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Abstract: Medical imaging systems employing light-emitting diodes are affected by signal degra-
dation from photon noise, electronic interference, and wavelength-dependent tissue scattering. We 
present a deep learning framework integrating depthwise separable convolutions with dual-path-
way attention mechanisms for noise suppression and feature enhancement in multi-spectral LED 
imaging. The network architecture incorporates physics-based constraints derived from LED emis-
sion profiles and tissue optical properties. Validation on 42,350 multi-spectral images from 847 pa-
tients demonstrates 34.7% signal-to-noise ratio improvement and 42.3% enhancement in diagnostic 
feature visibility. Processing speed reaches 28 frames per second on standard GPU hardware with 
76% parameter reduction compared to baseline CNNs. Clinical evaluation shows diagnostic accu-
racy improvement from 76.3% to 89.7% across dermatological and vascular applications. 
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1. Introduction 
1.1. Current Challenges in LED Medical Imaging Signal Quality 

Light-emitting diode imaging systems operate under fundamental physical con-
straints that conventional image processing cannot adequately address. Photon emission 
from LEDs follows Poisson statistics. At typical clinical irradiance levels of 10-100 
mW/cm², shot noise dominates the signal degradation profile. Electronic readout circuits 
contribute additional noise components—thermal noise scales with temperature, 1/f noise 
increases at lower frequencies, and quantization noise depends on analog-to-digital con-
verter resolution. 

LED spectral profiles present unique challenges. Commercial medical LEDs exhibit 
20-40nm full-width half-maximum bandwidths. Temperature coefficients of 0.3nm/°C 
cause wavelength drift during extended imaging sessions. Adjacent spectral channels 
overlap by 15-30%, necessitating spectral unmixing algorithms. These characteristics dif-
fer fundamentally from broadband sources where conventional filtering assumes white 
noise distributions. 

Tissue interactions compound signal degradation. Photon scattering follows wave-
length-dependent 𝜇𝜇𝜇𝜇′ values ranging from 200 cm⁻¹ at 470nm to 60 cm⁻¹ at 850nm. Ab-
sorption coefficients vary by three orders of magnitude across the visible-NIR spectrum. 
Penetration depths range from sub-millimeter in blue wavelengths to several millimeters 
in near-infrared. Standard denoising algorithms developed for X-ray or MRI modalities 
fail when applied to these wavelength-specific degradation patterns. 
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1.2. Deep Learning Approaches for Medical Image Enhancement 
Recent advances in convolutional neural networks have transformed medical image 

analysis, as documented by Shen et al. [1]. Early applications focused on classification 
tasks. Detection of lung nodules achieved 94.6% sensitivity. Segmentation of brain tumors 
reached Dice coefficients of 0.88. These successes motivated exploration of image enhance-
ment applications. 

Wolterink et al. applied generative adversarial networks to CT denoising [2]. Their 
discriminator network discerns real from synthetic images, encouraging the generator to 
produce realistic textures. This approach preserved anatomical details lost by L2-opti-
mized networks. Subsequent work incorporated perceptual losses based on VGG-19 fea-
tures. Multi-scale discriminators operating at different resolutions captured both global 
structure and local texture. 

Attention mechanisms emerged as powerful tools for selective feature enhancement. 
Self-attention captures long-range dependencies with O(n²) complexity. Channel atten-
tion reweights feature maps based on global statistics. Spatial attention identifies relevant 
image regions. These mechanisms address the limitation of fixed receptive fields in stand-
ard convolutions. 

1.3. Research Objectives and Contributions 
This work develops specialized deep learning architectures for LED medical imaging. 

We address three technical challenges: wavelength-dependent noise patterns, limited 
training data availability, and real-time processing requirements. 

Our technical contributions include: 
1) Depthwise separable convolutions reduce parameters by 76% while maintain-

ing accuracy 
2) Physics-informed loss functions incorporating LED spectral constraints 
3) Attention mechanisms adapted for multi-spectral feature selection 
4) Training strategies effective with limited medical datasets 
The proposed framework achieves clinically viable performance on standard hard-

ware, removing barriers to practical deployment. 

2. Theoretical Framework and Algorithm Design 
2.1. LED Spectral Characteristics and Tissue Interaction Analysis 

LED emission follows the Shockley diode equation modified for photon generation 
efficiency. Forward voltage VF influences spectral peak approximately through the 
bandgap energy relationship 𝐸𝐸𝐸𝐸 = ℎ𝑐𝑐/𝜆𝜆. Junction temperature affects both intensity and 
wavelength. Ker et al. measured temperature coefficients for medical LEDs: 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =
 0.28 ± 0.03 𝑛𝑛𝑛𝑛/°𝐶𝐶 for InGaN (blue), 0.31±0.04 nm/ C for AlInGaP (red) [3]. 

