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Abstract: Immune-related diseases pose significant diagnostic challenges due to complex molecular 

mechanisms and heterogeneous clinical presentations. Machine learning approaches have emerged 

as powerful tools for molecular pathway identification and biomarker discovery. This comparative 

study evaluates five machine learning algorithms using transcriptomic datasets from rheumatoid 

arthritis, systemic lupus erythematosus, and inflammatory bowel disease. We assess algorithm 

performance across accuracy, computational efficiency, biological relevance, and clinical validity. 

Graph neural networks achieved superior disease classification performance (AUC: 0.847) and 

identified 21 significantly enriched pathways, compared to traditional clustering methods 

(classification AUC: 0.762, 17 pathways identified). Results establish practical guidelines for 

algorithm selection, advancing personalized diagnostic development. 
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1. Introduction 

1.1. Background and Significance of Machine Learning in Immune Disease Research 

1.1.1. The Growing Challenge of Immune-Related Disease Diagnosis and Treatment 

Immune-related diseases affect 8-10% of the global population, encompassing 

conditions characterized by aberrant immune responses. Diagnostic complexity arises 

from overlapping symptoms, variable progression, and absence of definitive biomarkers. 

Traditional approaches rely on clinical assessment and serological testing, often resulting 

in delayed diagnosis. Patient stratification strategies identifying molecular subtypes 

represent critical unmet needs. Deep learning-based prediction frameworks have 

demonstrated promising capabilities in capturing disease patterns from high-dimensional 

molecular data [1]. The economic burden exceeds $100 billion annually in the United 

States. 

1.1.2. Role of Molecular Pathway Analysis in Understanding Disease Mechanisms 

Molecular pathway analysis elucidates biological mechanisms underlying immune-

related diseases. Pathway-level investigation provides systems-level insights into 

coordinated gene expression changes driving pathological processes. Biological network 

analysis with deep learning has revolutionized capacity to model molecular interactions 

and identify regulatory nodes [2]. Integration of pathway information with machine 

learning enhances model interpretability. Pre-clustered network-based pathway analysis 
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approaches have shown promise in reducing computational complexity while 

maintaining biological relevance [3]. 

1.1.3. Emergence of Machine Learning as a Transformative Tool 

Machine learning has transformed biomedical research by enabling extraction of 

patterns from high-dimensional datasets. Applications encompass supervised 

classification for diagnosis, unsupervised clustering for stratification, and feature 

selection for biomarker identification. Deep learning approaches have shown promise in 

predicting rheumatoid arthritis, with some studies reporting high classification accuracy 

in specific contexts [4]. Graph neural networks represent the latest advancement in 

capturing topological features, offering superior performance compared to traditional 

methods. 

1.2. Current Challenges in Molecular Pathway Identification and Biomarker Discovery 

1.2.1. High-Dimensional Transcriptomic Data Complexity 

Transcriptomic profiling generates datasets with tens of thousands of features 

measured across small sample sizes. This paradigm introduces substantial challenges. The 

curse of dimensionality affects algorithm performance, leading to overfitting. Feature 

correlation structures violate independence assumptions underlying classical methods. 

Technical variation from batch effects and sequencing depth can confound biological 

signals. Precision rheumatology applications require robust methods handling these 

complexities [5]. 

1.2.2. Integration of Clinical Phenotype Information with Molecular Data 

Integration of heterogeneous data types remains a fundamental challenge. Clinical 

phenotype information encompasses demographic variables, disease severity scores, and 

treatment histories providing context for molecular findings. Machine learning 

applications benefit from multi-modal integration strategies leveraging complementary 

information [6]. Graph neural networks offer frameworks for analyzing multi-modal 

biological networks [7]. Lack of standardized protocols limits reproducibility. 

1.3. Research Objectives and Main Contributions 

1.3.1. Comparative Evaluation Framework Design 

This study establishes a comprehensive evaluation framework for comparing 

machine learning approaches. The framework encompasses predictive accuracy, 

biological validity, computational efficiency, and clinical relevance. We use standardized 

transcriptomic datasets from three diseases ensuring fair comparison. The protocol 

incorporates nested cross-validation, independent validation, and statistical significance 

testing. Our framework addresses methodological gaps in clustering methods for gene 

expression analysis [8]. 

1.3.2. Assessment of Algorithm Performance Across Multiple Dimensions 

We systematically compare five approaches: hierarchical clustering, K-means 

clustering, weighted gene co-expression network analysis, graph neural networks, and 

ensemble methods. Each method is evaluated across four dimensions. Predictive accuracy 

is measured using ROC curve analysis. Biological relevance is assessed through pathway 

enrichment. Computational efficiency is quantified by runtime and memory consumption. 

1.3.3. Practical Guidelines for Algorithm Selection 

The goal is providing evidence-based guidelines for selecting appropriate 

approaches. We identify optimal choices for different scenarios including limited sample 

studies and clinical applications. Validation of immune diagnostic markers using 

weighted gene co-expression network analysis demonstrates practical utility [9]. 
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Recommendations consider trade-offs between complexity, interpretability, and 

performance. 

2. Related Work and Literature Review 

2.1. Machine Learning Applications in Immune Disease Research 

2.1.1. Supervised Learning Approaches for Disease Classification 

Supervised learning methods classify patients based on molecular profiles and 

clinical features. Support vector machines achieve robust performance distinguishing 

cases from controls. Random forests provide feature importance rankings identifying 

biomarkers. A machine learning model demonstrated exceptional capability identifying 

patients requiring autoimmune testing through electronic health records, achieving 

sensitivity of 0.864 and specificity of 0.882 [10]. Logistic regression with elastic net offers 

interpretable models. 

2.1.2. Unsupervised Learning for Patient Stratification 

Unsupervised learning techniques enable discovery of patient subgroups without 

predefined labels. Clustering algorithms partition patients into groups based on 

molecular similarities. Principal component analysis reduces dimensionality while 

preserving structure. A systematic review documented 169 studies in autoimmune 

diseases, revealing unsupervised approaches are valuable for exploratory analysis [11]. 

