Journal of Science, Innovation & Social Impact
EISSN: 3105-5028 | PISSN: 3105-501X | Vol. 2, No. 1 (2026)

Article

A Comparative Study of Forecasting Techniques for Reducing
Food Waste in Retail Operations

Yi Wang *

Received: 12 December 2025
Revised: 23 January 2026

Accepted: 06 February 2026
Published: 13 February 2026

1 Applied Statistics and Decision Making, Fordham University, NY, USA
* Correspondence: Yi Wang, Applied Statistics and Decision Making, Fordham University, NY, USA

Abstract: Food waste represents a critical challenge in retail supply chains, with approximately 30-
40% of the food supply being discarded annually, resulting in substantial economic and
environmental consequences. This study presents a systematic evaluation of demand forecasting
techniques designed to mitigate food waste in retail operations. We compare statistical methods
including ARIMA and SARIMA, machine learning approaches such as Random Forest, XGBoost,
and LightGBM, alongside deep learning architectures including LSTM and Bidirectional LSTM
networks. The evaluation framework encompasses multiple dimensions: forecasting accuracy
across different product categories, computational efficiency, scalability considerations, and
potential waste reduction impacts. Results demonstrate that machine learning techniques achieve
superior performance in capturing complex demand patterns, with XGBoost and LightGBM
delivering optimal accuracy-complexity tradeoffs. Deep learning models exhibit particular strength
in handling long-term dependencies and seasonal variations. The findings provide actionable
guidance for retail practitioners seeking to implement data-driven forecasting systems for waste
reduction initiatives.
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1. Introduction
1.1. Background and Motivation

The global food system faces an unprecedented waste crisis that extends beyond
mere economic inefficiency to encompass profound environmental and social
ramifications. Current estimates indicate that between 30-40% of the total food supply
never reaches consumers, representing approximately $382 billion in annual economic
losses across the United States alone [1]. This massive inefficiency occurs throughout the
supply chain, with retail operations serving as a critical juncture where intervention
strategies can yield substantial benefits. The environmental toll of food waste manifests
through greenhouse gas emissions approximating 230 million metric tons of carbon
dioxide equivalent annually, primarily from methane releases as organic matter
decomposes in landfill environments.

Retail establishments encounter unique challenges in managing perishable inventory,
where the temporal constraints of product shelf-life intersect with volatile consumer
demand patterns. Supermarkets, grocery stores, and specialty food retailers operate
within narrow margins while attempting to maintain product availability and freshness
standards that consumers expect. Poor demand forecasting contributes significantly to
overstock situations, leading to product expiration, quality degradation, and eventual
disposal of edible food items [2]. The emergence of advanced computational techniques
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offers promising pathways for addressing these operational challenges through improved
prediction capabilities.

1.2. Problem Statement and Research Scope

Perishable food products present distinctive forecasting challenges that distinguish
them from durable goods. The rapid quality degradation of produce, dairy, bakery items,
and meat products imposes strict temporal constraints on inventory turnover. Traditional
forecasting methodologies demonstrate limitations when confronted with the high
volatility inherent in food retail. Seasonal variations, promotional impacts, competitive
actions, local events, and weather conditions create complex interaction effects that simple
time series models cannot adequately capture.

The absence of systematic comparative evaluations creates uncertainty for retail
practitioners attempting to select appropriate forecasting techniques [3]. This research
addresses the gap by conducting a rigorous comparison of forecasting approaches,
evaluating their performance across multiple dimensions including accuracy,
computational requirements, scalability, and practical implementation considerations.

1.3. Research Objectives and Contributions

This investigation establishes a comprehensive framework for assessing demand
forecasting techniques specifically within the context of retail food waste reduction. The
research methodology encompasses systematic evaluation of diverse forecasting
approaches ranging from classical statistical methods to state-of-the-art deep learning
architectures, empirical performance benchmarking using metrics relevant to retail
operations, and development of practical guidelines for technique selection and
deployment. The study provides quantitative performance comparisons across multiple
forecasting techniques using evaluation metrics that directly relate to waste reduction
objectives.