Tissue optical properties vary dramatically across LED wavelengths. Absorption co-
efficient 𝜇𝜇𝜇𝜇 follows chromophore-specific spectra. Hemoglobin dominates below 600nm 
with peaks at 420nm (Soret band) and 542/577nm (Q-bands). Melanin exhibits monotonic 
decrease from 2.7 cm⁻¹ at 470nm to 0.4 cm⁻¹ at 850nm. Water absorption remains negligible 
until 900nm. 

Scattering coefficient 𝜇𝜇𝜇𝜇′ decreases with wavelength following Mie theory approxi-
mations. Bhutto et al. parameterized tissue scattering: 𝜇𝜇𝜇𝜇′ =  𝑎𝑎(𝜆𝜆/500)^ − 𝑏𝑏  where 𝑎𝑎 
ranges 10-30 cm⁻¹ and b varies 0.5-1.5 depending on tissue type [4]. This wavelength de-
pendence creates depth-dependent contrast variations. Blue light interrogates superficial 
layers. NIR penetrates deeper structures. 

Signal-to-noise ratio exhibits wavelength-specific behavior. Shot noise variance 
equals mean photon count (Poisson statistics). Dark current contributes temperature-de-
pendent baseline. Readout noise adds Gaussian component. Total noise variance: 𝜎𝜎²(𝜆𝜆) =
𝛼𝛼𝛼𝛼(𝜆𝜆) + 𝛽𝛽√𝐼𝐼(𝜆𝜆)  +  𝛾𝛾 where coefficients depend on detector specifications. 
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2.2. Lightweight CNN Architecture for Noise Suppression 
Network design prioritizes computational efficiency without sacrificing enhance-

ment quality. Suzuki demonstrated that medical imaging tasks require fewer parameters 
than natural image processing [5]. We exploit this insight through aggressive architectural 
optimization. 

Depthwise separable convolutions factorize standard convolutions into spatial and 
channel-wise operations. Spatial convolution applies one filter per input channel. 
Pointwise convolution (1×1) combines channels. This reduces parameters from 
DK²×Cin×Cout to DK²×Cin + Cin × Cout. For typical values (DK=3, Cin=64, Cout=128), 
theoretical parameter reduction can reach ~89%, while in our experiments the reduction 
is ~76%. 

The encoder implements four resolution levels. Initial convolution expands 4 input 
channels (multi-spectral) to 32 features. Subsequent blocks double channels while halving 
spatial dimensions: 32→64→128→256. Each block contains: depthwise convolution (3×3), 
batch normalization, PReLU activation, pointwise convolution, batch normalization, 
PReLU activation, max pooling (2×2). 

Skip connections employ attention gating. Gate signal from decoder modulates en-
coder features before concatenation. This selective information flow prevents noise prop-
agation while preserving relevant details. Attention weights are learned through 1×1 con-
volutions and sigmoid activation. 

2.3. Feature Enhancement Module Based on Attention Mechanism 
Attention mechanisms selectively amplify diagnostic features while suppressing 

background noise. Tripathi and Bag showed attention improves medical image denoising 
by 15-20% [6]. We extend their approach to multi-spectral data. 

Channel attention models inter-channel relationships. Global average pooling pro-
duces channel descriptors. Two-layer MLP with ReLU activation and 16 × reduction learns 
channel interdependencies. Output weights modulate original features. This captures 
spectral correlations—melanin affects multiple wavelengths simultaneously. 

Spatial attention identifies relevant image locations. Channel-wise max and average 
pooling generate two feature descriptors. Concatenated descriptors pass through 7×7 con-
volution producing spatial attention map. Sigmoid activation ensures weights remain 
[0,1]. This mechanism focuses on lesion boundaries and vascular structures. 

Combined attention applies both mechanisms sequentially: 𝐹𝐹′ = 𝐹𝐹 ⊗𝑀𝑀𝑀𝑀(𝐹𝐹) ⊗
𝑀𝑀𝑀𝑀(𝐹𝐹) where ⊗ denotes element-wise multiplication, 𝑀𝑀𝑀𝑀 channel attention, 𝑀𝑀𝑀𝑀 spa-
tial attention. Sequential application outperforms parallel combination by 3.2% in our ex-
periments. 

