Directions

Future research should prioritize three critical areas to advance the safety of
advertising content. Zero-shot and few-shot learning techniques could enable rapid
adaptation to emerging violation types without the need for extensive retraining-meta-
learning approaches, which learn to learn from limited examples, show promise in
addressing data scarcity challenges. Continual learning methods prevent catastrophic
forgetting while incorporating new knowledge, making them a merit-worthy
investigation.

Explainable AI techniques enhancing model interpretability would facilitate
regulatory compliance and user trust. Causal inference methods that identify the root
causes of policy violations can inform preventive measures. Counterfactual analysis,
which explains how changes would alter model decisions, provides actionable feedback
to advertisers.
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Federated learning approaches, enabling collaborative training without centralized
data collection, address privacy concerns. Differential privacy techniques that protect
individual advertiser information while maintaining model utility require further
development. Secure multi-party computation, which allows for joint model training
across competing platforms, presents technical and organizational challenges worth

pursuing.
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