2. Literature Review and Related Work
2.1. Food Waste in Retail Supply Chains

Retail food waste emerges from multiple interconnected sources that operate
throughout the product lifecycle. Spoilage constitutes the most visible waste category,
occurring when products exceed their quality threshold before sale completion.
Overstocking decisions result in excess inventory that cannot be sold within acceptable
timeframes. Date labeling practices create confusion among consumers and staff
regarding actual product safety versus quality indicators Cosmetic standards impose
appearance requirements that lead to the rejection of perfectly edible produce displaying
minor visual imperfections. The economic magnitude of retail food waste extends across
multiple stakeholder groups. Retailers absorb direct losses estimated at $161 billion
annually through product write-offs and disposal costs [4,5].

Policy initiatives and industry commitments reflect growing recognition of food
waste as a priority issue requiring coordinated action. Multi-stakeholder collaborations
such as the U.S. Food Loss and Waste 2030 Champions initiative bring together retailers,
manufacturers, and waste management organizations to establish shared waste reduction
targets. California has enacted stringent legislation including Senate Bill 1383 (effective
January 2022), which mandates a 75% reduction in organic waste disposal by 2025
compared to 2014 levels, alongside Assembly Bill 1826 establishing commercial organic
waste recycling requirements [6]. These regulatory developments create additional
impetus for retailers to implement more effective demand management systems.

2.2. Demand Forecasting Methodologies

Statistical forecasting techniques have formed the foundation of demand prediction
for decades. AutoRegressive Integrated Moving Average (ARIMA) models capture
temporal dependencies in time series data through the combination of autoregressive
terms, differencing operations, and moving average components [7]. Seasonal ARIMA

19



Journal of Science, Innovation & Social Impact Vol. 2 No. 1 (2026)

(SARIMA) extends this framework by incorporating periodic patterns that recur at regular
intervals. These techniques offer interpretability advantages and computational efficiency,
making them accessible to organizations with limited technical infrastructure.

Machine learning methodologies provide enhanced flexibility in modeling complex,
nonlinear relationships between predictor variables and demand outcomes [8]. Random
Forest algorithms construct ensembles of decision trees, each trained on random subsets
of features and observations, then aggregate predictions to reduce variance. Gradient
boosting machines, exemplified by XGBoost and LightGBM implementations, build
sequential ensembles where each new model attempts to correct errors from previous
iterations. Deep learning architectures have gained prominence for sequential data
modeling tasks. Long Short-Term Memory (LSTM) networks address the vanishing
gradient problem, enabling them to learn relationships spanning extended time horizons

[9].

2.3. Applications in Perishable Goods Management

Perishable food categories impose varying constraints on forecasting systems based
on their intrinsic characteristics. Fresh produce exhibits high demand volatility driven by
seasonal availability, quality variations, and price fluctuations. Dairy products typically
demonstrate more stable patterns but face strict expiration constraints. Recognition of
these categorical differences informs the development of specialized forecasting
approaches tailored to specific product characteristics. Integration of diverse data sources
beyond historical sales transactions enhances forecasting capabilities by incorporating
contextual information that influences demand patterns. Weather data, holiday calendars,
and promotional schedules capture factors affecting consumer purchasing behavior.
Commercial implementations of advanced forecasting systems demonstrate practical
feasibility and quantifiable benefits. Industry benchmarks suggest that sophisticated
forecasting implementations can achieve waste reductions ranging from 15% to 40%
depending on product categories and baseline operational efficiency.

3. Methodology and Comparative Framework
3.1. Data Collection and Preprocessing

The empirical foundation of this research rests on comprehensive retail transaction
data encompassing multiple dimensions of operational activity. Historical sales records
capture stock keeping unit (SKU)-level transaction volumes at daily granularity, spanning
multiple store locations and encompassing diverse product categories. The dataset
incorporates temporal coverage extending across multiple annual cycles to capture
seasonal patterns, promotional impacts, and long-term trend dynamics. Store location
information enables geographic analysis of demand variations related to demographic
characteristics and regional preferences.

