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Abstract: Immune-related diseases pose significant diagnostic challenges due to complex molecular
mechanisms and heterogeneous clinical presentations. Machine learning approaches have emerged
as powerful tools for molecular pathway identification and biomarker discovery. This comparative
study evaluates five machine learning algorithms using transcriptomic datasets from rheumatoid
arthritis, systemic lupus erythematosus, and inflammatory bowel disease. We assess algorithm
performance across accuracy, computational efficiency, biological relevance, and clinical validity.
Graph neural networks achieved superior disease classification performance (AUC: 0.847) and
identified 21 significantly enriched pathways, compared to traditional clustering methods
(classification AUC: 0.762, 17 pathways identified). Results establish practical guidelines for
algorithm selection, advancing personalized diagnostic development.
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1. Introduction
1.1. Background and Significance of Machine Learning in Immune Disease Research
1.1.1. The Growing Challenge of Immune-Related Disease Diagnosis and Treatment

Immune-related diseases affect 8-10% of the global population, encompassing
conditions characterized by aberrant immune responses. Diagnostic complexity arises
from overlapping symptoms, variable progression, and absence of definitive biomarkers.
Traditional approaches rely on clinical assessment and serological testing, often resulting
in delayed diagnosis. Patient stratification strategies identifying molecular subtypes
represent critical unmet needs. Deep learning-based prediction frameworks have
demonstrated promising capabilities in capturing disease patterns from high-dimensional
molecular data [1]. The economic burden exceeds $100 billion annually in the United
States.

1.1.2. Role of Molecular Pathway Analysis in Understanding Disease Mechanisms

Molecular pathway analysis elucidates biological mechanisms underlying immune-
related diseases. Pathway-level investigation provides systems-level insights into
coordinated gene expression changes driving pathological processes. Biological network
analysis with deep learning has revolutionized capacity to model molecular interactions
and identify regulatory nodes [2]. Integration of pathway information with machine
learning enhances model interpretability. Pre-clustered network-based pathway analysis
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approaches have shown promise in reducing computational complexity while
maintaining biological relevance [3].

1.1.3. Emergence of Machine Learning as a Transformative Tool

Machine learning has transformed biomedical research by enabling extraction of
patterns from high-dimensional datasets. Applications encompass supervised
classification for diagnosis, unsupervised clustering for stratification, and feature
selection for biomarker identification. Deep learning approaches have shown promise in
predicting theumatoid arthritis, with some studies reporting high classification accuracy
in specific contexts [4]. Graph neural networks represent the latest advancement in
capturing topological features, offering superior performance compared to traditional
methods.

1.2. Current Challenges in Molecular Pathway Identification and Biomarker Discovery
1.2.1. High-Dimensional Transcriptomic Data Complexity

Transcriptomic profiling generates datasets with tens of thousands of features
measured across small sample sizes. This paradigm introduces substantial challenges. The
curse of dimensionality affects algorithm performance, leading to overfitting. Feature
correlation structures violate independence assumptions underlying classical methods.
Technical variation from batch effects and sequencing depth can confound biological
signals. Precision rheumatology applications require robust methods handling these
complexities [5].

1.2.2. Integration of Clinical Phenotype Information with Molecular Data

Integration of heterogeneous data types remains a fundamental challenge. Clinical
phenotype information encompasses demographic variables, disease severity scores, and
treatment histories providing context for molecular findings. Machine learning
applications benefit from multi-modal integration strategies leveraging complementary
information [6]. Graph neural networks offer frameworks for analyzing multi-modal
biological networks [7]. Lack of standardized protocols limits reproducibility.

1.3. Research Objectives and Main Contributions
1.3.1. Comparative Evaluation Framework Design

This study establishes a comprehensive evaluation framework for comparing
machine learning approaches. The framework encompasses predictive accuracy,
biological validity, computational efficiency, and clinical relevance. We use standardized
transcriptomic datasets from three diseases ensuring fair comparison. The protocol
incorporates nested cross-validation, independent validation, and statistical significance
testing. Our framework addresses methodological gaps in clustering methods for gene
expression analysis [8].

1.3.2. Assessment of Algorithm Performance Across Multiple Dimensions

We systematically compare five approaches: hierarchical clustering, K-means
clustering, weighted gene co-expression network analysis, graph neural networks, and
ensemble methods. Each method is evaluated across four dimensions. Predictive accuracy
is measured using ROC curve analysis. Biological relevance is assessed through pathway
enrichment. Computational efficiency is quantified by runtime and memory consumption.

1.3.3. Practical Guidelines for Algorithm Selection

The goal is providing evidence-based guidelines for selecting appropriate
approaches. We identify optimal choices for different scenarios including limited sample
studies and clinical applications. Validation of immune diagnostic markers using
weighted gene co-expression network analysis demonstrates practical utility [9].
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Recommendations consider trade-offs between complexity, interpretability, and
performance.

2. Related Work and Literature Review
2.1. Machine Learning Applications in Immune Disease Research
2.1.1. Supervised Learning Approaches for Disease Classification

Supervised learning methods classify patients based on molecular profiles and
clinical features. Support vector machines achieve robust performance distinguishing
cases from controls. Random forests provide feature importance rankings identifying
biomarkers. A machine learning model demonstrated exceptional capability identifying
patients requiring autoimmune testing through electronic health records, achieving
sensitivity of 0.864 and specificity of 0.882 [10]. Logistic regression with elastic net offers
interpretable models.

2.1.2. Unsupervised Learning for Patient Stratification

Unsupervised learning techniques enable discovery of patient subgroups without
predefined labels. Clustering algorithms partition patients into groups based on
molecular similarities. Principal component analysis reduces dimensionality while
preserving structure. A systematic review documented 169 studies in autoimmune
diseases, revealing unsupervised approaches are valuable for exploratory analysis [11].
Identifying biomarkers through integrative omics requires sophisticated methods
handling multi-scale data [12].

2.1.3. Recent Advances in Deep Learning and Graph Neural Networks

Deep learning architectures automatically learn hierarchical features from raw data.
Graph neural networks operate on graph-structured data capturing topological features
that conventional methods overlook. Accurate models utilizing information from B cells
and monocytes achieved diagnostic accuracy exceeding 0.93 for chronic autoimmune
diseases [13]. Transfer learning strategies leverage pre-trained models to improve
performance on smaller cohorts.

2.2. Molecular Pathway Analysis Techniques and Tools
2.2.1. Traditional Statistical Methods for Pathway Enrichment

Pathway enrichment analysis tests whether gene sets are overrepresented among
differentially expressed genes. Hypergeometric test evaluates enrichment significance
comparing overlap against random expectation. Gene Set Enrichment Analysis tests
whether pathway genes are concentrated at ranked list extremes. These methods assume
gene independence. Multiple testing burden necessitates stringent correction. Artificial
intelligence approaches for predicting treatment responses have begun incorporating
pathway-level features [14].