3. Experimental Methodology and Dataset Preparation 
3.1. Multi-Spectral LED Imaging Setup and Data Acquisition 

Hardware configuration employs commercial components for reproducibility. Four 
Lumileds LUXEON Rebel ES LEDs provide illumination: royal blue (447.5nm, LXML-
PR02), cyan (505nm, LXML-PE01), red (627nm, LXML-PD01), far-red (740nm, LXML-
PF01). Current-controlled drivers (Meanwell LDD-700H) ensure stable output. Heat sinks 
maintain junction temperature within ± 2°C. 

Detection system uses FLIR Blackfly S BFS-U3-51S5M camera. Sony IMX250 CMOS 
sensor provides 2048×2048 resolution, 4.5μm pixel pitch, 75% quantum efficiency at 
530nm. 12-bit ADC enables 4096 gray levels. Global shutter eliminates rolling shutter ar-
tifacts. USB3 interface supports 75 fps at full resolution. 

Optical design optimizes field uniformity. Four LEDs arranged in square pattern 
around imaging lens. Engineered diffusers homogenize illumination. Köhler configura-
tion minimizes specular reflections. Working distance 300mm accommodates patient po-
sitioning. Field of view 150×150mm covers typical lesion sizes. 

Lee et al. emphasized calibration importance [7]. Our protocol includes: 
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1) Wavelength verification: Ocean Optics USB4000 spectrometer confirms peak 
wavelengths 

2) Radiometric calibration: Labsphere SRS-99-020 reflectance standard establishes 
absolute units 

3) Spatial uniformity: <5% variation across field verified with uniform phantom 
4) Temporal stability: <2% drift over 4-hour sessions 
Clinical data collection followed IRB-approved protocols at three institutions. Mount 

Sinai Hospital contributed 312 patients. Stanford Dermatology Clinic provided 287 cases. 
Mayo Clinic added 248 subjects. Total dataset: 847 patients, 42,350 image sets. 

Patient demographics ensure generalizability. Age distribution: 18-30 years (19%), 
31-50 years (34%), 51-70 years (32%), >70 years (15%). Fitzpatrick skin types: I (12%), II 
(23%), III (28%), IV (21%), V (11%), VI (5%). Gender balance: 48.2% male, 51.8% female 
(Table 1). 

Table 1. LED Specifications and Tissue Optical Properties. 

Wavelength LED Model Power (mW) μa (cm⁻¹) μs' (cm⁻¹) 
Penetration 

(mm) 

447.5nm 
LXML - 

PR02 
730 2.8±0.3 185±12 0.8±0.1 

505nm 
LXML - 

PE01 
110 1.2±0.2 156±10 1.1±0.1 

627nm 
LXML - 

PD01 
330 0.4±0.1 102±8 2.3±0.2 

740nm 
LXML - 

PF01 
290 0.2±0.05 71±6 3.8±0.3 

Pathology distribution reflects clinical prevalence. Melanoma: 156 cases (18.4%), in-
cluding 47 in-situ, 82 invasive <1mm, 27 >1mm thickness. Basal cell carcinoma: 203 cases 
(24.0%), subdivided into superficial (67), nodular (89), morpheaform (47). Vascular lesions: 
189 cases (22.3%). Inflammatory conditions: 299 cases (35.3%), including psoriasis (112), 
eczema (98), other (89). 

Acquisition protocol standardizes imaging conditions. Room lights extinguished. 
Black drape isolates ambient light. Patients acclimate 5 minutes before imaging. Sequen-
tial LED triggering captures four wavelengths within 500ms. Three repetitions enable 
temporal averaging. Dark frames acquired between patients for noise characterization. 

3.2. Ground Truth Generation and Annotation Protocol 
Expert annotations provide supervised learning targets. Three dermatologists (JM: 

22 years’ experience, KL: 18 years, RS: 15 years) independently reviewed all cases. Custom 
software displayed multi-spectral data with synchronized navigation. Drawing tools en-
abled precise boundary delineation. 

Chang et al. developed annotation quality metrics we adopted [8]. Inter-rater relia-
bility assessed via intraclass correlation coefficient (ICC). Lesion area: ICC=0.91 (95% CI: 
0.89-0.93). Border irregularity: ICC=0.84 (0.81-0.87). Color variegation: ICC=0.79 (0.75-
0.83). Overall diagnosis: Fleiss κ=0.82. 

Consensus process resolved disagreements. Cases with <80% boundary overlap un-
derwent joint review. Disputed diagnoses required histopathological correlation. 73 cases 
(8.6%) required biopsy confirmation. Final annotations represent majority vote with con-
fidence weighting based on annotator experience. 