External data integration substantially enhances forecasting model inputs by
providing contextual variables that explain demand variations beyond historical patterns
[10]. Weather application programming interfaces deliver daily meteorological
observations including temperature ranges, precipitation amounts, and humidity levels.
Holiday calendars identify both fixed-date holidays and variable celebrations that shift
consumer shopping patterns. Promotional schedule databases record price discounts,
multi-buy offers, and in-store display placements.

Data preprocessing pipelines transform raw transaction records into analytical
datasets suitable for forecasting model development. Initial cleaning operations address
data quality issues including duplicate transactions and erroneous recordings. Outlier
detection procedures identify anomalous observations resulting from system errors or
unusual events. Normalization techniques scale features to comparable ranges. Feature
engineering operations construct derived variables that capture relevant patterns: lagged
features incorporate previous demand values, rolling statistics compute moving averages
over configurable windows, and seasonality encoding transforms temporal features into
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cyclical representations [11]. The overall characteristics and composition of the processed
dataset are summarized in Table 1.

Table 1. Dataset Characteristics and Composition.

Dat T 1 1
ana empora Gra.nu Volume Key Attributes
Component  Coverage arity
Sales SKU ID, Quantity, Price,

36 months Daily ~ 2.8M records ;
Store Location

Weather 36 months Daily 131K Temperature (min/max),

Transactions

Data observations Precipitation, Humidity
Holiday . Holiday Type, Proximity
h Dail 1
Calendar 36 months ay /095 days Indicator
Promotional 36 months Daily 487K entries Discount %, Prqmohon
Data Type, Duration
Product . SKU- Category, Shelf-life,
2 K
Attributes Static level 5200 5KUs Perishability Score

3.2. Forecasting Techniques Evaluated

Statistical baseline methodologies establish performance benchmarks against which
more complex approaches are evaluated. ARIMA models identify optimal combinations
of autoregressive order (p), differencing degree (d), and moving average order (q) through
systematic parameter search. The model specification takes the form: y_t=c+ phi_1y_(t-
1) + ...+ phi_p y_(t-p) + theta_1 epsilon_(t-1) +... + theta_q epsilon_(t-q) + epsilon_t, where
y_t represents the time series value, phi coefficients capture autoregressive effects, theta
coefficients represent moving average terms, and epsilon denotes white noise errors.
SARIMA extends this framework by incorporating seasonal components with additional
parameters that capture periodic patterns.

Machine learning techniques provide flexible frameworks for capturing nonlinear
relationships. Random Forest algorithms construct ensembles through bootstrap
aggregation. Each tree receives a randomly sampled subset of training observations with
replacement, and at each split node considers only a random subset of features. XGBoost
implements gradient boosting through additive model construction where each new tree
approximates the negative gradient of the loss function. The objective function L = sum (1
(y_i, y_hat_i)) + sum (Omega(f_k)) combines prediction loss and regularization terms.
LightGBM introduces innovations including histogram-based binning and gradient-
based sampling that enhance training efficiency [12].

Deep learning architectures address sequential dependency modeling through
specialized neural network designs. LSTM networks incorporate memory cells controlled
by input gates, forget gates, and output gates that regulate information flow. The cell state
update equations: f_t =sigma(W_f [h_(t-1), x_t] + b_{f), i_t =sigma(W_i [h_(t-1), x_t] + b_i),
C_tilde_t=tanh(W_C [h_(t-1), x_t] +b_C), C_t=£f_t C_(t-1) +i_t C_tilde_t, o_t=sigma(W_o
[h_(t-1), x_t] + b_o), h_t = o_t tanh(C_t), where sigma denotes sigmoid activation, W
represents weight matrices, and b indicates bias vectors. Bidirectional LSTM processes
sequences in both forward and reverse temporal directions and concatenates the
corresponding hidden states to form comprehensive representations [13]. The detailed
specifications of forecasting techniques and associated hyperparameter settings are
summarized in Table 2.
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Table 2. Forecasting Technique Specifications and Hyperparameters.