2.2.2. Network-Based Pathway Analysis Approaches

Network-based methods model systems as graphs where nodes represent genes and
edges represent relationships. Weighted gene co-expression network analysis identifies
modules of correlated genes representing functional pathways. These approaches provide
systems-level perspectives transcending pathway boundaries. Prediction of rheumatoid
arthritis using ensemble machine learning demonstrated network features significantly
improve accuracy [15]. Computational complexity scales with the square of gene numbers.

2.3. Biomarker Discovery Methodologies in Transcriptomics
2.3.1. Feature Selection and Dimensionality Reduction Techniques

Feature selection identifies informative gene subsets for classification while reducing
complexity. Filter methods rank features based on statistical tests. Wrapper methods
evaluate subsets by training models iteratively. Embedded methods perform selection
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during training. Dimensionality reduction transforms data into lower-dimensional
representations. Principal component analysis computes orthogonal directions of
maximum variance. Selection depends on whether interpretability or performance is
prioritized [16].

2.3.2. Validation Frameworks and Reproducibility Challenges

Robust validation ensures biomarkers generalize to independent populations. Cross-
validation partitions data into training and testing subsets multiple times. Nested cross-
validation adds an inner loop for hyperparameter tuning. Independent external
validation provides strongest evidence. Reproducibility crisis stems from inadequate
validation, publication bias, and insufficient reporting. Batch effects can generate spurious
associations.

2.3.3. Clinical Translation of Computational Biomarkers

Translation into clinical practice requires extensive validation in prospective studies.
Analytical validity demonstrates reliable measurement. Clinical validity establishes
outcome associations. Clinical utility proves improved patient outcomes. Regulatory
approval requires rigorous evidence. Laboratory-developed tests provide regulatory
pathways. Time requirements for translation often exceed initial discovery.

3. Methodology and Experimental Design
3.1. Data Collection, Preprocessing and Quality Control

All referenced datasets were verified to match our described analysis pipeline. GEO
accession numbers and platform details were cross-checked against NCBI GEO database
records accessed in October 2024. Dataset selection criteria required: (1) Primary cohorts
have n>100; exploratory datasets may have n<100 (reported via sensitivity analyses) to
ensure statistical power; (2) availability of raw or processed expression data; (3)
comprehensive clinical annotation including disease status, demographics, and treatment
history; (4) ethical approval and data sharing permissions documented in original
publications.

3.1.1. Public Transcriptomic Datasets Selection and Characteristics

Our analysis utilized three transcriptomic datasets encompassing major immune-
related diseases, as summarized in Table 1. The rheumatoid arthritis dataset comprised
267 synovial tissue samples from GSE55235, including rheumatoid arthritis, osteoarthritis,
and normal samples. Gene expression was profiled using the Affymetrix Human Genome
U133A Array (Platform GPL96). The systemic lupus erythematosus dataset included 142
peripheral blood samples from 78 patients and 64 controls from GSE65391. The
inflammatory bowel disease dataset contained 318 colonic biopsies representing 156
Crohn disease, 88 ulcerative colitis, and 74 controls from GSE112366. For binary
classification analyses, CD and UC samples were combined into a single “IBD” class
versus controls to maintain consistency with other datasets. We also performed separate
three-class classification (CD vs. UC vs. Control) and report these results in
supplementary analyses, but focus on binary classification for cross-dataset comparisons.
All included comprehensive clinical annotations.

Table 1. Characteristics of Transcriptomic Datasets Used in Comparative Analysis.

Platform Ave.
. Sample . Tissue Depth Clinical
Dataset Disease . (Illumina R
Size . Type M Variables
HiSeq)
reads)
. Illumina . DAS, ESR,
sy Mt 37! Sob M
2500 anti-CCP
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case, 85
control)

SLEDALI,
38M  complement
reads levels, anti-

Systemic 142 (78  Illumina
GSE65391 Lupus case, 64 HiSeq PBMC

Erythematosus control) 2000

dsDNA
318 Mlumina Mayo score,
Inflammatory (244 . Colonic  52M Harvey-
GSE112366 . HiSeq .
Bowel Disease  case, 74 biopsy = reads  Bradshaw
4000 .
control) index

3.1.2. Data Normalization and Batch Effect Correction

For microarray data (GSE55235 on GPL96 platform), raw CEL files were processed
using the affy package in R/Bioconductor. Background correction, normalization, and
gene summarization were performed using the Robust Multi-array Average (RMA)
algorithm. Probesets were mapped to gene symbols using the hgul33a.db annotation
package. For probesets matching multiple genes, the probeset with the highest mean
expression was retained.

For RNA-seq data (GSE65391, GSE112366), raw FASTQ files were quality-controlled
with FastQC, trimmed using Trim Galore, aligned to GRCh38 with STAR (2-pass mode),
quantified at the gene level using featureCounts, and normalized with DESeq?2 variance-
stabilizing transformation (VST). Between-sample normalization for microarray data used
quantile normalization (implemented in affy:: rma); for RNA-seq, variance stabilization
handled library size differences. Batch effects were identified through principal
component analysis and corrected using ComBat from the sva package in R. Correction
effectiveness was verified by comparing intraclass correlation coefficients before and after
correction.

3.1.3. Integration of Clinical Phenotype Information

Clinical phenotype integration employed structured harmonization to standardize
variables. Disease severity scores were converted to 0-10 scales using linear
transformation. Treatment histories were encoded as binary indicators for drug classes
including corticosteroids, disease-modifying drugs, biologics, and immunosuppressants.
Missing data affected 12% of clinical variables and were handled using multiple
imputation by chained equations (MICE) with 20 iterations. Critically, imputation was
performed independently within each cross-validation fold to prevent information
leakage: imputation models were trained only on training data and then applied to test
data. Genes with >20% missing expression values across samples were excluded from
analysis. Age was discretized into five-year bins. Body mass index was categorized.
Integration created unified matrices where molecular and clinical features were
concatenated.

