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Abstract: Food waste represents a critical challenge in retail supply chains, with approximately 30-

40% of the food supply being discarded annually, resulting in substantial economic and 

environmental consequences. This study presents a systematic evaluation of demand forecasting 

techniques designed to mitigate food waste in retail operations. We compare statistical methods 

including ARIMA and SARIMA, machine learning approaches such as Random Forest, XGBoost, 

and LightGBM, alongside deep learning architectures including LSTM and Bidirectional LSTM 

networks. The evaluation framework encompasses multiple dimensions: forecasting accuracy 

across different product categories, computational efficiency, scalability considerations, and 

potential waste reduction impacts. Results demonstrate that machine learning techniques achieve 

superior performance in capturing complex demand patterns, with XGBoost and LightGBM 

delivering optimal accuracy-complexity tradeoffs. Deep learning models exhibit particular strength 

in handling long-term dependencies and seasonal variations. The findings provide actionable 

guidance for retail practitioners seeking to implement data-driven forecasting systems for waste 

reduction initiatives. 
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1. Introduction 

1.1. Background and Motivation 

The global food system faces an unprecedented waste crisis that extends beyond 

mere economic inefficiency to encompass profound environmental and social 

ramifications. Current estimates indicate that between 30-40% of the total food supply 

never reaches consumers, representing approximately $382 billion in annual economic 

losses across the United States alone [1]. This massive inefficiency occurs throughout the 

supply chain, with retail operations serving as a critical juncture where intervention 

strategies can yield substantial benefits. The environmental toll of food waste manifests 

through greenhouse gas emissions approximating 230 million metric tons of carbon 

dioxide equivalent annually, primarily from methane releases as organic matter 

decomposes in landfill environments. 

Retail establishments encounter unique challenges in managing perishable inventory, 

where the temporal constraints of product shelf-life intersect with volatile consumer 

demand patterns. Supermarkets, grocery stores, and specialty food retailers operate 

within narrow margins while attempting to maintain product availability and freshness 

standards that consumers expect. Poor demand forecasting contributes significantly to 

overstock situations, leading to product expiration, quality degradation, and eventual 

disposal of edible food items [2]. The emergence of advanced computational techniques 
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offers promising pathways for addressing these operational challenges through improved 

prediction capabilities. 

1.2. Problem Statement and Research Scope 

Perishable food products present distinctive forecasting challenges that distinguish 

them from durable goods. The rapid quality degradation of produce, dairy, bakery items, 

and meat products imposes strict temporal constraints on inventory turnover. Traditional 

forecasting methodologies demonstrate limitations when confronted with the high 

volatility inherent in food retail. Seasonal variations, promotional impacts, competitive 

actions, local events, and weather conditions create complex interaction effects that simple 

time series models cannot adequately capture. 

The absence of systematic comparative evaluations creates uncertainty for retail 

practitioners attempting to select appropriate forecasting techniques [3]. This research 

addresses the gap by conducting a rigorous comparison of forecasting approaches, 

evaluating their performance across multiple dimensions including accuracy, 

computational requirements, scalability, and practical implementation considerations. 

1.3. Research Objectives and Contributions 

This investigation establishes a comprehensive framework for assessing demand 

forecasting techniques specifically within the context of retail food waste reduction. The 

research methodology encompasses systematic evaluation of diverse forecasting 

approaches ranging from classical statistical methods to state-of-the-art deep learning 

architectures, empirical performance benchmarking using metrics relevant to retail 

operations, and development of practical guidelines for technique selection and 

deployment. The study provides quantitative performance comparisons across multiple 

forecasting techniques using evaluation metrics that directly relate to waste reduction 

objectives. 

2. Literature Review and Related Work 

2.1. Food Waste in Retail Supply Chains 

Retail food waste emerges from multiple interconnected sources that operate 

throughout the product lifecycle. Spoilage constitutes the most visible waste category, 

occurring when products exceed their quality threshold before sale completion. 