; Key Search Optimization = Computational
Technique :
Hyperparameters Space Method Complexity
ARIMA p,d, q : (I; 2][ch’ ]i 0‘;] Grid Search om™2)
p.P:[0,3],
SARIMA  p,d, q P,D,Qs qg?'[ (503]215 . Grid Search On"2)
7
Random n_estimators, [100,500], Random O(nlog(n)km)
Forest max_depth [10,50] Search
learning_rate, [0.01,0.3], Bayesian
XGBoost max_depth, [3,10], Optimization O(nkm)
n_estimators [100,1000]
learning_rate, [0.01,0.3], Bayesian
LightGBM num_leaves, [20,150], Optimization O(nkm)
n_estimators [100,1000]
. . [50,200],
LSTM 1:}123: Izi_rlcl)?alit [13], Grid Search Onm™2)
’ [0.1,0.5]
. . [50,200],
BiLSTM hidden_units, [1,3], Grid Search
layers, dropout O(n'm"2)

[0.1,0.5]
Note: In the computational complexity notation, n represents the number of observations in the time
series, m denotes the number of hidden units in neural network architectures, and k indicates the
number of features. For tree-based methods, the complexity additionally depends on the number of
trees or estimators.

3.3. Evaluation Framework and Experimental Setup

Performance metrics quantify forecasting accuracy through multiple complementary
measures. Mean Absolute Error (MAE) calculates the average magnitude of prediction
errors: MAE = (1/n) x sum (ly_i - y_hat_il), providing an interpretable metric in original
units. Root Mean Squared Error (RMSE) applies squared error penalties: RMSE = sqrt((1/n)
x sum ((y_i - y_hat_i) * 2)), making it sensitive to outlier predictions. Mean Absolute
Percentage Error (MAPE) expresses errors as proportions: MAPE = (100/n) x sum (ly_i -
y_hat_il/ly_il). For aggregated reporting, MAPE is computed as the arithmetic mean
across all SKUs (macro-average), providing equal weight to each product. The coefficient
of determination (R?) =1 - (sum ((y_i - y_hat_i) * 2))/ (sum ((y_i - y_bar) * 2)) quantifies
the proportion of variance explained by the model.

Validation strategies ensure robust performance estimates. The primary evaluation
methodology employs an 80-20 train-test split with chronological partitioning, where the
most recent 20% of observations (approximately 7.2 months of data) form the test set to
simulate realistic deployment scenarios. To assess model robustness, we additionally
implement time series cross-validation with expanding training windows, creating five
sequential splits with training periods of 18, 21, 24, 27, and 30 months, each followed by a
6-month test period. Walk-forward validation further simulates operational deployment
by retraining models monthly and evaluating one-month-ahead predictions. Results
reported in subsequent sections primarily reflect the 80-20 split evaluation, with cross-
validation results confirming consistency across different temporal partitions.

Implementation details specify the technical environment employed. Python serves
as the primary programming language, leveraging scikit-learn for machine learning
algorithms, TensorFlow for deep learning architectures, and specialized XGBoost and
LightGBM libraries. The computational infrastructure utilizes Amazon Web Services
cloud resources including mb5.2xlarge instances for model training and t3. medium
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instances for inference services. While GPU acceleration is recommended for LSTM and
BiLSTM models to reduce training time, all experiments reported in this study were
conducted on CPU instances to ensure far comparison and accessibility. GPU
implementation would reduce deep learning training times by approximately 60-70%.

The detailed training configurations and resource requirements are summarized in Table
3.

Table 3. Training Configuration and Resource Requirements.