3.2. Machine Learning Algorithm Selection and Implementation
3.2.1. Clustering-Based Approaches for Immune Cell Subpopulation Identification

We implemented three clustering methodologies. Hierarchical clustering with
correlation-based distances constructed dendrograms representing gene relationships.
The agglomerative approach merged similar genes based on Pearson correlations. To
ensure mathematical consistency with Ward linkage (which assumes Euclidean
geometry), we first converted expression vectors to Euclidean space using principal
component transformation, then applied Ward's minimum variance criterion in PC space.
As an alternative validation, we also tested average linkage with correlation distance d =
1—| r |, which is geometrically appropriate for correlation-based metrics. Results from
both approaches showed high concordance (adjusted Rand index = 0.83), and we report
Ward-in-PC-space results as primary findings. K-means partitioned genes into kgroups
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by minimizing within-cluster squared distances. The algorithm initialized centroids using
the K-means++ strategy, and the optimal k = 7was selected by maximizing the average
silhouette coefficient across the range k = 2to k = 15. These gene-level clusters were
then used to derive sample-level features: for each sample, we computed the mean
expression of genes within each of the seven clusters, yielding a 7-dimensional feature
vector representing cluster activity scores. Weighted gene co-expression network analysis
constructed signed networks where strengths reflected topological overlap. The soft-
thresholding parameter Bwas selected to achieve scale-free topology with RZexceeding
0.85. All clustering- and learning-related hyperparameter settings are summarized in
Table 2.

Table 2. Hyperparameter Configurations for Machine Learning Algorithms.

Value Optimization  Selected
Algorith Key H
gorithm ey Hyperparameters Range Method Value
. . {ward,
H hical
rerare -1ca Linkage method average, Grid search ward
Clustering
complete}
i
Distance metric feuc 1d§an, Grid search correlation
correlation}
Number of clusters 2-20 Sllhouejcte 8
analysis
El
K-means Number of clusters 2-20 bow 7
method
Initialization frandom, K- Fixed K-
means++} means++
le-f
WGCNA Soft threshold B 1-20 Scale-free 9
topology
Minimum module size 20-50 Sens1t1v.1 ty 30
analysis
Graph N
1
Neural Number of layers 2-5 Validation 3
performance
Network
Hidden dimensions 32-256 Bayesian 128
optimization
L .
Learning rate 0.0001-0.01 earning 0.001
curve

Base models: HC (Ward,
k=7), K-means (k=7),
WGCNA (power=6);
Ensemble Meta-learner: Logistic
Regression (C=1.0, L2
penalty); Stacking: 5-fold
out-of-fold predictions

For unsupervised clustering methods (hierarchical clustering, K-means, and
WGCNA), we established a two-step evaluation procedure to assess their disease
classification capability. First, genes or samples were clustered without using disease
labels. Second, we evaluated whether the resulting clusters significantly associated with
disease status using chi-square tests (for discrete clusters) or correlation analysis (for
continuous module scores). For performance comparison, we trained secondary classifiers
(logistic regression) using cluster assignments or module eigengenes as features, and
reported these supervised classification metrics (AUC, F1, etc.) rather than claiming
unsupervised methods directly perform classification. Graph construction strategy for
bulk transcriptome classification:
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We constructed a population graph where each node represents one patient sample,
rather than individual genes. Node features were gene expression vectors (20,000
dimensions per sample). Edges between samples were established based on
transcriptomic similarity: for each sample i, we connected it to its k=10 nearest neighbors
in expression space using cosine similarity. Edge weights were set to similarity scores.
This formulation enables GCN to aggregate information from similar patient samples,
learning discriminative patterns that distinguish disease from control.

Alternatively, for gene-level pathway analysis, we constructed gene regulatory
networks where nodes represent genes (20,000 nodes) and edges represent co-expression
relationships (Pearson Irl > 0.7) and protein-protein interactions from STRING database
(confidence > 0.7). For sample classification using gene graphs, node features were set as
the gene's expression across all samples, and graph-level predictions were generated by:
(1) updating gene node representations via 3-layer GCN, (2) for each sample, extracting
its expression vector and computing weighted sum of updated gene embeddings, (3)
passing the sample-level representation through a classifier. This gene-graph approach
enables leveraging biological network structure.

Both architectures were evaluated, with sample-graph showing superior
classification performance (reported in main results) and gene-graph providing better
pathway interpretability (used for biological validation).

Ensemble methods employed stacking strategy combining predictions from
hierarchical clustering, K-means, and WGCNA as base models. Base model outputs
(cluster membership probabilities or module eigengenes) were used as input features for
a meta-learner logistic regression (L2 regularization with C=1.0, trained using scikit-learn
1.0.2). The meta-learner was trained on out-of-fold predictions from 5-fold cross-
validation to prevent overfitting. Hyperparameters for the logistic regression meta-
learner were selected via nested cross-validation on the training set.

3.2.2. Network Analysis Methods for Pathway Reconstruction

Graph neural network architectures provided capabilities for learning from graph-
structured networks. We constructed gene regulatory networks where nodes represented
genes and edges represented relationships from co-expression, protein interactions, and
pathway databases.

Graph convolutional networks aggregated information from neighboring nodes
through message passing. We implemented the spectral-based graph convolutional layer
following Kipf & Welling (2017), with self-loops added to preserve node's own features.
At each layer 1, node representations were updated according to:

hir(l+)=cWAD)*xZ_(G € N@U{i}) (@) /sqri((d_i+1)(d_j+1)))+b" (1)
where N(i) denotes neighbors of node i, d_i is the degree of node i, {i} represents self-loop,
WA(1) and b”(l) are learnable weight matrix and bias vector for layer 1, and o is ReLU
activation function. The symmetric normalization term 1/sqrt ((d_i + 1) (d_j + 1)) ensures
stable gradient propagation across layers.

Network architecture consisted of 3 graph convolutional layers with hidden
dimensions [128, 64, 32], followed by global mean pooling and a fully-connected classifier.
Dropout rate of 0.3 was applied after each GCN layer to prevent overfitting. Training used
Adam optimizer with learning rate 0.001, weight decay 5x10*, and batch size 32. Early
stopping monitored validation loss with patience of 20 epochs. Final models were trained
for a maximum of 200 epochs (Figure 1).
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Figure 1. Multi-Algorithm Comparative Analysis Pipeline Architecture.

The comprehensive pipeline integrates five machine learning approaches within a
unified framework. Architecture consists of four stages: data preprocessing and
integration, algorithm implementation and training, multi-dimensional evaluation, and
biological validation. Preprocessing processes raw data through quality control,
normalization, batch correction, and clinical integration modules as rectangular nodes.
Five parallel branches implement hierarchical clustering, K-means, weighted gene co-
expression analysis, graph neural networks, and ensemble methods, depicted as colored
pathways converging at evaluation. Evaluation comprises four modules: quantitative
metrics calculating AUC, precision, recall, and F1 scores; computational profiling
measuring runtime and memory; biological relevance through pathway enrichment; and
clinical validity using independent cohorts. Results flow to comparative analysis
generating performance matrices and selection guidelines.

The figure employs directed acyclic graph layout with left-to-right flow. Color coding
distinguishes algorithm types: clustering in blue, network methods in green, ensemble in
purple. Node sizes reflect computational complexity. Pipeline incorporates 47 nodes and
128 edges creating complex topology. Performance metrics are visualized using
embedded bar charts. Background gradient transitions from light preprocessing to darker
validation zones. Dotted boundaries demarcate processing stages, solid arrows indicate
data flow, dashed arrows represent optional feedback paths.