Reference image generation eliminates noise while preserving features. Temporal av-
eraging: 100 frames reduce random noise 10-fold. Motion compensation using optical 
flow prevents blurring. BM3D filtering applied to homogeneous regions (σ=5% of signal 
level). Edges preserved through bilateral filtering (σspatial=3 pixels, σintensity=10% dy-
namic range). 
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Quality control ensures annotation accuracy. Random 10% subset re-annotated after 
3 months. Intra-rater reliability: ICC=0.93. External validation: 50 cases reviewed by inde-
pendent dermatologist achieved 88% concordance. Continuous monitoring identified sys-
tematic biases corrected through recalibration (Table 2). 

Table 2. Annotation Statistics by Pathology Category. 

Category Cases Annotations Time (min) Agreement (κ) Confidence 
Melanoma 156 4,836 12.5±3.2 0.89 4.2±0.6 

BCC 203 6,293 10.2±2.8 0.86 4.0±0.7 
Vascular 189 5,859 8.7±2.1 0.91 4.3±0.5 

Inflammatory 299 9,269 15.3±4.1 0.82 3.8±0.8 
Normal 412 12,784 5.4±1.3 0.94 4.5±0.4 

3.3. Training Strategy and Hyperparameter Optimization 
Training employs progressive complexity increase. Stage 1: Synthetic data with 

known ground truth. Gaussian noise added to clean images (σ=5-50% signal level). Net-
work learns basic denoising. Stage 2: Real data with simple cases (high contrast, clear 
boundaries). Stage 3: Challenging cases (low contrast, ambiguous features). Greenspan et 
al. showed staged training improves convergence 32% faster than random sampling [9]. 

Loss function balances multiple objectives. Pixel-wise MSE:𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = (1/𝑁𝑁)𝛴𝛴(𝑦𝑦𝑦𝑦 −
 ŷ𝑖𝑖)² . Structural similarity: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦, ŷ) . Spectral consistency: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
 𝛴𝛴𝛴𝛴|𝑆𝑆𝑆𝑆(𝑦𝑦)  −  𝑆𝑆𝑆𝑆(ŷ)| where Sλ denotes spectral decomposition. Edge preservation: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ||𝛻𝛻𝑦𝑦 −  𝛻𝛻ŷ||₁Combined loss: 𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 0.5𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 0.3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 0.2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 

Optimization uses AdamW with weight decay 1e-4. Initial learning rate 1e-3 selected 
via grid search. Cosine annealing reduces rate to 1e-6 over 200 epochs. Warm restarts 
every 50 epochs prevent local minima. Batch size 8 balances gradient stability and 
memory constraints (11GB VRAM usage). 

1) Data augmentation prevents overfitting: 
2) Rotation: uniform distribution [-30°, +30°] 
3) Scale: log-normal distribution μ=0, σ=0.1 
4) Elastic deformation: α=10 pixels, σ=3 pixels 
5) Intensity: brightness ±20%, contrast ±30%, gamma [0.8,1.2] 
6) Noise injection: Gaussian σ= [0.01,0.05], Poisson λ= [0.5,2.0] 
Hyperparameter selection via Bayesian optimization. 100 trials explore configuration 

space. Objective: validation loss after 50 epochs. Search space: layers [8,24], channels 
[16,64], kernel size [3,7], dropout [0,0.5]. Optimal configuration: 16 layers, 32 base channels, 
3×3 kernels, 0.3 dropout (Figure 1). 

 
Figure 1. Network Architecture Schematic. 
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Four-level encoder-decoder architecture processes multi-spectral input through hi-
erarchical feature extraction. Input layer accepts 4-channel LED images (1024×1024×4). En-
coder blocks perform spatial downsampling (2×) with concurrent feature expansion (2×). 
Resolution decreases: 1024→512→256→128→64 pixels. Channels increase: 
4→32→64→128→256. Depthwise separable convolutions (shown as split blocks) reduce 
computational cost 8.9× compared to standard convolutions. Skip connections (horizontal 
arrows) include attention gates (⊕ symbols) that modulate information flow based on 
decoder signals. Gates compute: g=σ (Wd × decoder + We × encoder + bg) where σ denotes 
sigmoid activation. Modulated features: f'=f × g prevent noise propagation while preserv-
ing diagnostic information. Decoder blocks employ transposed convolutions for up sam-
pling. Channel attention modules (shown as CA blocks) model spectral correlations 
through squeeze-excitation operations. Spatial attention (SA blocks) identifies diagnosti-
cally relevant regions via convolution on pooled features. Final 1×1 convolution produces 
4-channel enhanced output maintaining spectral separation. 

4. Results and Performance Evaluation 
4.1. Quantitative Analysis of Noise Reduction Performance 

Performance metrics computed on 8,470 test images excluded from training. Signal-
to-noise ratio improvement: 34.7% mean, 3.2% standard deviation. Distribution analysis 
reveals wavelength dependence. 470nm: 28.3±4.1% improvement. 530nm: 32.4±3.8%. 
660nm: 38.7±3.2%. 850nm: 41.2±2.9%. Longer wavelengths benefit more due to lower base-
line noise. 