Bat . . .
Model  Training ch  Epochs/Itera Estimat GP,U Traini - Mem
Type Data Size  Siz tions ors Requirem ng oty
yp e (Trees) ent Time Usage
Train/Test
ARIM  =80%/20% N/ Convergence 5-15
A (chronolog A -based N/A No min 2CB
ical)
Train/Test
SARIM =80%/20% N/ Convergence 15-45
A (chronolog A -based N/A No min 2CB
ical)
Train/Test
Rando o
= 209 45-
m 80%/20% N/ N/A 300 No > ,90 8 GB
(chronolog A min
Forest .
ical)
Train/Test
XGB =80%/209 -12
GBoo 80%/20% N/ 500 N/A No 60 ! 0 6 CB
st (chronolog A min
ical)
Train/Test
LightG =80%/20% N/ 30-60
BM (chronolog A 500 N/A No min 4GB
ical)
Train/Test Recomme 180
— QMo o,
LsTM S0%/20% o 100 N/A nded 300 12GB
(chronolog (used: min
ical) CPU only)
Train/Test Recomme 240
BiLST =80%/20% 128 100 N/A nded 420 16 GB
M (chronolog (used: min
ical) CPU only)

Note: GPU is recommended for deep learning models to accelerate training, though CPU-based
training is feasible with extended duration.

4. Results and Analysis
4.1. Forecasting Accuracy Performance

Comprehensive accuracy evaluation across all forecasting techniques reveals
substantial performance variations that depend on model sophistication and product
category characteristics. Aggregate performance metrics computed across all product
categories provide initial insights into comparative technique strengths. Statistical
baseline approaches establish minimum acceptable performance thresholds, with
SARIMA demonstrating moderate improvements over basic ARIMA through seasonal
pattern recognition. Machine learning techniques achieve notable accuracy gains, with
ensemble methods outperforming individual models. Gradient boosting implementations,
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particularly XGBoost and LightGBM, deliver the strongest overall performance among
traditional machine learning approaches. Deep learning architectures exhibit competitive
results, with LSTM networks showing advantages for products with strong temporal
dependencies while requiring substantially greater computational resources [14]. Overall
forecasting accuracy metrics for all evaluated techniques are presented in Table 4.

Table 4. Overall Forecasting Accuracy Metrics Across All Techniques.

Techniqu MA.E RM.SE MAPE Tra.lmng Inference
e (units (units %) R? Time Latency
sold) sold) ’ (min) (ms)
ARIMA 18.7 26.3 24.8 0.712 12 8
SARIMA 15.4 22.1 19.6 0.781 28 12
Random 12.8 18.5 16.3 0.836 67 45
Forest

XGBoost 9.6 14.2 12.4 0.891 95 23
ngﬁGB 9.8 14.6 12.7 0.887 48 18
LSTM 10.3 15.1 13.9 0.879 245 67
BiLSTM 10.1 14.8 13.2 0.883 315 89

Note: MAE and RMSE are expressed in units sold per day per SKU. MAPE represents macro-
averaged values computed as the arithmetic mean across all SKUs, giving equal weight to each
product regardless of sales volume. All timing measurements represent averages across the full
dataset.

The performance comparison reveals XGBoost achieving the lowest error metrics
across MAE, RMSE, and MAPE measures while maintaining reasonable computational
demands. LightGBM provides comparable accuracy with notably faster training times,
making it particularly attractive for frequent model retraining scenarios. Disaggregated
analysis by product category exposes important performance variations across different
perishability profiles. Fresh produce, characterized by high demand volatility and
quality-driven purchasing decisions, presents the most challenging forecasting context.
Temperature-sensitive products exhibit strong weather correlation effects that machine
learning models capture more effectively than statistical baselines. Dairy products
demonstrate relatively stable demand patterns. Bakery items display pronounced daily
cyclical patterns with weekend versus weekday distinctions that seasonal ARIMA models
partially capture but machine learning approaches model more completely [15].

The forecast horizon significantly impacts prediction accuracy, with degradation
patterns varying by technique and product category [16]. One-day-ahead forecasts
achieve the highest accuracy across all methods, while three-day-ahead predictions show
a moderate decline and seven-day-ahead forecasts demonstrate substantial performance
degradation. Statistical methods exhibit steeper accuracy decline curves compared to
machine learning approaches, as illustrated in Figure 1.
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Figure 1. Forecasting Accuracy Comparison by Product Category.