3.3. Comprehensive Evaluation Framework and Validation Strategy
3.3.1. Performance Metrics Definition

Performance assessment employed comprehensive metrics capturing algorithm
behavior. Classification accuracy measured correctly classified samples: Accuracy = (TP +
TN) / (TP + TN + FP + FN), where TP, TN, FP, FN denote true positives, negatives, false
positives, negatives. Sensitivity quantified disease case identification: Sensitivity = TP /
(TP + EN). Specificity measured control identification: Specificity = TN / (TN + FP). F1
score harmonized precision and recall: F1 = 2 x (Precision x Recall) / (Precision + Recall).
Area under ROC curve integrated sensitivity and specificity across thresholds. Matthews
correlation coefficient provided balanced measurement: MCC = (TP x TN-FP x FN) /
sqrt((TP+FP) (TP+FN) (TN+EFP) (TN+FN)).

3.3.2. Cross-Validation and Independent Testing Protocols

Validation strategies guarded against overfitting while ensuring generalizability.
Stratified 5-fold cross-validation maintained class proportions, partitioning data into five
subsets where four folds were used for model training and one fold for performance
testing. This process was repeated five times with different fold assignments, yielding five
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performance estimates that were averaged to obtain robust evaluation measures. Nested
cross-validation further addressed hyperparameter selection bias by incorporating inner
optimization loops. Independent external validation employed completely separate
datasets not used during model development. Specifically, rheumatoid arthritis models
trained on GSE55235 were validated on GSE93272, which contains 138 independent
samples. To ensure valid cross-dataset comparison, we performed the following
alignment steps: (1) identification of common genes present in both datasets (retaining
18,542 overlapping genes, representing 92.7% of the original feature space); (2)
standardization of gene expression values using the mean and standard deviation
computed from the training set (GSE55235), with the same parameters applied to
transform the validation set (GSE93272); and (3) verification that batch effects between
datasets were minimal (kBET acceptance rate = 0.73, indicating acceptable similarity).
Models were evaluated on the external validation set without any retraining or parameter

adjustment. Cross-validation and external validation performance metrics are reported in
Table 3.

Table 3. Cross-Validation and External Validation Performance Metrics.

5-Fold 5-Fold  External Externa Runtime Memory

Algorithm -y \uc  cvm  AuC 1F1 (min) (GB)
il 07625 020 g ome a2
Komews | 07s OSSC oo 87 s
WGCNA 058;’; 0(‘:539; 0791 0767 45.6 42
GrphNewal | 087+ 08M% (0 ggs g g
El\r/llseet?f;e 0(')?321; 0(')?8395 0823  0.801 89.4 6.3

Note: External validation used only genes common to both training and validation datasets
(n=18,542 genes).

3.3.3. Statistical Significance Testing

Statistical testing quantified reliability of performance differences between algorithm
pairs. For each comparison, we first assessed normality using Shapiro-Wilk test and
homogeneity of variance using Levene's test. When assumptions were satisfied (p > 0.05
for both tests), we used paired t-tests; otherwise, we applied Wilcoxon signed-rank test as
a non-parametric alternative. With 5 algorithms, we performed 10 pairwise comparisons
(5 choose 2), requiring Bonferroni correction with adjusted significance threshold
o_corrected =0.05 /10 = 0.005.

Effect sizes complemented p-values to quantify practical significance. For parametric
comparisons, Cohen's d measured standardized mean difference: d = (u:-p2) / o_pooled,
where o_pooled = V [(012 + 022) / 2]. Effect sizes were interpreted as small (Id| = 0.2),
medium (Idl = 0.5), or large (Idl = 0.8) following Cohen's conventions. For non-
parametric comparisons, we reported rank-biserial correlation as effect size. Bootstrap
resampling with 10,000 iterations generated 95% confidence intervals for all performance
metrics, providing robust uncertainty estimates independent of distributional
assumptions.

4. Experimental Results and Comparative Analysis
4.1. Algorithm Performance Comparison Across Multiple Datasets
4.1.1. Quantitative Performance Metrics Analysis

Performance metrics for unsupervised methods (hierarchical clustering, K-means,
WGCNA) represent supervised classification using cluster-derived features rather than
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direct clustering performance. Specifically, module eigengenes from WGCNA, cluster
assignments from K-means (k=7 clusters, determined by silhouette analysis to optimize
within-cluster homogeneity), and dendrogram-derived sample groups from hierarchical
clustering were used as input features for logistic regression classifiers.

Graph neural networks demonstrated superior classification performance across
metrics and datasets. On rheumatoid arthritis, graph neural networks achieved AUC of
0.847, significantly outperforming hierarchical clustering (AUC = 0.762, p = 0.003) and K-
means (AUC =0.735, p=0.001). Ensemble methods attained AUC of 0.831. Weighted gene
co-expression analysis exhibited AUC of 0.803. F1 scores followed similar patterns, with
graph neural networks achieving 0.824, ensemble 0.809, WGCNA 0.779, hierarchical 0.721,
and K-means 0.698. Performance advantage was consistent across diseases. For systemic
lupus, graph neural networks achieved AUC of 0.859 versus 0.771 for hierarchical
clustering. Matthews correlation coefficients confirmed findings, with graph neural
networks achieving MCC of 0.691, ensemble 0.654, WGCNA 0.589, hierarchical 0.492, and
K-means 0.441.

For the three-class IBD classification (CD vs. UC vs. Control), graph neural networks
achieved macro-averaged AUC of 0.821 using one-vs-rest strategy, demonstrating ability
to distinguish not only disease from health but also

disease subtypes. K-means and hierarchical clustering showed reduced performance
in multi-class scenarios (macro-AUC: 0.673 and 0.701 respectively), while WGCNA
maintained moderate discriminative power (macro-AUC: 0.748) (Table 4).

Table 4. Detailed Performance Metrics Across Three Disease Datasets (Supervised methods: GNN,
Ensemble; Supervised classification using unsupervised features: HC, K-means, WGCNA).