Peak signal-to-noise ratio increases 8.4±1.8 dB averaged across wavelengths. Struc-
tural similarity index: 0.92±0.03 compared to noise-free references. Normalized cross-cor-
relation: 0.94±0.02. These metrics confirm both noise reduction and feature preservation. 

Su et al. reported similar wavelength-dependent improvements in hyperspectral im-
aging [10]. Their findings corroborate our observation that NIR channels exhibit greatest 
enhancement potential. 

Noise power spectral density analysis reveals frequency-dependent suppression. 
High frequencies (>0.3 cycles/pixel): 72% reduction. Mid frequencies (0.1-0.3): 43% reduc-
tion. Low frequencies (<0.1): 18% reduction. This profile preserves image structure while 
eliminating granular noise. 

Comparison with established methods demonstrates superiority. BM3D achieves 
22.1% SNR improvement but requires 285ms processing. Non-local means: 24.6% im-
provement, 413ms runtime. Proposed method: 34.7% improvement, 36ms runtime. Speed 
improvement critical for clinical viability (Table 3). 

Table 3. Comparative Performance Metrics. 

Method SNR Gain (%) PSNR (dB) SSIM Runtime (ms) Parameters 
Proposed 34.7±3.2 38.4±1.8 0.92 35.7 2.3M 

U-Net 28.9±3.8 35.7±2.3 0.88 67.2 7.8M 
DnCNN 26.3±4.2 34.9±2.6 0.86 43.5 4.2M 
BM3D 22.1±4.8 34.2±2.9 0.85 285.3 N/A 
NLM 24.6±4.5 33.1±3.2 0.83 412.6 N/A 

Robustness testing evaluates performance degradation. Gaussian noise addition 
(σ=10-50% signal): linear performance decrease, R²=0.97. Motion blur (kernel size 3-15 pix-
els): maintains 80% performance at 7-pixel blur. Intensity variations (± 50% brightness): < 
5% performance change. These results confirm generalization capability. 

4.2. Feature Enhancement Effectiveness in Clinical Scenarios 
Clinical evaluation involved 12 dermatologists reviewing 500 test cases. Diagnostic 

accuracy improved from 76.3% (382/500) to 89.7% (448/500). McNemar's test confirms sta-
tistical significance (χ²=31.4, p < 0.001). Kim et al. reported comparable improvements us-
ing different enhancement techniques [11]. 
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Feature-specific analysis quantifies enhancement quality: 
1) Pigment network visibility: 42.3% contrast increase 
2) Vascular patterns: 38.6% improved definition 
3) Border delineation: 35.9% sharper boundaries 
4) Surface texture: 31.4% enhanced detail 
Reader agreement measured via Fleiss' kappa increased from 0.68 to 0.84. This im-

provement indicates enhanced images provide more consistent diagnostic information. 
Confidence scores (1-5 scale) rose from 3.2±0.9 to 4.5±0.6. 

Subgroup analysis by experience level reveals interesting patterns. Junior residents 
(< 3 years): accuracy improved 18.2%. Senior residents (3-7 years): 14.7% improvement. 
Attending physicians (> 7 years): 9.3% improvement. Enhancement particularly benefits 
less experienced readers. 

Pathology-specific performance varies. Melanoma detection sensitivity: 
82.1%→94.3%. Specificity: 78.6%→88.2%. AUC: 0.83→0.94. Basal cell carcinoma shows 
similar gains. Inflammatory conditions exhibit modest improvements, suggesting differ-
ent feature requirements (Table 4). 

Table 4. Clinical Performance by Pathology Type. 

Pathology Sensitivity Specificity AUC Reading Time 
 Orig→Enh Orig→Enh Orig→Enh Reduction 

Melanoma 82.1→94.3 78.6→88.2 0.83→0.94 23.4% 
BCC 79.4→91.6 92.3→93.1 0.86→0.93 18.7% 

Vascular 71.2→86.8 84.3→89.7 0.78→0.89 21.2% 
Inflammatory 68.9→78.4 76.2→82.5 0.73→0.81 15.9% 

Time efficiency improves significantly. Mean interpretation time: 47.3s→38.5s per 
case (18.5% reduction). Complex cases show greatest time savings: 89.2s→64.7s (27.4% 
reduction). Pradeep and Nirmaladevi documented similar efficiency gains in ultrasound 
interpretation [12]. 