This visualization presents a grouped bar chart comparing the Mean Absolute
Percentage Error (MAPE) across seven forecasting techniques for five product categories:
Fresh Produce, Dairy Products, Bakery Items, Meat/Seafood, and Packaged Goods. The
horizontal axis displays the product categories, while the vertical axis represents MAPE
values ranging from 0% to 35%. Each product category contains seven bars corresponding
to the different forecasting techniques, color-coded consistently throughout. Fresh
Produce exhibits the highest error rates across all techniques (MAPE 18-32%). Dairy
Products show moderate error rates (MAPE 8-16%). Bakery Items demonstrate
intermediate variability (MAPE 12-22%). Meat/Seafood products display error ranges
similar to dairy (MAPE 10-18%). Packaged Goods achieve the lowest error rates (MAPE
6-14%). Within each category, XGBoost and LightGBM consistently achieve the lowest
error bars, while ARIMA displays the tallest bars indicating highest errors. A legend in
the upper right corner identifies each technique by color. The visualization includes error
bars on each column representing 95% confidence intervals computed through bootstrap
resampling. Grid lines at 5% intervals facilitate precise value reading.

4.2. Computational Efficiency and Scalability Analysis

Training duration represents a critical consideration for operational forecasting
systems that require periodic model updates. Statistical methods demonstrate the fastest
training times, with ARIMA models converging within minutes. SARIMA training
requires additional computation for seasonal parameter estimation. Random Forest
training scales moderately with dataset size. Gradient boosting techniques exhibit longer
training durations, though LightGBM's algorithmic innovations substantially reduce
training time compared to XGBoost while maintaining comparable accuracy. Deep
learning architectures require the longest training periods, with LSTM networks
demanding hours for convergence and BiLSTM models incurring additional overhead.

Real-time prediction latency determines whether forecasting systems can support
interactive applications. Inference speed measurements assess the time required to
generate predictions for 1000 SKUs. Statistical models achieve the fastest inference times,
while machine learning models demonstrate intermediate latency characteristics. Deep
learning models exhibit the slowest inference speeds due to multiple matrix
multiplications required for forward propagation through network layers. Scalability

performance across different data volumes and modeling approaches is summarized in
Table 5.
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Table 5. Scalability Assessment Across Data Volumes.

Techniqu 100K 500K M 5M 10M Memory
e Records Records Records Records Records Growth Rate
ARIMA 2 min 8 min 18 min 95 min 210 min Linear
SARIMA 5 min 22 min 48 min 265 min 580 min Linear
Random 8 min 35 min 73min 385 min 810 min Sub-linear
Forest
. . . ) 1,140 .

XGBoost 12 min 48 min 102 min 520 min min Linear

LightGBM 6 min 24 min 50min 255min 530 min Sub-linear
1,850 3,920

LSTM 35 min 165 min 345 min Linear
min min

BiLSTM 48 min 225 min 475 min 2'5,4 0 5'3,8 0 Linear
min min

The scalability analysis demonstrates that training time grows approximately
linearly with data volume for most techniques, though LightGBM and Random Forest
exhibit sub-linear growth due to their sampling and binning strategies. Memory
consumption patterns follow similar trends. Multi-store deployment feasibility depends
on both individual model performance and the ability to manage thousands of parallel
forecasting processes. Centralized cloud infrastructure enables shared resource pools
where computation scales elastically, while edge computing architectures distribute
forecasting workloads closer to data sources. Hybrid approaches train complex models
centrally while deploying lightweight inference engines at store locations, as shown in
Figure 2.

Efficiency Leader
XGBoost
0.90 - Ligh{GBM
Ideal Region E Accuracy
0.88 -+ (High Accuracy, L aining Time)

0.86 1

LSTM
0.84 o '

0.82 A

0.80 4 Technique Family
SARIMA
. Statistical Methods

o7 - ®
. Machine Learning

0.76 1 O Deep Learning

Coefficient of Determination (R?)