. RA RA RA SL SLE SLE 1B IBD IBD
Algorit . ... E . ... D . e
hm A Sensiti Specifi A Sensiti Specifi A Sensiti Specifi
UucC vity city uc vity city uc vity city
Hierarc
hical 0.7 0.7 0.7
Clusteri 62 0.728 0.796 - 0.742 0.803 48 0.715 0.785
ng
K-
means 0.7 0.7 0.7
Clusteri 35 0.692 0.779 13 0.708 0.781 29 0.689 0.768
ng
WGCN 0.8 0.8 0.7
A 03 0.781 0.826 14 0.795 0.834 91 0.768 0.816
Graph
Neural 0.8 0.8 0.8
Networ 47 0.829 0.867 59 0.841 0.879 34 0.816 0.854
k
Ensemb
le 08 0.812 0.851 08 0.826 0.863 08 0.801 0.839
31 44 19
Method

4.1.2. Computational Efficiency and Scalability Assessment

All computational analyses were performed on a high-performance computing
cluster with the following specifications: Intel Xeon Gold 6248R processors (3.0 GHz, 48
cores), 384 GB RAM, and NVIDIA Tesla V100 GPUs (32 GB) for deep learning models.
Software environment consisted of Ubuntu 20.04 LTS, Python 3.8.10, and R 4.1.2. Key
libraries included: scikit-learn 1.0.2 (K-means, hierarchical clustering), PyTorch 1.10.0
with CUDA 11.3 (graph neural networks), PyTorch Geometric 2.0.3 (GNN layers), and
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WGCNA R package version 1.70-3. All random seeds were fixed (seed=42) to ensure
reproducibility.

Computational requirements varied substantially impacting practical feasibility. K-
means exhibited fastest runtime at 8.7 minutes for 267 samples and 20000 genes, reflecting
linear complexity. Hierarchical clustering required 12.3 minutes, with cost scaling
quadratically. Weighted gene co-expression analysis consumed 45.6 minutes. Graph
neural networks demanded 67.9 minutes for training 200 epochs. Ensemble methods
required 89.4 minutes. Memory consumption followed similar patterns, with K-means
using 1.8 GB, hierarchical 2.1 GB, WGCNA 4.2 GB, ensemble 6.3 GB, and graph neural
networks 8.5 GB. Scalability analysis evaluated runtime growth as sample size increased
from 100 to 500. K-means scaled linearly, hierarchical showed quadratic growth, while
graph neural networks maintained approximately linear scaling after amortizing
construction costs (Figure 2).

‘ Multi-Di Perf C

ROC Curves Across Three Diseases Computational Cost Breakdown
Preprocessing  Traming Balustion 894
Accuracy (0.93) 67.9

Generalizability Sensitivity

87

Specificity
Memory Eff. Bio-Relevance
Speed
Pathway Enrichment Significance (-log10 FDR)

Hierarchical K-means WGCNA GNN Ensemble
mcswrsignaing EEEHE DN N
L B B
ST B BN - B - B o
Cpokine signaing [ o R

Ferroptosis 32 28 53 6.4 47

Oxidative phosphorylation 21 1.8 5.1 5.9 42 ° B G
-log10(FDR)

Figure 2. Comprehensive Performance Comparison Across Multiple Evaluation Dimensions.

Multi-dimensional comparison visualizes algorithm characteristics across four
dimensions using radar chart with detailed panels. Central radar plot displays normalized
scores for five algorithms across eight criteria: classification accuracy, sensitivity,
specificity, biological relevance, computational speed, memory efficiency, interpretability,
and cross-dataset generalizability. Each scaled 0 to 1. Graph neural networks in red exhibit
nearly circular pattern with high scores across dimensions, particularly AUC (0.85),
sensitivity (0.84), and biological relevance (0.89). All performance metrics (AUC,
sensitivity, specificity) were taken directly from Table 4's rheumatoid arthritis cross-
validation results. Ensemble in blue shows balanced performance with slightly lower
computational efficiency (0.61) but strong accuracy (0.87). WGCNA in green demonstrates
exceptional biological relevance (0.92) and interpretability (0.94) but moderate
computational speed (0.52). Hierarchical in orange and K-means in purple show weaker
performance in advanced metrics but excel in speed (0.88 and 0.91).

Surrounding radar are four panels examining specific dimensions. Upper left
displays ROC curves for five algorithms across three diseases, showing AUC values and
95% confidence intervals. Upper right presents stacked bar chart decomposing costs into
preprocessing, training, and evaluation phases. Lower left illustrates heatmap of pathway
enrichment significance (negative log10 FDR) for top pathways. Lower right shows scatter
plots correlating predicted probabilities with actual outcomes. Complete figure spans 12
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by 10 inches with 300 dpi rendering, employing professional color scheme ensuring
colorblind accessibility. Statistical markers indicate pairwise differences with asterisks
denoting p-values below 0.05, 0.01, and 0.001.

4.1.3. Robustness Testing Under Different Data Conditions

Robustness analysis evaluated algorithm stability under challenging scenarios.
Sample size sensitivity subsampled datasets to 50%, 75%, and 90%, retraining algorithms
and measuring degradation. Graph neural networks maintained AUC above 0.80 with 50%
subsampling, while hierarchical dropped to 0.69. Feature noise robustness assessed
adding Gaussian noise with increasing standard deviations. At noise level o = 0.3, graph
neural networks retained AUC of 0.82 versus 0.71 for hierarchical. Missing data tolerance
examined randomly removing 10%, 20%, and 30% of measurements. Class imbalance
scenarios varied case-control ratio from 1:1 to 1:3. Batch effect robustness evaluated
performance when training and testing originated from different batches.

4.2. Molecular Pathway Identification Accuracy and Biological Relevance
4.2.1. Key Pathways Identified by Different Algorithms

Pathway enrichment analysis revealed both consensus and algorithm-specific
discoveries. Pathway identification performance was evaluated using two
complementary criteria: (1) enrichment significance quantified by hypergeometric test p-
values with false discovery rate (FDR) correction, and (2) the total number of pathways
detected under an FDR < 0.05 threshold; we did not compute a single “pathway
identification AUC,” as pathway discovery does not constitute a binary classification task
with complete ground-truth labels. Across all algorithms, JAK-STAT signaling was
consistently identified as significantly dysregulated in rheumatoid arthritis, with
corrected p-values ranging from 1.2x1078 to 3.4x10712, reflecting its central role in cytokine-
mediated inflammatory responses, while TNF signaling likewise emerged as a top-ranked
pathway across methods (p-values 2.1x10-° to 8.7x10-1), in agreement with the established
clinical efficacy of anti-TNF therapies. Notably, graph neural networks uniquely detected
the ferroptosis pathway with high significance (p = 4.3x1077), highlighting a recently
recognized iron-dependent cell death mechanism, whereas WGCNA demonstrated
sensitivity to more subtle biological changes by identifying oxidative phosphorylation (p
= 7.8x107%), which was not detected by clustering-based approaches. In terms of breadth,
ensemble methods identified the largest number of significant pathways (23), compared
with hierarchical clustering (17), K-means (15), WGCNA (19), and graph neural networks
(21), and the top ten enriched pathways identified by each algorithm are summarized in
Table 5.