Overstocking decisions result in excess inventory that cannot be sold within acceptable 

timeframes. Date labeling practices create confusion among consumers and staff 

regarding actual product safety versus quality indicators Cosmetic standards impose 

appearance requirements that lead to the rejection of perfectly edible produce displaying 

minor visual imperfections. The economic magnitude of retail food waste extends across 

multiple stakeholder groups. Retailers absorb direct losses estimated at $161 billion 

annually through product write-offs and disposal costs [4,5]. 
Policy initiatives and industry commitments reflect growing recognition of food 

waste as a priority issue requiring coordinated action. Multi-stakeholder collaborations 

such as the U.S. Food Loss and Waste 2030 Champions initiative bring together retailers, 

manufacturers, and waste management organizations to establish shared waste reduction 

targets. California has enacted stringent legislation including Senate Bill 1383 (effective 

January 2022), which mandates a 75% reduction in organic waste disposal by 2025 

compared to 2014 levels, alongside Assembly Bill 1826 establishing commercial organic 

waste recycling requirements [6]. These regulatory developments create additional 

impetus for retailers to implement more effective demand management systems. 

2.2. Demand Forecasting Methodologies 

Statistical forecasting techniques have formed the foundation of demand prediction 

for decades. AutoRegressive Integrated Moving Average (ARIMA) models capture 

temporal dependencies in time series data through the combination of autoregressive 

terms, differencing operations, and moving average components [7]. Seasonal ARIMA 
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(SARIMA) extends this framework by incorporating periodic patterns that recur at regular 

intervals. These techniques offer interpretability advantages and computational efficiency, 

making them accessible to organizations with limited technical infrastructure. 

Machine learning methodologies provide enhanced flexibility in modeling complex, 

nonlinear relationships between predictor variables and demand outcomes [8]. Random 

Forest algorithms construct ensembles of decision trees, each trained on random subsets 

of features and observations, then aggregate predictions to reduce variance. Gradient 

boosting machines, exemplified by XGBoost and LightGBM implementations, build 

sequential ensembles where each new model attempts to correct errors from previous 

iterations. Deep learning architectures have gained prominence for sequential data 

modeling tasks. Long Short-Term Memory (LSTM) networks address the vanishing 

gradient problem, enabling them to learn relationships spanning extended time horizons 

[9]. 

2.3. Applications in Perishable Goods Management 

Perishable food categories impose varying constraints on forecasting systems based 

on their intrinsic characteristics. Fresh produce exhibits high demand volatility driven by 

seasonal availability, quality variations, and price fluctuations. Dairy products typically 

demonstrate more stable patterns but face strict expiration constraints. Recognition of 

these categorical differences informs the development of specialized forecasting 

approaches tailored to specific product characteristics. Integration of diverse data sources 

beyond historical sales transactions enhances forecasting capabilities by incorporating 

contextual information that influences demand patterns. Weather data, holiday calendars, 

and promotional schedules capture factors affecting consumer purchasing behavior. 

Commercial implementations of advanced forecasting systems demonstrate practical 

feasibility and quantifiable benefits. Industry benchmarks suggest that sophisticated 

forecasting implementations can achieve waste reductions ranging from 15% to 40% 

depending on product categories and baseline operational efficiency. 

3. Methodology and Comparative Framework 

3.1. Data Collection and Preprocessing 

The empirical foundation of this research rests on comprehensive retail transaction 

data encompassing multiple dimensions of operational activity. Historical sales records 

capture stock keeping unit (SKU)-level transaction volumes at daily granularity, spanning 

multiple store locations and encompassing diverse product categories. The dataset 

incorporates temporal coverage extending across multiple annual cycles to capture 

seasonal patterns, promotional impacts, and long-term trend dynamics. Store location 

information enables geographic analysis of demand variations related to demographic 

characteristics and regional preferences. 

External data integration substantially enhances forecasting model inputs by 

providing contextual variables that explain demand variations beyond historical patterns 

[10]. Weather application programming interfaces deliver daily meteorological 

observations including temperature ranges, precipitation amounts, and humidity levels. 

Holiday calendars identify both fixed-date holidays and variable celebrations that shift 

consumer shopping patterns. Promotional schedule databases record price discounts, 

multi-buy offers, and in-store display placements. 

Data preprocessing pipelines transform raw transaction records into analytical 

datasets suitable for forecasting model development. Initial cleaning operations address 

data quality issues including duplicate transactions and erroneous recordings. Outlier 

detection procedures identify anomalous observations resulting from system errors or 

unusual events. Normalization techniques scale features to comparable ranges. Feature 

engineering operations construct derived variables that capture relevant patterns: lagged 

features incorporate previous demand values, rolling statistics compute moving averages 

over configurable windows, and seasonality encoding transforms temporal features into 
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cyclical representations [11]. The overall characteristics and composition of the processed 

dataset are summarized in Table 1. 