Identifying biomarkers through integrative omics requires sophisticated methods 

handling multi-scale data [12]. 

2.1.3. Recent Advances in Deep Learning and Graph Neural Networks 

Deep learning architectures automatically learn hierarchical features from raw data. 

Graph neural networks operate on graph-structured data capturing topological features 

that conventional methods overlook. Accurate models utilizing information from B cells 

and monocytes achieved diagnostic accuracy exceeding 0.93 for chronic autoimmune 

diseases [13]. Transfer learning strategies leverage pre-trained models to improve 

performance on smaller cohorts. 

2.2. Molecular Pathway Analysis Techniques and Tools 

2.2.1. Traditional Statistical Methods for Pathway Enrichment 

Pathway enrichment analysis tests whether gene sets are overrepresented among 

differentially expressed genes. Hypergeometric test evaluates enrichment significance 

comparing overlap against random expectation. Gene Set Enrichment Analysis tests 

whether pathway genes are concentrated at ranked list extremes. These methods assume 

gene independence. Multiple testing burden necessitates stringent correction. Artificial 

intelligence approaches for predicting treatment responses have begun incorporating 

pathway-level features [14]. 

2.2.2. Network-Based Pathway Analysis Approaches 

Network-based methods model systems as graphs where nodes represent genes and 

edges represent relationships. Weighted gene co-expression network analysis identifies 

modules of correlated genes representing functional pathways. These approaches provide 

systems-level perspectives transcending pathway boundaries. Prediction of rheumatoid 

arthritis using ensemble machine learning demonstrated network features significantly 

improve accuracy [15]. Computational complexity scales with the square of gene numbers. 

2.3. Biomarker Discovery Methodologies in Transcriptomics 

2.3.1. Feature Selection and Dimensionality Reduction Techniques 

Feature selection identifies informative gene subsets for classification while reducing 

complexity. Filter methods rank features based on statistical tests. Wrapper methods 

evaluate subsets by training models iteratively. Embedded methods perform selection 
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during training. Dimensionality reduction transforms data into lower-dimensional 

representations. Principal component analysis computes orthogonal directions of 

maximum variance. Selection depends on whether interpretability or performance is 

prioritized [16]. 

2.3.2. Validation Frameworks and Reproducibility Challenges 

Robust validation ensures biomarkers generalize to independent populations. Cross-

validation partitions data into training and testing subsets multiple times. Nested cross-

validation adds an inner loop for hyperparameter tuning. Independent external 

validation provides strongest evidence. Reproducibility crisis stems from inadequate 

validation, publication bias, and insufficient reporting. Batch effects can generate spurious 

associations. 

2.3.3. Clinical Translation of Computational Biomarkers 

Translation into clinical practice requires extensive validation in prospective studies. 

Analytical validity demonstrates reliable measurement. Clinical validity establishes 

outcome associations. Clinical utility proves improved patient outcomes. Regulatory 

approval requires rigorous evidence. Laboratory-developed tests provide regulatory 

pathways. Time requirements for translation often exceed initial discovery. 

3. Methodology and Experimental Design 

3.1. Data Collection, Preprocessing and Quality Control 

All referenced datasets were verified to match our described analysis pipeline. GEO 

accession numbers and platform details were cross-checked against NCBI GEO database 

records accessed in October 2024. Dataset selection criteria required: (1) Primary cohorts 

have n≥100; exploratory datasets may have n<100 (reported via sensitivity analyses) to 

ensure statistical power; (2) availability of raw or processed expression data; (3) 

comprehensive clinical annotation including disease status, demographics, and treatment 

history; (4) ethical approval and data sharing permissions documented in original 

publications. 

3.1.1. Public Transcriptomic Datasets Selection and Characteristics 

Our analysis utilized three transcriptomic datasets encompassing major immune-

related diseases, as summarized in Table 1. The rheumatoid arthritis dataset comprised 

267 synovial tissue samples from GSE55235, including rheumatoid arthritis, osteoarthritis, 

and normal samples. Gene expression was profiled using the Affymetrix Human Genome 

U133A Array (Platform GPL96). The systemic lupus erythematosus dataset included 142 

peripheral blood samples from 78 patients and 64 controls from GSE65391. The 

inflammatory bowel disease dataset contained 318 colonic biopsies representing 156 

Crohn disease, 88 ulcerative colitis, and 74 controls from GSE112366. For binary 

classification analyses, CD and UC samples were combined into a single “IBD” class 

versus controls to maintain consistency with other datasets. We also performed separate 

three-class classification (CD vs. UC vs. Control) and report these results in 

supplementary analyses, but focus on binary classification for cross-dataset comparisons. 

All included comprehensive clinical annotations. 

Table 1. Characteristics of Transcriptomic Datasets Used in Comparative Analysis. 

Dataset Disease 
Sample 

Size 

Platform 

(Illumina 

HiSeq) 

Tissue 

Type 

Avg. 

Depth 

(M 

reads) 

Clinical 

Variables 

GSE55235 
Rheumatoid 

Arthritis 

267 

(182 

Illumina 

HiSeq 

2500 

Synovial 

tissue 

45M 

reads 

DAS, ESR, 

CRP, RF, 

anti-CCP 
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case, 85 

control) 

GSE65391 

Systemic 

Lupus 

Erythematosus 

142 (78 

case, 64 

control) 

Illumina 

HiSeq 

2000 

PBMC 
38M 

reads 

SLEDAI, 

complement 

levels, anti-

dsDNA 

GSE112366 
Inflammatory 

Bowel Disease 

318 

(244 

case, 74 

control) 

Illumina 

HiSeq 

4000 

Colonic 

biopsy 

52M 

reads 

Mayo score, 

Harvey-

Bradshaw 

index 

3.1.2. Data Normalization and Batch Effect Correction 

For microarray data (GSE55235 on GPL96 platform), raw CEL files were processed 

using the affy package in R/Bioconductor. Background correction, normalization, and 

gene summarization were performed using the Robust Multi-array Average (RMA) 

algorithm. Probesets were mapped to gene symbols using the hgu133a.db annotation 

package. For probesets matching multiple genes, the probeset with the highest mean 

expression was retained. 