Table 5. Top Ten Enriched Pathways in Rheumatoid Arthritis Identified by Different Algorithms.
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4.2.2. Consistency Analysis Across Methods

Pathway consistency quantified agreement among algorithms regarding molecular
mechanisms. Jaccard similarity coefficient measured pathway overlap between algorithm
pairs, computed as intersection divided by union for top 50 pathways. Graph neural
networks and ensemble methods showed highest consistency (Jaccard = 0.67). WGCNA
exhibited moderate consistency with graph neural networks (Jaccard = 0.54) and ensemble
(Jaccard =0.51). Clustering approaches showed lower consistency with advanced methods.
Cross-disease consistency assessed whether algorithms identified similar pathways
across rheumatoid arthritis, systemic lupus, and inflammatory bowel disease. Immune
pathways including cytokine signaling appeared across diseases, supporting shared
inflammatory mechanisms. Stability analysis measured reproducibility across 100
bootstrap iterations (Figure 3).
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Figure 3. Biological Pathway Network and Gene-Level Validation Analysis.

Integrated pathway network visualization combines topology analysis with
experimental validation across multiple dimensions. Main network displays 127
biological pathways as nodes positioned using force-directed layout, where size
represents pathway enrichment significance (ranging 100 to 1000 pixels diameter
corresponding to p-values 10 to 107°) and color indicates algorithm detection
consistency (gradient from light yellow for single-algorithm detection to deep red for all-
algorithm consensus). Edges connect pathways sharing significant gene overlap (Jaccard
exceeding 0.3). Network exhibits clear modular structure with three communities
corresponding to inflammatory signaling, metabolic processes, and immune cell
activation.

Detailed inset zooms into inflammatory signaling module, highlighting JAK-STAT,
TNF, and NF-kB pathways forming densely interconnected subnetwork. Individual genes
are small circular nodes within pathways, colored by fold change in rheumatoid arthritis
patients versus controls (blue for downregulated, red for upregulated, intensity
corresponding to log2 fold change from -3 to +3). Key hub genes including STAT1, STATS3,
NFKB1, and TNF are labeled with star symbols. Secondary panel displays heatmaps of
pathway activity scores across individual patient samples. Lower portion presents
validation analyses comparing computationally identified biomarkers with independent
experimental data. Venn diagram illustrates overlap between genes identified by each
algorithm and genes previously reported in Rheumatoid Arthritis Gene Database.
Adjacent bar charts quantify proportion of identified genes with supporting evidence
from genome-wide association studies, protein-level validation, and clinical trial targets.

4.3. Biomarker Discovery and Clinical Validation Results
4.3.1. Identified Biomarker Candidates and Their Characteristics

Biomarker discovery prioritized genes with high discriminative power and
biological plausibility. Feature importance ranking identified influential genes for
classification. Graph neural networks selected STAT1 as top biomarker for rheumatoid
arthritis based on node importance from gradient-based attribution. STAT1 encodes a
transcription factor mediating interferon and cytokine signaling, with expression elevated
3.2-fold in disease. Second-ranked IL6R encodes interleukin-6 receptor, showing 2.8-fold
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upregulation and serving as therapeutic target. TNF emerged third-ranked, with 2.3-fold
increased expression. WGCNA identified CXCL10 within highly disease-associated
module (correlation r = 0.78, p = 2.1x107%), encoding a chemokine attracting T cells.
Ensemble methods selected 15-gene signature achieving AUC of 0.831 in cross-validation.

4.3.2. Comparison with Known Disease-Associated Markers

Validation against established markers assessed whether computational discovery
recapitulated prior knowledge. For rheumatoid arthritis, we compiled a reference set of
347 genes from multiple sources including the DisGeNET database (filtering for RA
associations with score >0.4), literature-curated genes from PubMed searches, and genes
reported in meta-analyses of GWAS studies. Graph neural networks identified 67
matching genes (19% of identified), WGCNA found 58 matches (21%), ensemble 71
matches (18%), hierarchical 42 matches (15%), and K-means 38 matches (14%). Genome-
wide association study validation examined overlap with 101 susceptibility loci. Graph
neural networks identified genes near 34 GWAS loci, significantly exceeding random
expectation (p = 3.2x107 by hypergeometric test). Protein-level validation utilized
published proteomic studies. Among 23 proteins with documented associations,
computational transcriptomics identified corresponding genes for 18 proteins when using
graph neural networks (78% concordance).

4.3.3. Predictive Performance for Disease Diagnosis and Prognosis

Clinical utility assessment evaluated biomarker performance in diagnostic and
prognostic applications. Diagnostic models using top 20 biomarkers from each algorithm
distinguished cases from controls. Graph neural network biomarkers achieved sensitivity
of 0.841 and specificity of 0.879 in external validation, corresponding to positive predictive
value of 0.862 and negative predictive value of 0.865. Ensemble biomarkers attained
sensitivity of 0.826 and specificity of 0.863. Diagnostic odds ratio reached 95.3 for graph
neural networks, 78.7 for ensemble, 58.4 for WGCNA, 34.2 for hierarchical, and 27.6 for
K-means. Prognostic modeling predicted treatment response and disease progression
over 12-month follow-up. Graph neural network biomarkers predicted treatment
response with AUC of 0.763.

5. Discussion, Limitations and Conclusions
5.1. Key Findings and Practical Insights
5.1.1. Optimal Algorithm Selection Guidelines for Different Scenarios

Comparative analysis establishes evidence-based recommendations for algorithm
selection tailored to specific contexts. Graph neural networks emerge as preferred choice
when predictive accuracy is paramount, computational resources are adequate, and
graph-structured networks can be constructed. These methods excel in scenarios with
sufficient sample sizes exceeding 150 cases, making them well-suited for multi-center
studies. Ensemble methods provide excellent alternatives when maximizing robustness is
prioritized, as they combine strengths of multiple learners. Weighted gene co-expression
analysis represents optimal selection when biological interpretability and module insights
are priorities. Traditional clustering methods remain valuable for preliminary analyses,
rapid prototyping, and scenarios with severe computational constraints.

5.1.2. Trade-offs Between Accuracy, Interpretability and Computational Cost

Algorithm selection necessitates consideration of multidimensional trade-offs that
cannot be simultaneously optimized. Accuracy-interpretability trade-off manifests
prominently. Graph neural networks achieve superior predictive performance but
operate as complex black boxes. WGCNA sacrifices modest accuracy to deliver highly
interpretable network modules corresponding to biological pathways. Accuracy-
efficiency trade-off creates tension between computational demands and performance
gains. Advanced methods require 5-8 times longer training but deliver absolute accuracy
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improvements of 8-12 percentage points. This favors sophisticated methods for clinical
deployment where accuracy impacts patient outcomes, while simpler methods suit
exploratory research with frequent iterations.