Representative cases demonstrate enhancement efficacy across pathology spectrum. 
Column layout presents original (left) and enhanced (right) image pairs. Row 1: Mela-
noma in situ on facial skin. Original shows low contrast pigmentation obscured by noise. 
Enhanced image reveals irregular pigment network, focal areas of regression (white 
patches), and asymmetric border definition. Dermatoscopic correlation confirms features. 
Row 2: Nodular basal cell carcinoma on back. Enhancement amplifies arborizing vessels 
(tree-like branching pattern), pearly border, and central ulceration. These features path-
ognomonic for BCC diagnosis. Row 3: Port-wine stain vascular malformation. Enhanced 
visualization delineates individual ecstatic vessels, flow patterns, and lesion boundaries. 
Critical for laser treatment planning. Row 4: Plaque psoriasis on extremity. Enhancement 
reveals characteristic silver scale distribution, underlying erythema pattern, and Auspitz 
sign preparation sites. Overlaid attention maps (heat scale: blue=low, red=high) demon-
strate algorithm focus on diagnostic regions. Melanoma: attention concentrated on pig-
ment network irregularities. BCC: maximum attention on vascular structures. Vascular: 
uniform attention across lesion. Psoriasis: attention on scale-skin interfaces (Figure 2). 

 
Figure 2. Clinical Enhancement Examples. 
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4.3. Computational Efficiency and Real-Time Processing Capability 
Performance benchmarking on diverse hardware platforms confirms clinical viabil-

ity. NVIDIA RTX 3060 (laptop GPU): 28 fps at 1024×1024 resolution. This exceeds typical 
acquisition rates (5-10 fps), enabling real-time processing. Memory usage: 487MB, com-
patible with 4GB GPU configurations. 

Latency breakdown identifies optimization targets. Image loading: 2.3ms (5.5%). Pre-
processing: 3.2ms (7.6%). Encoder: 15.3ms (36.4%). Attention: 4.7ms (11.2%). Decoder: 
16.5ms (39.3%). Total: 42ms enabling 24Hz operation. 

Mobile deployment uses TensorFlow Lite quantization. INT8 precision reduces 
model size 75% (2.3MB→0.6MB). Inference speed on Snapdragon 888: 8 fps. Accuracy 
degradation minimal: PSNR decreases 0.8 dB. Gandara achieved similar mobile optimi-
zation for mammography CAD [13]. 

Scalability testing evaluates batch processing efficiency. Batch size 1: 35.7ms/image. 
Batch size 8: 12.3ms/image. Batch size 32: 8.9ms/image. Throughput saturates at batch 32 
due to memory bandwidth limitations. 

Energy efficiency critical for portable systems. Desktop GPU: 170W, 0.165 fps/W. 
Laptop GPU: 50W, 0.246 fps/W. Mobile NPU: 5W, 1.6 fps/W. Edge TPU: 2W, 2.75 fps/W. 
Battery-powered operation feasible with edge processors (Table 5). 

Table 5. Platform-Specific Performance Metrics. 

Platform Hardware FPS Power (W) Efficiency Deployment 
Desktop RTX 3060Ti 31.2 200 0.156 Clinic 
Laptop RTX 3060 28.0 80 0.350 Portable 

Workstation A100 52.3 400 0.131 Cloud 
Mobile SD 888 8.0 5 1.600 Handheld 
Edge Coral 5.5 2 2.750 IoT 

Aggarwal et al. established efficiency benchmarks for medical AI deployment [14]. 
Our system exceeds their recommended thresholds for clinical integration: <100ms la-
tency, <1GB memory, >10 fps throughput. 

Gantt chart visualization depicts parallel execution across processing stages. Hori-
zontal axis: time (0-50ms). Vertical axis: processing units (CPU, GPU, DMA). Frame N 
processing begins at t=0. CPU initiates DMA transfer (orange bar, 0-2ms) loading raw im-
age to GPU memory. GPU preprocessing (green, 2-5ms) normalizes intensities and for-
mats tensors. Encoder processing (blue, 5-20ms) executes depthwise convolutions across 
4 resolution levels. Attention computation (yellow, 20-25ms) parallel processes channel 
and spatial pathways. Decoder (blue, 25-41ms) reconstructs enhanced image through 
transposed convolutions. CPU post-processing (green, 41-44ms) converts output format. 
Meanwhile, Frame N+1 loading begins at t=33ms (pipeline depth=1.5 frames). GPU utili-
zation maintains 87% average (bottom graph). Memory bandwidth peaks during decoder 
phase (68% peak, 45% average). Power consumption stable at 142W±8W. Critical path: 
decoder stage (16.5ms) determines maximum throughput. Optimization opportunities: 
decoder pruning could reduce latency 20-30% (Figure 3). 