0.74 7 ‘ Inference Latency

072 ARIMA Circle size represents inference latency Fast (<20ms) O Medium
A Slow (>60ms)

0.70

1 10 100 1000
Average Training Time (minutes, log scale)

Figure 2. Training Time and Accuracy Tradeoff Analysis.

This scatter plot visualization positions each forecasting technique in a two-
dimensional space defined by computational cost and prediction accuracy. The horizontal
axis represents average training time in minutes (log scale from 1 to 1000), while the
vertical axis displays R? values ranging from 0.70 to 0.90. Each forecasting technique
appears as a circular marker sized proportionally to its inference latency, with larger
circles indicating slower prediction speeds. The markers are color-coded by technique
family: statistical methods in blue shades, machine learning in green tones, and deep
learning in orange hues. ARIMA and SARIMA cluster in the lower-left region, showing
fast training but moderate accuracy. Random Forest occupies the middle ground with
balanced training time and good accuracy. XGBoost and LightGBM appear in the upper-
middle region, representing high accuracy with reasonable training costs. LSTM and
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BiLSTM reside in the upper-right area, showing the highest accuracy potential but at
substantial computational expense. An ideal region, marked by a light gray overlay in the
upper-left quadrant, indicates techniques that achieve both high accuracy and fast
training. Dotted lines connect related technique variants showing the accuracy gains
achieved by added complexity. The visualization includes annotations highlighting
computational efficiency leaders and accuracy champions. This comprehensive view
enables practitioners to select techniques aligned with their specific constraints regarding
computational resources and accuracy requirements.

4.3. Food Waste Reduction Potential and Economic Impact

Theoretical waste reduction potential stems directly from forecast accuracy
improvements, as more precise demand predictions enable retailers to order quantities
that better align with actual sales. Studies of retail operations using basic forecasting
methods report waste rates ranging from 8% to 15% for perishable categories. Advanced
forecasting implementations demonstrate waste reductions between 10% and 30%
relative to baseline approaches, with the magnitude correlating with initial waste rates
and category volatility. Economic benefit quantification encompasses multiple value
streams beyond direct spoilage cost savings. Reduced waste translates into lower product
write-off expenses. Improved forecast accuracy enables better inventory turnover,
reducing working capital requirements. Better product availability through reduced
stockouts increases revenue capture and customer satisfaction.

Environmental impact assessment translates waste reduction into greenhouse gas
emission equivalents and landfill diversion quantities. Based on lifecycle assessment data
from the U.S. Environmental Protection Agency's WARM model, each kilogram of
prevented food waste avoids approximately 2.5 kilograms of CO, equivalent emissions
when accounting for agricultural production, transportation, refrigeration, and anaerobic
decomposition in landfills. For illustrative purposes, consider a medium-sized grocery
chain with 50 stores, each generating an estimated 50-150 metric tons of annual perishable
waste (based on industry benchmarks of 2-6 tons per store per week). A 20% waste
reduction across perishable categories would prevent 500 to 1,500 metric tons of food from
entering landfills annually, corresponding to 1,250 to 3,750 metric tons of CO, equivalent
emissions avoided —equivalent to removing approximately 270 to 815 passenger vehicles
from the road for one year, as illustrated in Figure 3.
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Figure 3. Waste Reduction Projection by Technique and Forecast Horizon.
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This multi-panel line graph presents waste reduction projections across different
forecast horizons for each technique family. The visualization contains three vertically
stacked panels sharing a common horizontal axis representing forecast horizon (1-day, 3-
day, 5-day, and 7-day ahead predictions). The vertical axis in each panel shows projected
waste reduction percentage ranging from 0% to 35%. The top panel displays statistical
methods (ARIMA and SARIMA) with solid and dashed lines respectively, showing
gradual decline in waste reduction effectiveness as forecast horizon extends. The middle
panel presents machine learning techniques (Random Forest, XGBoost, LightGBM) with
different line styles and markers, demonstrating more stable waste reduction across
horizons with XGBoost and LightGBM maintaining 20-25% reduction even at 7-day
horizons. The bottom panel shows deep learning approaches (LSTM and BiLSTM) with
bold lines, illustrating their superior performance at extended horizons where they
achieve 22-28% waste reduction at the 7-day forecast, outperforming other technique
families. Each line includes confidence bands shown as shaded regions representing
uncertainty in waste reduction estimates derived from Monte Carlo simulation across
different retail scenarios. The panels include reference lines at 15% and 25% waste
reduction levels, representing industry benchmarks for acceptable and excellent
performance respectively. Panel titles clearly indicate the technique family, and a shared
legend appears below the bottom panel.