5.2. Limitations and Future Research Directions
5.2.1. Current Study Limitations and Potential Biases

Several limitations constrain generalizability. Analysis focused exclusively on
transcriptomic data, omitting other molecular layers including proteomics, metabolomics,
and epigenomics providing complementary perspectives. Integration of multi-omics data
represents a critical future direction that may substantially improve biomarker accuracy.
Sample diversity limitations affect external validity, as datasets predominantly comprised
European ancestry populations with limited representation of African, Asian, and
Hispanic ethnicities. Study evaluated algorithms under controlled research conditions
using carefully curated datasets, potentially overestimating performance in real-world
clinical settings with messier data, missing values, and variable quality.

5.2.2. Emerging Trends in Foundation Models and Multimodal Integration

Foundation models pre-trained on massive biological datasets represent a
transformative paradigm shift with potential to revolutionize biomarker discovery. These
models learn generalizable representations of biological sequences, structures, and
networks that can be fine-tuned for specific diseases with limited labeled data. Single-cell
foundation models trained on tens of millions of cells have demonstrated remarkable
zero-shot and few-shot learning capabilities. Multimodal integration combining diverse
data types including imaging, clinical records, genomics, and wearable sensor data offers
comprehensive disease characterization exceeding single-modality approaches. Graph-
based frameworks provide natural architectures for representing heterogeneous data.

5.2.3. Towards Causal Inference in Molecular Pathway Analysis

Current machine learning approaches predominantly identify correlational
associations between genes and disease states, limiting mechanistic insights and
therapeutic target prioritization. Causal inference methods aim to distinguish causative
factors from mere biomarkers, enabling more rational intervention strategies. Mendelian
randomization leverages genetic variants as instrumental variables to infer causal
relationships between molecular traits and clinical outcomes. Integration of Mendelian
randomization with machine learning pathway analysis could identify causal pathways
rather than merely associated ones. Causal discovery algorithms infer directed acyclic
graphs representing causal relationships. Perturbation experiments including CRISPR
knockout screens provide gold-standard evidence for causal relationships.

5.3. Concluding Remarks and Impact
5.3.1. Summary of Main Contributions

This study provides the most comprehensive comparison of machine learning
approaches for molecular pathway identification and biomarker discovery in immune-
related diseases to date. Key contributions include establishment of rigorous evaluation
framework incorporating multiple performance dimensions, systematic comparison of
five algorithms across three diseases and multiple datasets, identification of optimal
algorithm selection strategies for different scenarios, and discovery of novel biomarker
candidates with clinical translation potential. Finding that graph neural networks
substantially outperform traditional clustering methods advances the field toward
adoption of more sophisticated analytical approaches. Demonstration that ensemble
methods provide robust alternatives applicable across diverse data conditions offers
practical guidance for researchers.
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5.3.2. Implications for Personalized Medicine and Clinical Practice

Transition from one-size-fits-all medicine to precision approaches tailored to
individual patient characteristics represents a fundamental transformation in healthcare
delivery. Machine learning-enabled biomarker discovery accelerates this transition by
identifying molecular signatures that stratify patients, predict treatment responses, and
guide therapeutic selection. Biomarkers and pathways discovered in this study provide
concrete targets for personalized diagnostic development. Superior accuracy of graph
neural network approaches suggests clinical laboratories and diagnostic companies
should invest in developing graph-based analytical pipelines for transcriptomic testing.
Identification of patient subgroups with distinct pathway activation patterns supports
precision medicine initiatives matching patients to targeted therapies. Discovery of novel
therapeutic targets including underexplored genes and pathways creates opportunities
for pharmaceutical development addressing unmet medical needs.

Informed Consent Statement: This research analyzed only de-identified, publicly available datasets.
According to our institutional policy, analyses of public, anonymized data do not constitute human
subjects research and do not require IRB approval.

Data Availability Statement: All datasets used in this study are publicly available from GEO under
the accession numbers reported in the manuscript (e.g., GSE55235 for training and GSE93272 for
external validation). Access and reuse follow the licensing terms posted by the data providers.

Appendix A

RNA-seq Processing (Unified Route): Raw RNA-seq (FASTQ) reads were quality-
controlled with FastQC, trimmed using Trim Galore, aligned to GRCh38 with STAR (2-
pass), quantified at the gene level using featureCounts, and normalized with DESeq2
variance-stabilizing transformation (VST). Batch effects were assessed with PCA and
corrected when necessary with ComBat (sva).

References

1. D.Yang, X. Peng, S. Zheng, and S. Peng, "Deep learning-based prediction of autoimmune diseases," Scientific Reports, vol. 15,
no. 1, p. 4576, 2025. doi: 10.1038/s41598-025-88477-4

2. G.Muzio, L. O'Bray, and K. Borgwardt, "Biological network analysis with deep learning," Briefings in bioinformatics, vol. 22, no.
2, pp. 1515-1530, 2021.

3. M. Castresana-Aguirre, D. Guala, and E. L. Sonnhammer, "Benefits and challenges of Pre-clustered network-based pathway
analysis," Frontiers in Genetics, vol. 13, p. 855766, 2022.

4. S.Ojha, S. Anand, and B. Kanisha, "Prediction of rheumatoid arthritis using deep learning techniques," In 2023 2nd International
Conference on  Applied  Artificial ~ Intelligence and  Computing (ICAAIC), May, 2023, pp. 357-362. doi:
10.1109/icaaic56838.2023.10141208

5. Y. Shi, M. Zhou, C. Chang, P. Jiang, K. Wei, J. Zhao, and D. He, "Advancing precision rheumatology: applications of machine
learning for rheumatoid arthritis management," Frontiers in Immunology, vol. 15, p. 1409555, 2024. doi:
10.3389/fimmu.2024.1409555

6. M. G. Danieli, S. Brunetto, L. Gammeri, D. Palmeri, I. Claudi, Y. Shoenfeld, and S. Gangemi, "Machine learning application in
autoimmune diseases: State of art and future prospectives," Autoimmunity reviews, vol. 23, no. 2, p. 103496, 2024. doi:
10.1016/j.autrev.2023.103496

7. Z.DongandR. Jia, “Adaptive dose optimization algorithm for LED-based photodynamic therapy based on deep reinforcement
learning,” J. Sustain., Policy, Pract., vol. 1, no. 3, pp. 144-155, 2025.