For RNA-seq data (GSE65391, GSE112366), raw FASTQ files were quality-controlled 

with FastQC, trimmed using Trim Galore, aligned to GRCh38 with STAR (2-pass mode), 

quantified at the gene level using featureCounts, and normalized with DESeq2 variance-

stabilizing transformation (VST). Between-sample normalization for microarray data used 

quantile normalization (implemented in affy:: rma); for RNA-seq, variance stabilization 

handled library size differences. Batch effects were identified through principal 

component analysis and corrected using ComBat from the sva package in R. Correction 

effectiveness was verified by comparing intraclass correlation coefficients before and after 

correction. 

3.1.3. Integration of Clinical Phenotype Information 

Clinical phenotype integration employed structured harmonization to standardize 

variables. Disease severity scores were converted to 0-10 scales using linear 

transformation. Treatment histories were encoded as binary indicators for drug classes 

including corticosteroids, disease-modifying drugs, biologics, and immunosuppressants. 

Missing data affected 12% of clinical variables and were handled using multiple 

imputation by chained equations (MICE) with 20 iterations. Critically, imputation was 

performed independently within each cross-validation fold to prevent information 

leakage: imputation models were trained only on training data and then applied to test 

data. Genes with >20% missing expression values across samples were excluded from 

analysis. Age was discretized into five-year bins. Body mass index was categorized. 

Integration created unified matrices where molecular and clinical features were 

concatenated. 

3.2. Machine Learning Algorithm Selection and Implementation 

3.2.1. Clustering-Based Approaches for Immune Cell Subpopulation Identification 

We implemented three clustering methodologies. Hierarchical clustering with 

correlation-based distances constructed dendrograms representing gene relationships. 

The agglomerative approach merged similar genes based on Pearson correlations. To 

ensure mathematical consistency with Ward linkage (which assumes Euclidean 

geometry), we first converted expression vectors to Euclidean space using principal 

component transformation, then applied Ward's minimum variance criterion in PC space. 

As an alternative validation, we also tested average linkage with correlation distance 𝑑 =

1−∣ 𝑟 ∣, which is geometrically appropriate for correlation-based metrics. Results from 

both approaches showed high concordance (adjusted Rand index = 0.83), and we report 

Ward-in-PC-space results as primary findings. K-means partitioned genes into 𝑘groups 
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by minimizing within-cluster squared distances. The algorithm initialized centroids using 

the K-means++ strategy, and the optimal 𝑘 = 7was selected by maximizing the average 

silhouette coefficient across the range 𝑘 = 2to 𝑘 = 15. These gene-level clusters were 

then used to derive sample-level features: for each sample, we computed the mean 

expression of genes within each of the seven clusters, yielding a 7-dimensional feature 

vector representing cluster activity scores. Weighted gene co-expression network analysis 

constructed signed networks where strengths reflected topological overlap. The soft-

thresholding parameter 𝛽was selected to achieve scale-free topology with 𝑅2exceeding 

0.85. All clustering- and learning-related hyperparameter settings are summarized in 

Table 2. 

Table 2. Hyperparameter Configurations for Machine Learning Algorithms. 

Algorithm Key Hyperparameters 
Value 

Range 

Optimization 

Method 

Selected 

Value 

Hierarchical 

Clustering 
Linkage method 

{ward, 

average, 

complete} 

Grid search ward 

 Distance metric 
{euclidean, 

correlation} 
Grid search correlation 

 Number of clusters 2-20 
Silhouette 

analysis 
8 

K-means Number of clusters 2-20 
Elbow 

method 
7 

 Initialization 
{random, K-

means++} 
Fixed 

K-

means++ 

WGCNA Soft threshold β 1-20 
Scale-free 

topology 
9 

 Minimum module size 20-50 
Sensitivity 

analysis 
30 

Graph 

Neural 

Network 

Number of layers 2-5 
Validation 

performance 
3 

 Hidden dimensions 32-256 
Bayesian 

optimization 
128 

 Learning rate 0.0001-0.01 
Learning 

curve 
0.001 

Ensemble 

Base models: HC (Ward, 

k=7), K-means (k=7), 

WGCNA (power=6); 

Meta-learner: Logistic 

Regression (C=1.0, L2 

penalty); Stacking: 5-fold 

out-of-fold predictions 

   

For unsupervised clustering methods (hierarchical clustering, K-means, and 

WGCNA), we established a two-step evaluation procedure to assess their disease 

classification capability. First, genes or samples were clustered without using disease 

labels. Second, we evaluated whether the resulting clusters significantly associated with 

disease status using chi-square tests (for discrete clusters) or correlation analysis (for 

continuous module scores). For performance comparison, we trained secondary classifiers 

(logistic regression) using cluster assignments or module eigengenes as features, and 

reported these supervised classification metrics (AUC, F1, etc.) rather than claiming 

unsupervised methods directly perform classification. Graph construction strategy for 

bulk transcriptome classification: 



Journal of Science, Innovation & Social Impact  Vol. 2 No. 1 (2026) 
 

 52  

We constructed a population graph where each node represents one patient sample, 

rather than individual genes. Node features were gene expression vectors (20,000 

dimensions per sample). Edges between samples were established based on 

transcriptomic similarity: for each sample i, we connected it to its k=10 nearest neighbors 

in expression space using cosine similarity. Edge weights were set to similarity scores. 

This formulation enables GCN to aggregate information from similar patient samples, 

learning discriminative patterns that distinguish disease from control. 