Table 1. Dataset Characteristics and Composition. 

Data 

Component 

Temporal 

Coverage 

Granul

arity 
Volume Key Attributes 

Sales 

Transactions 
36 months Daily 2.8M records 

SKU ID, Quantity, Price, 

Store Location 

Weather 

Data 
36 months Daily 

131K 

observations 

Temperature (min/max), 

Precipitation, Humidity 

Holiday 

Calendar 
36 months Daily 1,095 days 

Holiday Type, Proximity 

Indicator 

Promotional 

Data 
36 months Daily 487K entries 

Discount %, Promotion 

Type, Duration 

Product 

Attributes 
Static 

SKU-

level 
5,200 SKUs 

Category, Shelf-life, 

Perishability Score 

3.2. Forecasting Techniques Evaluated 

Statistical baseline methodologies establish performance benchmarks against which 

more complex approaches are evaluated. ARIMA models identify optimal combinations 

of autoregressive order (p), differencing degree (d), and moving average order (q) through 

systematic parameter search. The model specification takes the form: y_t = c + phi_1 y_(t-

1) + ... + phi_p y_(t-p) + theta_1 epsilon_(t-1) + ... + theta_q epsilon_(t-q) + epsilon_t, where 

y_t represents the time series value, phi coefficients capture autoregressive effects, theta 

coefficients represent moving average terms, and epsilon denotes white noise errors. 

SARIMA extends this framework by incorporating seasonal components with additional 

parameters that capture periodic patterns. 
Machine learning techniques provide flexible frameworks for capturing nonlinear 

relationships. Random Forest algorithms construct ensembles through bootstrap 

aggregation. Each tree receives a randomly sampled subset of training observations with 

replacement, and at each split node considers only a random subset of features. XGBoost 

implements gradient boosting through additive model construction where each new tree 

approximates the negative gradient of the loss function. The objective function L = sum (l 

(y_i, y_hat_i)) + sum (Omega(f_k)) combines prediction loss and regularization terms. 

LightGBM introduces innovations including histogram-based binning and gradient-

based sampling that enhance training efficiency [12]. 

Deep learning architectures address sequential dependency modeling through 

specialized neural network designs. LSTM networks incorporate memory cells controlled 

by input gates, forget gates, and output gates that regulate information flow. The cell state 

update equations: f_t = sigma(W_f [h_(t-1), x_t] + b_f), i_t = sigma(W_i [h_(t-1), x_t] + b_i), 

C_tilde_t = tanh(W_C [h_(t-1), x_t] + b_C), C_t = f_t C_(t-1) + i_t C_tilde_t, o_t = sigma(W_o 

[h_(t-1), x_t] + b_o), h_t = o_t tanh(C_t), where sigma denotes sigmoid activation, W 

represents weight matrices, and b indicates bias vectors. Bidirectional LSTM processes 

sequences in both forward and reverse temporal directions and concatenates the 

corresponding hidden states to form comprehensive representations [13]. The detailed 

specifications of forecasting techniques and associated hyperparameter settings are 

summarized in Table 2. 
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Table 2. Forecasting Technique Specifications and Hyperparameters. 

Technique 
Key 

Hyperparameters 

Search 

Space 

Optimization 

Method 

Computational 

Complexity 

ARIMA p, d, q 
p: [0,5], d: 

[0,2], q: [0,5] 
Grid Search O(n^2) 

SARIMA p, d, q, P, D, Q, s 

p,P: [0,3], 

d,D: [0,2], 

q,Q: [0,3], s: 

7 

Grid Search O(n^2) 

Random 

Forest 

n_estimators, 

max_depth 

[100,500], 

[10,50] 

Random 

Search 
O(nlog(n)km) 

XGBoost 

learning_rate, 

max_depth, 

n_estimators 

[0.01,0.3], 

[3,10], 

[100,1000] 

Bayesian 

Optimization 
O(nkm) 

LightGBM 

learning_rate, 

num_leaves, 

n_estimators 

[0.01,0.3], 

[20,150], 

[100,1000] 

Bayesian 

Optimization 
O(nkm) 

LSTM 
hidden_units, 

layers, dropout 

[50,200], 

[1,3], 

[0.1,0.5] 

Grid Search 
O(n·m^2) 

 

BiLSTM 
hidden_units, 

layers, dropout 

[50,200], 

[1,3], 

[0.1,0.5] 

Grid Search 
 

O(n·m^2) 

Note: In the computational complexity notation, n represents the number of observations in the time 

series, m denotes the number of hidden units in neural network architectures, and k indicates the 

number of features. For tree-based methods, the complexity additionally depends on the number of 

trees or estimators. 