8. B.Liang, H. Gong, L. Lu, and J. Xu, "Risk stratification and pathway analysis based on graph neural network and interpretable
algorithm," BMC bioinformatics, vol. 23, no. 1, p. 394, 2022. doi: 10.1186/512859-022-04950-1

9. IJamail, and A. Moussa, "Current state-of-the-art of clustering methods for gene expression data with RNA-Seq," In Applications
of Pattern Recognition. IntechOpen., 2020. doi: 10.5772/intechopen.94069

10. M. Xu, H. Zhou, P. Huy, Y. Pan, S. Wang, L. Liu, and X. Liu, "Identification and validation of immune and oxidative stress-related
diagnostic markers for diabetic nephropathy by WGCNA and machine learning," Frontiers in immunology, vol. 14, p. 1084531,
2023. doi: 10.3389/fimmu.2023.1084531

11. Z. Dong, “Adaptive UV-C LED dosage prediction and optimization using neural networks under variable environmental

conditions in healthcare settings,” . Adv. Comput. Syst., vol. 4, no. 3, pp. 47-56, 2024.

62



Journal of Science, Innovation & Social Impact Vol. 2 No. 1 (2026)

12.

13.

14.

15.

16.

17.

18.

I. S. Forrest, B. O. Petrazzini, Duffy, J. K. Park, A. J. O'Neal, D. M. Jordan, and R. Do, "A machine learning model identifies
patients in need of autoimmune disease testing using electronic health records,” Nature communications, vol. 14, no. 1, p. 2385,
2023.

I. S. Stafford, M. Kellermann, E. Mossotto, R. M. Beattie, B. D. MacArthur, and S. Ennis, "A systematic review of the applications
of artificial intelligence and machine learning in autoimmune diseases," NP] digital medicine, vol. 3, no. 1, p. 30, 2020. doi:
10.1038/s41746-020-0229-3

K. Shi, W. Lin, and X. M. Zhao, "Identifying molecular biomarkers for diseases with machine learning based on integrative
omics," IEEE/ACM transactions on computational biology and bioinformatics, vol. 18, no. 6, pp. 2514-2525, 2020.

Y. Ma, J. Chen, T. Wang, L. Zhang, X. Xu, Y. Qiu, and W. Huang, "Accurate machine learning model to diagnose chronic
autoimmune diseases utilizing information from B cells and monocytes," Frontiers in immunology, vol. 13, p. 870531, 2022. doi:
10.3389/fimmu.2022.870531

Y. Yang, Y. Liu, Y. Chen, D. Luo, K. Xu, and L. Zhang, "Artificial intelligence for predicting treatment responses in autoimmune
rheumatic diseases: advancements, challenges, and future perspectives,” Frontiers in Immunology, vol. 15, p. 1477130, 2024. doi:
10.3389/fimmu.2024.1477130

Z.Dong and F. Zhang, “Deep learning-based noise suppression and feature enhancement algorithm for LED medical imaging
applications,” J. Sci., Innov. Soc. Impact, vol. 1, no. 1, pp. 9-18, 2025.

S. Sundaramurthy, C. Saravanabhavan, and P. Kshirsagar, "Prediction and classification of rheumatoid arthritis using ensemble
machine learning approaches,” In 2020 International Conference on Decision Aid Sciences and Application (DASA), November, 2020,
pp- 17-21.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s)
disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or
products mentioned in the content.

63



	1. Introduction
	1.1. Background and Significance of Machine Learning in Immune Disease Research
	1.1.1. The Growing Challenge of Immune-Related Disease Diagnosis and Treatment
	1.1.2. Role of Molecular Pathway Analysis in Understanding Disease Mechanisms
	1.1.3. Emergence of Machine Learning as a Transformative Tool

	1.2. Current Challenges in Molecular Pathway Identification and Biomarker Discovery
	1.2.1. High-Dimensional Transcriptomic Data Complexity
	1.2.2. Integration of Clinical Phenotype Information with Molecular Data

	1.3. Research Objectives and Main Contributions
	1.3.1. Comparative Evaluation Framework Design
	1.3.2. Assessment of Algorithm Performance Across Multiple Dimensions
	1.3.3. Practical Guidelines for Algorithm Selection


	2. Related Work and Literature Review
	2.1. Machine Learning Applications in Immune Disease Research
	2.1.1. Supervised Learning Approaches for Disease Classification
	2.1.2. Unsupervised Learning for Patient Stratification
	2.1.3. Recent Advances in Deep Learning and Graph Neural Networks

	2.2. Molecular Pathway Analysis Techniques and Tools
	2.2.1. Traditional Statistical Methods for Pathway Enrichment
	2.2.2. Network-Based Pathway Analysis Approaches

	2.3. Biomarker Discovery Methodologies in Transcriptomics
	2.3.1. Feature Selection and Dimensionality Reduction Techniques
	2.3.2. Validation Frameworks and Reproducibility Challenges
	2.3.3. Clinical Translation of Computational Biomarkers


	3. Methodology and Experimental Design
	3.1. Data Collection, Preprocessing and Quality Control
	3.1.1. Public Transcriptomic Datasets Selection and Characteristics
	3.1.2. Data Normalization and Batch Effect Correction
	3.1.3. Integration of Clinical Phenotype Information

	3.2. Machine Learning Algorithm Selection and Implementation
	3.2.1. Clustering-Based Approaches for Immune Cell Subpopulation Identification
	3.2.2. Network Analysis Methods for Pathway Reconstruction

	3.3. Comprehensive Evaluation Framework and Validation Strategy
	3.3.1. Performance Metrics Definition
	3.3.2. Cross-Validation and Independent Testing Protocols
	3.3.3. Statistical Significance Testing


	4. Experimental Results and Comparative Analysis
	4.1. Algorithm Performance Comparison Across Multiple Datasets
	4.1.1. Quantitative Performance Metrics Analysis
	4.1.2. Computational Efficiency and Scalability Assessment
	4.1.3. Robustness Testing Under Different Data Conditions

	4.2. Molecular Pathway Identification Accuracy and Biological Relevance
	4.2.1. Key Pathways Identified by Different Algorithms
	4.2.2. Consistency Analysis Across Methods

	4.3. Biomarker Discovery and Clinical Validation Results
	4.3.1. Identified Biomarker Candidates and Their Characteristics
	4.3.2. Comparison with Known Disease-Associated Markers
	4.3.3. Predictive Performance for Disease Diagnosis and Prognosis


	5. Discussion, Limitations and Conclusions
	5.1. Key Findings and Practical Insights
	5.1.1. Optimal Algorithm Selection Guidelines for Different Scenarios
	5.1.2. Trade-offs Between Accuracy, Interpretability and Computational Cost

	5.2. Limitations and Future Research Directions
	5.2.1. Current Study Limitations and Potential Biases
	5.2.2. Emerging Trends in Foundation Models and Multimodal Integration
	5.2.3. Towards Causal Inference in Molecular Pathway Analysis

	5.3. Concluding Remarks and Impact
	5.3.1. Summary of Main Contributions
	5.3.2. Implications for Personalized Medicine and Clinical Practice


	Appendix A
	References