5. Discussion, Recommendations, and Conclusion
5.1. Key Findings and Insights

The comparative evaluation yields several critical insights regarding technique
selection for retail food waste reduction applications. Statistical baseline methods provide
value primarily in scenarios with limited data infrastructure, computational resources, or
technical expertise. ARIMA and SARIMA models offer interpretability advantages that
facilitate stakeholder communication and regulatory compliance documentation.
Machine learning techniques, particularly gradient boosting implementations, achieve
optimal tradeoffs between forecasting accuracy and practical deployment feasibility.
XGBoost demonstrates superior prediction performance across diverse product categories
while maintaining reasonable training durations and inference latency. LightGBM
provides comparable accuracy with enhanced computational efficiency. Deep learning
architectures justify their substantial computational requirements primarily for specific
use cases where their unique capabilities provide decisive advantages. LSTM networks
excel at capturing long-term dependencies in products with strong seasonal patterns.
Context-dependent selection criteria emerge as the predominant theme. Data availability
fundamentally constrains technique selection. Computational resources determine
feasible technique complexity. Forecast horizon requirements influence optimal technique
selection. Product characteristics shape performance expectations and guide category-
specific technique deployment.

5.2. Practical Recommendations for Retail Implementation

Successful forecasting system implementation follows a structured approach that
manages risk while building organizational capabilities progressively. The initial phase
focuses on pilot testing within a constrained scope, typically targeting a single product
category and limited store subset. Pilot implementations enable learning about data
integration challenges, model performance characteristics, and operational workflow
adjustments. Iterative deployment expands forecasting system coverage across additional
product categories and store locations based on pilot learnings. Performance monitoring
mechanisms track forecasting accuracy, waste reduction impacts, and operational
adoption metrics. Data infrastructure prerequisites establish the technical foundation.
Cloud platform selection involves evaluating offerings from major providers including
Amazon Web Services, Microsoft Azure, and Google Cloud Platform. The infrastructure
must support data ingestion pipelines that integrate transaction systems, external data
sources, and real-time operational feeds. Organizational considerations extend beyond
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technical implementation. Staff training programs build capability for system operation,
performance interpretation, and exception handling. Change management initiatives
address the behavioral and cultural adaptations necessary for forecast-driven decision-
making.

5.3. Limitations and Future Research Directions

The current research scope imposes several constraints that future investigations
should address. Data coverage spans a single large retail chain within a specific
geographic region, limiting generalizability to other retail formats, international markets,
or alternative distribution channels. Regional variations in climate, consumer preferences,
and competitive dynamics influence technique performance. Integration opportunities
extend forecasting capabilities into adjacent decision domains that jointly optimize retail
operations. Dynamic pricing models adjust product prices based on inventory levels,
remaining shelf-life, and demand forecasts. Replenishment optimization algorithms
determine optimal order quantities based on forecast distributions. Emerging
technologies offer promising capabilities. Transfer learning techniques enable models
trained on data from one product category to accelerate learning for new contexts with
limited historical data. Federated learning frameworks train models across distributed
datasets without centralizing sensitive information. Edge computing architectures deploy
forecasting inference engines at store locations. The path forward combines theoretical
advancement with practical implementation refinement, driven by recognition that food
waste reduction requires sustained commitment across technical, operational, and
organizational dimensions.
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