3.3. Evaluation Framework and Experimental Setup 

Performance metrics quantify forecasting accuracy through multiple complementary 

measures. Mean Absolute Error (MAE) calculates the average magnitude of prediction 

errors: MAE = (1/n) × sum (|y_i - y_hat_i|), providing an interpretable metric in original 

units. Root Mean Squared Error (RMSE) applies squared error penalties: RMSE = sqrt((1/n) 

× sum ((y_i - y_hat_i) ^ 2)), making it sensitive to outlier predictions. Mean Absolute 

Percentage Error (MAPE) expresses errors as proportions: MAPE = (100/n) × sum (|y_i - 

y_hat_i|/|y_i|). For aggregated reporting, MAPE is computed as the arithmetic mean 

across all SKUs (macro-average), providing equal weight to each product. The coefficient 

of determination (R²) = 1 - (sum ((y_i - y_hat_i) ^ 2))/ (sum ((y_i - y_bar) ^ 2)) quantifies 

the proportion of variance explained by the model. 

Validation strategies ensure robust performance estimates. The primary evaluation 

methodology employs an 80-20 train-test split with chronological partitioning, where the 

most recent 20% of observations (approximately 7.2 months of data) form the test set to 

simulate realistic deployment scenarios. To assess model robustness, we additionally 

implement time series cross-validation with expanding training windows, creating five 

sequential splits with training periods of 18, 21, 24, 27, and 30 months, each followed by a 

6-month test period. Walk-forward validation further simulates operational deployment 

by retraining models monthly and evaluating one-month-ahead predictions. Results 

reported in subsequent sections primarily reflect the 80-20 split evaluation, with cross-

validation results confirming consistency across different temporal partitions. 

Implementation details specify the technical environment employed. Python serves 

as the primary programming language, leveraging scikit-learn for machine learning 

algorithms, TensorFlow for deep learning architectures, and specialized XGBoost and 

LightGBM libraries. The computational infrastructure utilizes Amazon Web Services 

cloud resources including m5.2xlarge instances for model training and t3. medium 
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instances for inference services. While GPU acceleration is recommended for LSTM and 

BiLSTM models to reduce training time, all experiments reported in this study were 

conducted on CPU instances to ensure far comparison and accessibility. GPU 

implementation would reduce deep learning training times by approximately 60–70%. 

The detailed training configurations and resource requirements are summarized in Table 

3. 

Table 3. Training Configuration and Resource Requirements. 

Model 

Type 

Training 

Data Size 

Bat

ch 

Siz

e 

Epochs/Itera

tions 

Estimat

ors 

(Trees) 

GPU 

Requirem

ent 

Traini

ng 

Time 

Mem

ory 

Usage 

ARIM

A 

Train/Test 

= 80%/20% 

(chronolog

ical) 

N/

A 

Convergence

-based 
N/A No 

5-15 

min 
2 GB 

SARIM

A 

Train/Test 

= 80%/20% 

(chronolog

ical) 

N/

A 

Convergence

-based 
N/A No 

15-45 

min 
2 GB 

Rando

m 

Forest 

Train/Test 

= 80%/20% 

(chronolog

ical) 

N/

A 
N/A 300 No 

45-90 

min 
8 GB 

XGBoo

st 

Train/Test 

= 80%/20% 

(chronolog

ical) 

N/

A 
500 N/A No 

60-120 

min 
6 GB 

LightG

BM 

Train/Test 

= 80%/20% 

(chronolog

ical) 

N/

A 
500 N/A No 

30-60 

min 
4 GB 

LSTM 

Train/Test 

= 80%/20% 

(chronolog

ical) 

128 100 N/A 

Recomme

nded 

(used: 

CPU only) 

180-

300 

min 

12 GB 

BiLST

M 

Train/Test 

= 80%/20% 

(chronolog

ical) 

128 100 N/A 

Recomme

nded 

(used: 

CPU only) 

240-

420 

min 

16 GB 

Note: GPU is recommended for deep learning models to accelerate training, though CPU-based 

training is feasible with extended duration. 