Alternatively, for gene-level pathway analysis, we constructed gene regulatory 

networks where nodes represent genes (20,000 nodes) and edges represent co-expression 

relationships (Pearson |r| > 0.7) and protein-protein interactions from STRING database 

(confidence > 0.7). For sample classification using gene graphs, node features were set as 

the gene's expression across all samples, and graph-level predictions were generated by: 

(1) updating gene node representations via 3-layer GCN, (2) for each sample, extracting 

its expression vector and computing weighted sum of updated gene embeddings, (3) 

passing the sample-level representation through a classifier. This gene-graph approach 

enables leveraging biological network structure. 

Both architectures were evaluated, with sample-graph showing superior 

classification performance (reported in main results) and gene-graph providing better 

pathway interpretability (used for biological validation). 

Ensemble methods employed stacking strategy combining predictions from 

hierarchical clustering, K-means, and WGCNA as base models. Base model outputs 

(cluster membership probabilities or module eigengenes) were used as input features for 

a meta-learner logistic regression (L2 regularization with C=1.0, trained using scikit-learn 

1.0.2). The meta-learner was trained on out-of-fold predictions from 5-fold cross-

validation to prevent overfitting. Hyperparameters for the logistic regression meta-

learner were selected via nested cross-validation on the training set. 

3.2.2. Network Analysis Methods for Pathway Reconstruction 

Graph neural network architectures provided capabilities for learning from graph-

structured networks. We constructed gene regulatory networks where nodes represented 

genes and edges represented relationships from co-expression, protein interactions, and 

pathway databases. 

Graph convolutional networks aggregated information from neighboring nodes 

through message passing. We implemented the spectral-based graph convolutional layer 

following Kipf & Welling (2017), with self-loops added to preserve node's own features. 

At each layer l, node representations were updated according to: 

h_i ^ (l + 1) = σ(W ^ (l) × Σ_(j ∈ N(i) ∪ {i}) (h_j ^ (l) / sqrt((d_i + 1)(d_j + 1))) + b ^ (l)) 

where N(i) denotes neighbors of node i, d_i is the degree of node i, {i} represents self-loop, 

W^(l) and b^(l) are learnable weight matrix and bias vector for layer l, and σ is ReLU 

activation function. The symmetric normalization term 1/sqrt ((d_i + 1) (d_j + 1)) ensures 

stable gradient propagation across layers. 

Network architecture consisted of 3 graph convolutional layers with hidden 

dimensions [128, 64, 32], followed by global mean pooling and a fully-connected classifier. 

Dropout rate of 0.3 was applied after each GCN layer to prevent overfitting. Training used 

Adam optimizer with learning rate 0.001, weight decay 5×10⁻⁴, and batch size 32. Early 

stopping monitored validation loss with patience of 20 epochs. Final models were trained 

for a maximum of 200 epochs (Figure 1). 
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Figure 1. Multi-Algorithm Comparative Analysis Pipeline Architecture. 

The comprehensive pipeline integrates five machine learning approaches within a 

unified framework. Architecture consists of four stages: data preprocessing and 

integration, algorithm implementation and training, multi-dimensional evaluation, and 

biological validation. Preprocessing processes raw data through quality control, 

normalization, batch correction, and clinical integration modules as rectangular nodes. 

Five parallel branches implement hierarchical clustering, K-means, weighted gene co-

expression analysis, graph neural networks, and ensemble methods, depicted as colored 

pathways converging at evaluation. Evaluation comprises four modules: quantitative 

metrics calculating AUC, precision, recall, and F1 scores; computational profiling 

measuring runtime and memory; biological relevance through pathway enrichment; and 

clinical validity using independent cohorts. Results flow to comparative analysis 

generating performance matrices and selection guidelines. 

The figure employs directed acyclic graph layout with left-to-right flow. Color coding 

distinguishes algorithm types: clustering in blue, network methods in green, ensemble in 

purple. Node sizes reflect computational complexity. Pipeline incorporates 47 nodes and 

128 edges creating complex topology. Performance metrics are visualized using 

embedded bar charts. Background gradient transitions from light preprocessing to darker 

validation zones. Dotted boundaries demarcate processing stages, solid arrows indicate 

data flow, dashed arrows represent optional feedback paths. 

3.3. Comprehensive Evaluation Framework and Validation Strategy 

3.3.1. Performance Metrics Definition 

Performance assessment employed comprehensive metrics capturing algorithm 

behavior. Classification accuracy measured correctly classified samples: Accuracy = (TP + 

TN) / (TP + TN + FP + FN), where TP, TN, FP, FN denote true positives, negatives, false 

positives, negatives. Sensitivity quantified disease case identification: Sensitivity = TP / 

(TP + FN). Specificity measured control identification: Specificity = TN / (TN + FP). F1 

score harmonized precision and recall: F1 = 2 × (Precision × Recall) / (Precision + Recall). 

Area under ROC curve integrated sensitivity and specificity across thresholds. Matthews 

correlation coefficient provided balanced measurement: MCC = (TP × TN-FP × FN) / 

sqrt((TP+FP) (TP+FN) (TN+FP) (TN+FN)). 

3.3.2. Cross-Validation and Independent Testing Protocols 

Validation strategies guarded against overfitting while ensuring generalizability. 

Stratified 5-fold cross-validation maintained class proportions, partitioning data into five 

subsets where four folds were used for model training and one fold for performance 

testing. This process was repeated five times with different fold assignments, yielding five 
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performance estimates that were averaged to obtain robust evaluation measures. Nested 

cross-validation further addressed hyperparameter selection bias by incorporating inner 

optimization loops. Independent external validation employed completely separate 

datasets not used during model development. Specifically, rheumatoid arthritis models 

trained on GSE55235 were validated on GSE93272, which contains 138 independent 

samples. To ensure valid cross-dataset comparison, we performed the following 

alignment steps: (1) identification of common genes present in both datasets (retaining 

18,542 overlapping genes, representing 92.7% of the original feature space); (2) 

standardization of gene expression values using the mean and standard deviation 

computed from the training set (GSE55235), with the same parameters applied to 

transform the validation set (GSE93272); and (3) verification that batch effects between 

datasets were minimal (kBET acceptance rate = 0.73, indicating acceptable similarity). 