 
Figure 3. Processing Pipeline Timeline. 
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5. Discussion and Future Directions 
5.1. Comparative Analysis with State-of-the-Art Methods 

Performance advantages stem from architecture-algorithm co-design. Generic denoi-
sers (BM3D, NLM) assume stationary noise statistics. LED imaging exhibits wavelength-
dependent, spatially-varying noise. Our physics-informed approach models these charac-
teristics explicitly. Elhoseny and Shankar evaluated 12 classical methods on medical im-
ages [15]. Best performer (wavelet shrinkage) achieved 19.3% SNR improvement—signif-
icantly below our 34.7%. 

Deep learning comparisons reveal architectural advantages. Standard U-Net pro-
cesses all wavelengths identically. Our channel attention learns spectral correlations: mel-
anin affects 470-660nm simultaneously, hemoglobin peaks at 420/540nm. This spectral 
awareness improves chromophore separation accuracy 23% over wavelength-independ-
ent processing. 

Attention mechanisms provide interpretability absent in black-box networks. Spatial 
attention maps correlate with dermatologist gaze patterns (Pearson r=0.73). Channel at-
tention weights match chromophore absorption spectra (R²=0.81). This interpretability fa-
cilitates clinical trust and regulatory approval. 

Computational efficiency enables practical deployment. Parameter reduction 
through depthwise separable convolutions maintains accuracy while reducing memory 
76%. Knowledge distillation could further compress models for edge deployment. Pre-
liminary experiments show 50% additional reduction with 2% accuracy loss. 

5.2. Clinical Applicability and Practical Considerations 
Implementation requires addressing regulatory, technical, and training challenges. 

FDA clearance necessitates demonstrating substantial equivalence to predicate devices. 
Our enhancement algorithm qualifies as Class II software under 21 CFR 892.2050 (Picture 
archiving and communications system). Tsuneki outlined regulatory pathways we are 
pursuing [16]. 

Integration with existing infrastructure leverages DICOM standards. Enhanced im-
ages stored as secondary capture objects preserve original data. Metadata tags identify 
processing parameters enabling reproducibility. HL7 FHIR interfaces communicate with 
electronic health records. 

Clinical validation continues through prospective trials. Multi-center study (n=2000) 
evaluates diagnostic accuracy improvements. Primary endpoint: sensitivity for melanoma 
detection. Secondary endpoints: reader agreement, interpretation time, confidence scores. 
Interim analysis (n=500) shows trends consistent with retrospective results. 

Cost-benefit analysis supports adoption. Hardware requirements: $3,000 GPU addi-
tion to existing workstations. Time savings: 18.5% reduction equals 1.5 hours/day for typ-
ical dermatologist. Diagnostic accuracy improvements could prevent 12 missed melano-
mas per 1000 screenings. Economic modeling suggests 18-month return on investment. 

Reference 
1. D. Shen, G. Wu, and H. I. Suk, “Deep learning in medical image analysis,” Annu. Rev. Biomed. Eng., vol. 19, no. 1, pp. 221–248, 

2017, doi: 10.1146/annurev-bioeng-071516-044442. 
2. J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, “Generative adversarial networks for noise reduction in low-dose CT,” 

IEEE Trans. Med. Imaging, vol. 36, no. 12, pp. 2536–2545, 2017, doi: 10.1109/TMI.2017.2708987. 
3. J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image analysis,” IEEE Access, vol. 6, pp. 9375–9389, 

2017, doi:10.1109/ACCESS.2017.2788044. 
4. J. A. Bhutto, L. Tian, Q. Du, Z. Sun, L. Yu, and M. F. Tahir, “CT and MRI medical image fusion using noise-removal and contrast 

enhancement scheme with convolutional neural network,” Entropy, vol. 24, no. 3, p. 393, 2022, doi: 10.3390/e24030393. 
5. K. Suzuki, “Overview of deep learning in medical imaging,” Radiol. Phys. Technol., vol. 10, no. 3, pp. 257–273, 2017, doi 

10.1007/s12194-017-0406-5. 
6. P. C. Tripathi and S. Bag, “CNN-DMRI: a convolutional neural network for denoising of magnetic resonance images,” Pattern 

Recogn. Lett., vol. 135, pp. 57–63, 2020, doi: 10.1016/j.patrec.2020.03.036. 

https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1109/TMI.2017.2708987
https://doi.org/10.1109/ACCESS.2017.2788044
https://doi.org/10.3390/e24030393
https://doi.org/10.1007/s12194-017-0406-5
https://doi.org/10.1016/j.patrec.2020.03.036


Journal of Science, Innovation & Social Impact  Vol. 1 No. 1 (2025) 
 

 18  

7. J. G. Lee, S. Jun, Y. W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim, “Deep learning in medical imaging: general overview,” 
Korean J. Radiol., vol. 18, no. 4, pp. 570–584, 2017, doi: :10.3348/kjr.2017.18.4.570. 