4. Results and Analysis 

4.1. Forecasting Accuracy Performance 

Comprehensive accuracy evaluation across all forecasting techniques reveals 

substantial performance variations that depend on model sophistication and product 

category characteristics. Aggregate performance metrics computed across all product 

categories provide initial insights into comparative technique strengths. Statistical 

baseline approaches establish minimum acceptable performance thresholds, with 

SARIMA demonstrating moderate improvements over basic ARIMA through seasonal 

pattern recognition. Machine learning techniques achieve notable accuracy gains, with 

ensemble methods outperforming individual models. Gradient boosting implementations, 
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particularly XGBoost and LightGBM, deliver the strongest overall performance among 

traditional machine learning approaches. Deep learning architectures exhibit competitive 

results, with LSTM networks showing advantages for products with strong temporal 

dependencies while requiring substantially greater computational resources [14]. Overall 

forecasting accuracy metrics for all evaluated techniques are presented in Table 4. 

Table 4. Overall Forecasting Accuracy Metrics Across All Techniques. 

Techniqu

e 

MAE 

(units 

sold) 

RMSE 

(units 

sold) 

MAPE 

(%) 
R² 

Training 

Time 

(min) 

Inference 

Latency 

(ms) 

ARIMA 18.7 26.3 24.8 0.712 12 8 

SARIMA 15.4 22.1 19.6 0.781 28 12 

Random 

Forest 
12.8 18.5 16.3 0.836 67 45 

XGBoost 9.6 14.2 12.4 0.891 95 23 

LightGB

M 
9.8 14.6 12.7 0.887 48 18 

LSTM 10.3 15.1 13.9 0.879 245 67 

BiLSTM 10.1 14.8 13.2 0.883 315 89 

Note: MAE and RMSE are expressed in units sold per day per SKU. MAPE represents macro-

averaged values computed as the arithmetic mean across all SKUs, giving equal weight to each 

product regardless of sales volume. All timing measurements represent averages across the full 

dataset. 

The performance comparison reveals XGBoost achieving the lowest error metrics 

across MAE, RMSE, and MAPE measures while maintaining reasonable computational 

demands. LightGBM provides comparable accuracy with notably faster training times, 

making it particularly attractive for frequent model retraining scenarios. Disaggregated 

analysis by product category exposes important performance variations across different 

perishability profiles. Fresh produce, characterized by high demand volatility and 

quality-driven purchasing decisions, presents the most challenging forecasting context. 

Temperature-sensitive products exhibit strong weather correlation effects that machine 

learning models capture more effectively than statistical baselines. Dairy products 

demonstrate relatively stable demand patterns. Bakery items display pronounced daily 

cyclical patterns with weekend versus weekday distinctions that seasonal ARIMA models 

partially capture but machine learning approaches model more completely [15]. 

The forecast horizon significantly impacts prediction accuracy, with degradation 

patterns varying by technique and product category [16]. One-day-ahead forecasts 

achieve the highest accuracy across all methods, while three-day-ahead predictions show 

a moderate decline and seven-day-ahead forecasts demonstrate substantial performance 

degradation. Statistical methods exhibit steeper accuracy decline curves compared to 

machine learning approaches, as illustrated in Figure 1. 
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Figure 1. Forecasting Accuracy Comparison by Product Category. 

This visualization presents a grouped bar chart comparing the Mean Absolute 

Percentage Error (MAPE) across seven forecasting techniques for five product categories: 

Fresh Produce, Dairy Products, Bakery Items, Meat/Seafood, and Packaged Goods. The 

horizontal axis displays the product categories, while the vertical axis represents MAPE 

values ranging from 0% to 35%. Each product category contains seven bars corresponding 

to the different forecasting techniques, color-coded consistently throughout. Fresh 

Produce exhibits the highest error rates across all techniques (MAPE 18-32%). Dairy 

Products show moderate error rates (MAPE 8-16%). Bakery Items demonstrate 

intermediate variability (MAPE 12-22%). Meat/Seafood products display error ranges 

similar to dairy (MAPE 10-18%). Packaged Goods achieve the lowest error rates (MAPE 

6-14%). Within each category, XGBoost and LightGBM consistently achieve the lowest 

error bars, while ARIMA displays the tallest bars indicating highest errors. A legend in 

the upper right corner identifies each technique by color. The visualization includes error 

bars on each column representing 95% confidence intervals computed through bootstrap 

resampling. Grid lines at 5% intervals facilitate precise value reading. 