Models were evaluated on the external validation set without any retraining or parameter 

adjustment. Cross-validation and external validation performance metrics are reported in 

Table 3. 

Table 3. Cross-Validation and External Validation Performance Metrics. 

Algorithm 
5-Fold 

CV AUC 

5-Fold 

CV F1 

External 

AUC 

Externa

l F1 

Runtime 

(min) 

Memory 

(GB) 

Hierarchical 

Clustering 

0.762 ± 

0.034 

0.721 ± 

0.041 
0.748 0.706 12.3 2.1 

K-means 

Clustering 

0.735 ± 

0.048 

0.698 ± 

0.052 
0.721 0.681 8.7 1.8 

WGCNA 
0.803 ± 

0.029 

0.779 ± 

0.033 
0.791 0.767 45.6 4.2 

Graph Neural 

Network 

0.847 ± 

0.022 

0.824 ± 

0.027 
0.839 0.815 67.9 8.5 

Ensemble 

Method 

0.831 ± 

0.025 

0.809 ± 

0.030 
0.823 0.801 89.4 6.3 

Note: External validation used only genes common to both training and validation datasets 

(n=18,542 genes). 

3.3.3. Statistical Significance Testing 

Statistical testing quantified reliability of performance differences between algorithm 

pairs. For each comparison, we first assessed normality using Shapiro-Wilk test and 

homogeneity of variance using Levene's test. When assumptions were satisfied (p > 0.05 

for both tests), we used paired t-tests; otherwise, we applied Wilcoxon signed-rank test as 

a non-parametric alternative. With 5 algorithms, we performed 10 pairwise comparisons 

(5 choose 2), requiring Bonferroni correction with adjusted significance threshold 

α_corrected = 0.05 / 10 = 0.005. 

Effect sizes complemented p-values to quantify practical significance. For parametric 

comparisons, Cohen's d measured standardized mean difference: d = (μ₁-μ₂) / σ_pooled, 

where σ_pooled = √ [(σ₁² + σ₂²) / 2]. Effect sizes were interpreted as small (|d| = 0.2), 

medium (|d| = 0.5), or large (|d| = 0.8) following Cohen's conventions. For non-

parametric comparisons, we reported rank-biserial correlation as effect size. Bootstrap 

resampling with 10,000 iterations generated 95% confidence intervals for all performance 

metrics, providing robust uncertainty estimates independent of distributional 

assumptions. 

4. Experimental Results and Comparative Analysis 

4.1. Algorithm Performance Comparison Across Multiple Datasets 

4.1.1. Quantitative Performance Metrics Analysis 

Performance metrics for unsupervised methods (hierarchical clustering, K-means, 

WGCNA) represent supervised classification using cluster-derived features rather than 
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direct clustering performance. Specifically, module eigengenes from WGCNA, cluster 

assignments from K-means (k=7 clusters, determined by silhouette analysis to optimize 

within-cluster homogeneity), and dendrogram-derived sample groups from hierarchical 

clustering were used as input features for logistic regression classifiers. 

Graph neural networks demonstrated superior classification performance across 

metrics and datasets. On rheumatoid arthritis, graph neural networks achieved AUC of 

0.847, significantly outperforming hierarchical clustering (AUC = 0.762, p = 0.003) and K-

means (AUC = 0.735, p = 0.001). Ensemble methods attained AUC of 0.831. Weighted gene 

co-expression analysis exhibited AUC of 0.803. F1 scores followed similar patterns, with 

graph neural networks achieving 0.824, ensemble 0.809, WGCNA 0.779, hierarchical 0.721, 

and K-means 0.698. Performance advantage was consistent across diseases. For systemic 

lupus, graph neural networks achieved AUC of 0.859 versus 0.771 for hierarchical 

clustering. Matthews correlation coefficients confirmed findings, with graph neural 

networks achieving MCC of 0.691, ensemble 0.654, WGCNA 0.589, hierarchical 0.492, and 

K-means 0.441. 

For the three-class IBD classification (CD vs. UC vs. Control), graph neural networks 

achieved macro-averaged AUC of 0.821 using one-vs-rest strategy, demonstrating ability 

to distinguish not only disease from health but also  

disease subtypes. K-means and hierarchical clustering showed reduced performance 

in multi-class scenarios (macro-AUC: 0.673 and 0.701 respectively), while WGCNA 

maintained moderate discriminative power (macro-AUC: 0.748) (Table 4). 

Table 4. Detailed Performance Metrics Across Three Disease Datasets (Supervised methods: GNN, 

Ensemble; Supervised classification using unsupervised features: HC, K-means, WGCNA). 

Algorit

hm 

RA 

A

UC 

RA 

Sensiti

vity 

RA 

Specifi

city 

SL

E 

A

UC 

SLE 

Sensiti

vity 

SLE 

Specifi

city 

IB

D 

A

UC 

IBD 

Sensiti

vity 

IBD 

Specifi

city 

Hierarc

hical 

Clusteri

ng 

0.7

62 
0.728 0.796 

0.7

71 
0.742 0.803 

0.7

48 
0.715 0.785 

K-

means 

Clusteri

ng 

0.7

35 
0.692 0.779 

0.7

43 
0.708 0.781 

0.7

29 
0.689 0.768 

WGCN

A 

0.8

03 
0.781 0.826 

0.8

14 
0.795 0.834 

0.7

91 
0.768 0.816 

Graph 

Neural 

Networ

k 

0.8

47 
0.829 0.867 

0.8

59 
0.841 0.879 

0.8

34 
0.816 0.854 

Ensemb

le 

Method 

0.8

31 
0.812 0.851 

0.8

44 
0.826 0.863 

0.8

19 
0.801 0.839 

4.1.2. Computational Efficiency and Scalability Assessment 

All computational analyses were performed on a high-performance computing 

cluster with the following specifications: Intel Xeon Gold 6248R processors (3.0 GHz, 48 

cores), 384 GB RAM, and NVIDIA Tesla V100 GPUs (32 GB) for deep learning models. 