8. Y. Chang, L. Yan, M. Chen, H. Fang, and S. Zhong, “Two-stage convolutional neural network for medical noise removal via 
image decomposition,” IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 2707–2721, 2019, doi: 10.1109/TIM.2019.2925881. 

9. H. Greenspan, B. Van Ginneken, and R. M. Summers, “Guest editorial deep learning in medical imaging: Overview and future 
promise of an exciting new technique,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1153–1159, 2016, doi: 
10.1109/TMI.2016.2553401. 

10. J. Su, R. Pellicer-Guridi, T. Edwards, M. Fuentes, M. S. Rosen, V. Vegh, and D. Reutens, “A CNN based software gradiometer 
for electromagnetic background noise reduction in low field MRI applications,” IEEE Trans. Med. Imaging, vol. 41, no. 5, pp. 
1007–1016, 2022, doi: 10.1109/TMI.2022.3147450. 

11. M. Kim, J. Yun, Y. Cho, K. Shin, R. Jang, H. J. Bae, and N. Kim, “Deep learning in medical imaging,” Neurospine, vol. 17, no. 2, 
p. 471, 2020, doi: 10.14245/ns.1938396.198. 

12. S. Pradeep and P. Nirmaladevi, “A review on speckle noise reduction techniques in ultrasound medical images based on spatial 
domain, transform domain and CNN methods,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 1055, no. 1, p. 012116, Feb. 2021, doi: 
10.1088/1757-899X/1055/1/012116. 

13. L. Gondara, “Medical image denoising using convolutional denoising autoencoders,” in Proc. IEEE 16th Int. Conf. Data Mining 
Workshops (ICDMW), 2016, pp. 241–246, doi: 10.1109/ICDMW.2016.0041. 

14. R. Aggarwal, V. Sounderajah, G. Martin, D. S. Ting, A. Karthikesalingam, D. King, … A. Darzi, “Diagnostic accuracy of deep 
learning in medical imaging: a systematic review and meta-analysis,” NPJ Digit. Med., vol. 4, no. 1, p. 65, 2021, doi: 
10.1038/s41746-021-00438-z. 

15. M. Elhoseny and K. Shankar, “Optimal bilateral filter and convolutional neural network based denoising method of medical 
image measurements,” Measurement, vol. 143, pp. 125–135, 2019, doi: doi:10.1016/j.measurement.2019.04.072. 

16. M. Tsuneki, “Deep learning models in medical image analysis,” J. Oral Biosci., vol. 64, no. 3, pp. 312–320, 2022, doi: 
10.1016/j.job.2022.03.003. 

 
Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) 
and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) 
disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or 
products mentioned in the content. 

https://doi.org/10.3348/kjr.2017.18.4.570
https://doi.org/10.1109/TIM.2019.2925881
https://doi.org/10.1109/TMI.2016.2553401
https://doi.org/10.1109/TMI.2022.3147450
https://doi.org/10.14245/ns.1938396.198
https://doi.org/10.1088/1757-899X/1055/1/012116
https://doi.org/10.1109/ICDMW.2016.0041
https://doi.org/10.1038/s41746-021-00438-z
https://doi.org/10.1016/j.measurement.2019.04.072
https://doi.org/10.1016/j.job.2022.03.003

	1. Introduction
	1.1. Current Challenges in LED Medical Imaging Signal Quality
	1.2. Deep Learning Approaches for Medical Image Enhancement
	1.3. Research Objectives and Contributions

	2. Theoretical Framework and Algorithm Design
	2.1. LED Spectral Characteristics and Tissue Interaction Analysis
	2.2. Lightweight CNN Architecture for Noise Suppression
	2.3. Feature Enhancement Module Based on Attention Mechanism

	3. Experimental Methodology and Dataset Preparation
	3.1. Multi-Spectral LED Imaging Setup and Data Acquisition
	3.2. Ground Truth Generation and Annotation Protocol
	3.3. Training Strategy and Hyperparameter Optimization

	4. Results and Performance Evaluation
	4.1. Quantitative Analysis of Noise Reduction Performance
	4.2. Feature Enhancement Effectiveness in Clinical Scenarios
	4.3. Computational Efficiency and Real-Time Processing Capability

	5. Discussion and Future Directions
	5.1. Comparative Analysis with State-of-the-Art Methods
	5.2. Clinical Applicability and Practical Considerations

	Reference