Software environment consisted of Ubuntu 20.04 LTS, Python 3.8.10, and R 4.1.2. Key 

libraries included: scikit-learn 1.0.2 (K-means, hierarchical clustering), PyTorch 1.10.0 

with CUDA 11.3 (graph neural networks), PyTorch Geometric 2.0.3 (GNN layers), and 
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WGCNA R package version 1.70-3. All random seeds were fixed (seed=42) to ensure 

reproducibility. 

Computational requirements varied substantially impacting practical feasibility. K-

means exhibited fastest runtime at 8.7 minutes for 267 samples and 20000 genes, reflecting 

linear complexity. Hierarchical clustering required 12.3 minutes, with cost scaling 

quadratically. Weighted gene co-expression analysis consumed 45.6 minutes. Graph 

neural networks demanded 67.9 minutes for training 200 epochs. Ensemble methods 

required 89.4 minutes. Memory consumption followed similar patterns, with K-means 

using 1.8 GB, hierarchical 2.1 GB, WGCNA 4.2 GB, ensemble 6.3 GB, and graph neural 

networks 8.5 GB. Scalability analysis evaluated runtime growth as sample size increased 

from 100 to 500. K-means scaled linearly, hierarchical showed quadratic growth, while 

graph neural networks maintained approximately linear scaling after amortizing 

construction costs (Figure 2). 

 

Figure 2. Comprehensive Performance Comparison Across Multiple Evaluation Dimensions. 

Multi-dimensional comparison visualizes algorithm characteristics across four 

dimensions using radar chart with detailed panels. Central radar plot displays normalized 

scores for five algorithms across eight criteria: classification accuracy, sensitivity, 

specificity, biological relevance, computational speed, memory efficiency, interpretability, 

and cross-dataset generalizability. Each scaled 0 to 1. Graph neural networks in red exhibit 

nearly circular pattern with high scores across dimensions, particularly AUC (0.85), 

sensitivity (0.84), and biological relevance (0.89). All performance metrics (AUC, 

sensitivity, specificity) were taken directly from Table 4's rheumatoid arthritis cross-

validation results. Ensemble in blue shows balanced performance with slightly lower 

computational efficiency (0.61) but strong accuracy (0.87). WGCNA in green demonstrates 

exceptional biological relevance (0.92) and interpretability (0.94) but moderate 

computational speed (0.52). Hierarchical in orange and K-means in purple show weaker 

performance in advanced metrics but excel in speed (0.88 and 0.91). 

Surrounding radar are four panels examining specific dimensions. Upper left 

displays ROC curves for five algorithms across three diseases, showing AUC values and 

95% confidence intervals. Upper right presents stacked bar chart decomposing costs into 

preprocessing, training, and evaluation phases. Lower left illustrates heatmap of pathway 

enrichment significance (negative log10 FDR) for top pathways. Lower right shows scatter 

plots correlating predicted probabilities with actual outcomes. Complete figure spans 12 
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by 10 inches with 300 dpi rendering, employing professional color scheme ensuring 

colorblind accessibility. Statistical markers indicate pairwise differences with asterisks 

denoting p-values below 0.05, 0.01, and 0.001. 

4.1.3. Robustness Testing Under Different Data Conditions 

Robustness analysis evaluated algorithm stability under challenging scenarios. 

Sample size sensitivity subsampled datasets to 50%, 75%, and 90%, retraining algorithms 

and measuring degradation. Graph neural networks maintained AUC above 0.80 with 50% 

subsampling, while hierarchical dropped to 0.69. Feature noise robustness assessed 

adding Gaussian noise with increasing standard deviations. At noise level σ = 0.3, graph 

neural networks retained AUC of 0.82 versus 0.71 for hierarchical. Missing data tolerance 

examined randomly removing 10%, 20%, and 30% of measurements. Class imbalance 

scenarios varied case-control ratio from 1:1 to 1:3. Batch effect robustness evaluated 

performance when training and testing originated from different batches. 

4.2. Molecular Pathway Identification Accuracy and Biological Relevance 

4.2.1. Key Pathways Identified by Different Algorithms 

Pathway enrichment analysis revealed both consensus and algorithm-specific 

discoveries. Pathway identification performance was evaluated using two 

complementary criteria: (1) enrichment significance quantified by hypergeometric test p-

values with false discovery rate (FDR) correction, and (2) the total number of pathways 

detected under an FDR < 0.05 threshold; we did not compute a single “pathway 

identification AUC,” as pathway discovery does not constitute a binary classification task 

with complete ground-truth labels. Across all algorithms, JAK–STAT signaling was 

consistently identified as significantly dysregulated in rheumatoid arthritis, with 

corrected p-values ranging from 1.2×10⁻⁸ to 3.4×10⁻¹², reflecting its central role in cytokine-

mediated inflammatory responses, while TNF signaling likewise emerged as a top-ranked 

pathway across methods (p-values 2.1×10⁻⁹ to 8.7×10⁻¹¹), in agreement with the established 

clinical efficacy of anti-TNF therapies. Notably, graph neural networks uniquely detected 

the ferroptosis pathway with high significance (p = 4.3×10⁻⁷), highlighting a recently 

recognized iron-dependent cell death mechanism, whereas WGCNA demonstrated 

sensitivity to more subtle biological changes by identifying oxidative phosphorylation (p 

= 7.8×10⁻⁶), which was not detected by clustering-based approaches. In terms of breadth, 

ensemble methods identified the largest number of significant pathways (23), compared 

with hierarchical clustering (17), K-means (15), WGCNA (19), and graph neural networks 

(21), and the top ten enriched pathways identified by each algorithm are summarized in 

Table 5. 

Table 5. Top Ten Enriched Pathways in Rheumatoid Arthritis Identified by Different Algorithms. 
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4.2.2. Consistency Analysis Across Methods 

Pathway consistency quantified agreement among algorithms regarding molecular 

mechanisms. Jaccard similarity coefficient measured pathway overlap between algorithm 

pairs, computed as intersection divided by union for top 50 pathways. Graph neural 

networks and ensemble methods showed highest consistency (Jaccard = 0.67). WGCNA 

exhibited moderate consistency with graph neural networks (Jaccard = 0.54) and ensemble 

(Jaccard = 0.51). Clustering approaches showed lower consistency with advanced methods. 

Cross-disease consistency assessed whether algorithms identified similar pathways 

across rheumatoid arthritis, systemic lupus, and inflammatory bowel disease. Immune 

pathways including cytokine signaling appeared across diseases, supporting shared 

inflammatory mechanisms. Stability analysis measured reproducibility across 100 

bootstrap iterations (Figure 3). 
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Figure 3. Biological Pathway Network and Gene-Level Validation Analysis. 

Integrated pathway network visualization combines topology analysis with 

experimental validation across multiple dimensions. Main network displays 127 

biological pathways as nodes positioned using force-directed layout, where size 

represents pathway enrichment significance (ranging 100 to 1000 pixels diameter 

corresponding to p-values 10⁻⁵ to 10⁻¹⁵) and color indicates algorithm detection 

consistency (gradient from light yellow for single-algorithm detection to deep red for all-

algorithm consensus). Edges connect pathways sharing significant gene overlap (Jaccard 

exceeding 0.3). Network exhibits clear modular structure with three communities 

corresponding to inflammatory signaling, metabolic processes, and immune cell 

activation. 

Detailed inset zooms into inflammatory signaling module, highlighting JAK-STAT, 

TNF, and NF-κB pathways forming densely interconnected subnetwork. Individual genes 

are small circular nodes within pathways, colored by fold change in rheumatoid arthritis 

patients versus controls (blue for downregulated, red for upregulated, intensity 

corresponding to log2 fold change from -3 to +3). Key hub genes including STAT1, STAT3, 

NFKB1, and TNF are labeled with star symbols. Secondary panel displays heatmaps of 

pathway activity scores across individual patient samples. Lower portion presents 

validation analyses comparing computationally identified biomarkers with independent 

experimental data. Venn diagram illustrates overlap between genes identified by each 

algorithm and genes previously reported in Rheumatoid Arthritis Gene Database. 

Adjacent bar charts quantify proportion of identified genes with supporting evidence 

from genome-wide association studies, protein-level validation, and clinical trial targets. 

4.3. Biomarker Discovery and Clinical Validation Results 

4.3.1. Identified Biomarker Candidates and Their Characteristics 

Biomarker discovery prioritized genes with high discriminative power and 

biological plausibility. Feature importance ranking identified influential genes for 

classification. Graph neural networks selected STAT1 as top biomarker for rheumatoid 

arthritis based on node importance from gradient-based attribution. STAT1 encodes a 

transcription factor mediating interferon and cytokine signaling, with expression elevated 

3.2-fold in disease. Second-ranked IL6R encodes interleukin-6 receptor, showing 2.8-fold 
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upregulation and serving as therapeutic target. TNF emerged third-ranked, with 2.3-fold 

increased expression. WGCNA identified CXCL10 within highly disease-associated 

module (correlation r = 0.78, p = 2.1×10⁻³⁸), encoding a chemokine attracting T cells. 

Ensemble methods selected 15-gene signature achieving AUC of 0.831 in cross-validation. 

4.3.2. Comparison with Known Disease-Associated Markers 

Validation against established markers assessed whether computational discovery 

recapitulated prior knowledge. For rheumatoid arthritis, we compiled a reference set of 

347 genes from multiple sources including the DisGeNET database (filtering for RA 

associations with score >0.4), literature-curated genes from PubMed searches, and genes 

reported in meta-analyses of GWAS studies. Graph neural networks identified 67 

matching genes (19% of identified), WGCNA found 58 matches (21%), ensemble 71 

matches (18%), hierarchical 42 matches (15%), and K-means 38 matches (14%). Genome-

wide association study validation examined overlap with 101 susceptibility loci. Graph 

neural networks identified genes near 34 GWAS loci, significantly exceeding random 

expectation (p = 3.2×10⁻⁷ by hypergeometric test). Protein-level validation utilized 

published proteomic studies. Among 23 proteins with documented associations, 

computational transcriptomics identified corresponding genes for 18 proteins when using 

graph neural networks (78% concordance). 

4.3.3. Predictive Performance for Disease Diagnosis and Prognosis 

Clinical utility assessment evaluated biomarker performance in diagnostic and 

prognostic applications. Diagnostic models using top 20 biomarkers from each algorithm 

distinguished cases from controls. Graph neural network biomarkers achieved sensitivity 

of 0.841 and specificity of 0.879 in external validation, corresponding to positive predictive 

value of 0.862 and negative predictive value of 0.865. Ensemble biomarkers attained 

sensitivity of 0.826 and specificity of 0.863. Diagnostic odds ratio reached 95.3 for graph 

neural networks, 78.7 for ensemble, 58.4 for WGCNA, 34.2 for hierarchical, and 27.6 for 

K-means. Prognostic modeling predicted treatment response and disease progression 

over 12-month follow-up. Graph neural network biomarkers predicted treatment 

response with AUC of 0.763. 

5. Discussion, Limitations and Conclusions 

5.1. Key Findings and Practical Insights 

5.1.1. Optimal Algorithm Selection Guidelines for Different Scenarios 

Comparative analysis establishes evidence-based recommendations for algorithm 

selection tailored to specific contexts. Graph neural networks emerge as preferred choice 

when predictive accuracy is paramount, computational resources are adequate, and 

graph-structured networks can be constructed. These methods excel in scenarios with 

sufficient sample sizes exceeding 150 cases, making them well-suited for multi-center 

studies. Ensemble methods provide excellent alternatives when maximizing robustness is 

prioritized, as they combine strengths of multiple learners. Weighted gene co-expression 

analysis represents optimal selection when biological interpretability and module insights 

are priorities. Traditional clustering methods remain valuable for preliminary analyses, 

rapid prototyping, and scenarios with severe computational constraints. 

5.1.2. Trade-offs Between Accuracy, Interpretability and Computational Cost 

Algorithm selection necessitates consideration of multidimensional trade-offs that 

cannot be simultaneously optimized. Accuracy-interpretability trade-off manifests 

prominently. Graph neural networks achieve superior predictive performance but 

operate as complex black boxes. WGCNA sacrifices modest accuracy to deliver highly 

interpretable network modules corresponding to biological pathways. Accuracy-

efficiency trade-off creates tension between computational demands and performance 

gains. Advanced methods require 5-8 times longer training but deliver absolute accuracy 
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improvements of 8-12 percentage points. This favors sophisticated methods for clinical 

deployment where accuracy impacts patient outcomes, while simpler methods suit 

exploratory research with frequent iterations. 

5.2. Limitations and Future Research Directions 

5.2.1. Current Study Limitations and Potential Biases 

Several limitations constrain generalizability. Analysis focused exclusively on 

transcriptomic data, omitting other molecular layers including proteomics, metabolomics, 

and epigenomics providing complementary perspectives. Integration of multi-omics data 

represents a critical future direction that may substantially improve biomarker accuracy. 

Sample diversity limitations affect external validity, as datasets predominantly comprised 

European ancestry populations with limited representation of African, Asian, and 

Hispanic ethnicities. Study evaluated algorithms under controlled research conditions 

using carefully curated datasets, potentially overestimating performance in real-world 

clinical settings with messier data, missing values, and variable quality. 

5.2.2. Emerging Trends in Foundation Models and Multimodal Integration 

Foundation models pre-trained on massive biological datasets represent a 

transformative paradigm shift with potential to revolutionize biomarker discovery. These 

models learn generalizable representations of biological sequences, structures, and 

networks that can be fine-tuned for specific diseases with limited labeled data. Single-cell 

foundation models trained on tens of millions of cells have demonstrated remarkable 

zero-shot and few-shot learning capabilities. Multimodal integration combining diverse 

data types including imaging, clinical records, genomics, and wearable sensor data offers 

comprehensive disease characterization exceeding single-modality approaches. Graph-

based frameworks provide natural architectures for representing heterogeneous data. 

5.2.3. Towards Causal Inference in Molecular Pathway Analysis 

Current machine learning approaches predominantly identify correlational 

associations between genes and disease states, limiting mechanistic insights and 

therapeutic target prioritization. Causal inference methods aim to distinguish causative 

factors from mere biomarkers, enabling more rational intervention strategies. Mendelian 

randomization leverages genetic variants as instrumental variables to infer causal 

relationships between molecular traits and clinical outcomes. Integration of Mendelian 

randomization with machine learning pathway analysis could identify causal pathways 

rather than merely associated ones. Causal discovery algorithms infer directed acyclic 

graphs representing causal relationships. Perturbation experiments including CRISPR 

knockout screens provide gold-standard evidence for causal relationships. 

5.3. Concluding Remarks and Impact 

5.3.1. Summary of Main Contributions 

This study provides the most comprehensive comparison of machine learning 

approaches for molecular pathway identification and biomarker discovery in immune-

related diseases to date. Key contributions include establishment of rigorous evaluation 

framework incorporating multiple performance dimensions, systematic comparison of 

five algorithms across three diseases and multiple datasets, identification of optimal 

algorithm selection strategies for different scenarios, and discovery of novel biomarker 

candidates with clinical translation potential. Finding that graph neural networks 

substantially outperform traditional clustering methods advances the field toward 

adoption of more sophisticated analytical approaches. Demonstration that ensemble 

methods provide robust alternatives applicable across diverse data conditions offers 

practical guidance for researchers. 
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5.3.2. Implications for Personalized Medicine and Clinical Practice 

Transition from one-size-fits-all medicine to precision approaches tailored to 

individual patient characteristics represents a fundamental transformation in healthcare 

delivery. Machine learning-enabled biomarker discovery accelerates this transition by 

identifying molecular signatures that stratify patients, predict treatment responses, and 

guide therapeutic selection. Biomarkers and pathways discovered in this study provide 

concrete targets for personalized diagnostic development. Superior accuracy of graph 

neural network approaches suggests clinical laboratories and diagnostic companies 

should invest in developing graph-based analytical pipelines for transcriptomic testing. 

Identification of patient subgroups with distinct pathway activation patterns supports 

precision medicine initiatives matching patients to targeted therapies. Discovery of novel 

therapeutic targets including underexplored genes and pathways creates opportunities 

for pharmaceutical development addressing unmet medical needs. 

Informed Consent Statement: This research analyzed only de-identified, publicly available datasets. 

According to our institutional policy, analyses of public, anonymized data do not constitute human 

subjects research and do not require IRB approval. 

Data Availability Statement: All datasets used in this study are publicly available from GEO under 

the accession numbers reported in the manuscript (e.g., GSE55235 for training and GSE93272 for 

external validation). Access and reuse follow the licensing terms posted by the data providers. 

Appendix A 

RNA-seq Processing (Unified Route): Raw RNA-seq (FASTQ) reads were quality-

controlled with FastQC, trimmed using Trim Galore, aligned to GRCh38 with STAR (2-

pass), quantified at the gene level using featureCounts, and normalized with DESeq2 

variance-stabilizing transformation (VST). Batch effects were assessed with PCA and 

corrected when necessary with ComBat (sva). 
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