4.2. Computational Efficiency and Scalability Analysis 

Training duration represents a critical consideration for operational forecasting 

systems that require periodic model updates. Statistical methods demonstrate the fastest 

training times, with ARIMA models converging within minutes. SARIMA training 

requires additional computation for seasonal parameter estimation. Random Forest 

training scales moderately with dataset size. Gradient boosting techniques exhibit longer 

training durations, though LightGBM's algorithmic innovations substantially reduce 

training time compared to XGBoost while maintaining comparable accuracy. Deep 

learning architectures require the longest training periods, with LSTM networks 

demanding hours for convergence and BiLSTM models incurring additional overhead. 

Real-time prediction latency determines whether forecasting systems can support 

interactive applications. Inference speed measurements assess the time required to 

generate predictions for 1000 SKUs. Statistical models achieve the fastest inference times, 

while machine learning models demonstrate intermediate latency characteristics. Deep 

learning models exhibit the slowest inference speeds due to multiple matrix 

multiplications required for forward propagation through network layers. Scalability 

performance across different data volumes and modeling approaches is summarized in 

Table 5. 
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Table 5. Scalability Assessment Across Data Volumes. 

Techniqu

e 

100K 

Records 

500K 

Records 

1M 

Records 

5M 

Records 

10M 

Records 

Memory 

Growth Rate 

ARIMA 2 min 8 min 18 min 95 min 210 min Linear 

SARIMA 5 min 22 min 48 min 265 min 580 min Linear 

Random 

Forest 
8 min 35 min 73 min 385 min 810 min Sub-linear 

XGBoost 12 min 48 min 102 min 520 min 
1,140 

min 
Linear 

LightGBM 6 min 24 min 50 min 255 min 530 min Sub-linear 

LSTM 35 min 165 min 345 min 
1,850 

min 

3,920 

min 
Linear 

BiLSTM 48 min 225 min 475 min 
2,540 

min 

5,380 

min 
Linear 

The scalability analysis demonstrates that training time grows approximately 

linearly with data volume for most techniques, though LightGBM and Random Forest 

exhibit sub-linear growth due to their sampling and binning strategies. Memory 

consumption patterns follow similar trends. Multi-store deployment feasibility depends 

on both individual model performance and the ability to manage thousands of parallel 

forecasting processes. Centralized cloud infrastructure enables shared resource pools 

where computation scales elastically, while edge computing architectures distribute 

forecasting workloads closer to data sources. Hybrid approaches train complex models 

centrally while deploying lightweight inference engines at store locations, as shown in 

Figure 2. 

 

Figure 2. Training Time and Accuracy Tradeoff Analysis. 

This scatter plot visualization positions each forecasting technique in a two-

dimensional space defined by computational cost and prediction accuracy. The horizontal 

axis represents average training time in minutes (log scale from 1 to 1000), while the 

vertical axis displays R² values ranging from 0.70 to 0.90. Each forecasting technique 

appears as a circular marker sized proportionally to its inference latency, with larger 

circles indicating slower prediction speeds. The markers are color-coded by technique 

family: statistical methods in blue shades, machine learning in green tones, and deep 

learning in orange hues. ARIMA and SARIMA cluster in the lower-left region, showing 

fast training but moderate accuracy. Random Forest occupies the middle ground with 

balanced training time and good accuracy. XGBoost and LightGBM appear in the upper-

middle region, representing high accuracy with reasonable training costs. LSTM and 
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BiLSTM reside in the upper-right area, showing the highest accuracy potential but at 

substantial computational expense. An ideal region, marked by a light gray overlay in the 

upper-left quadrant, indicates techniques that achieve both high accuracy and fast 

training. Dotted lines connect related technique variants showing the accuracy gains 

achieved by added complexity. The visualization includes annotations highlighting 

computational efficiency leaders and accuracy champions. This comprehensive view 

enables practitioners to select techniques aligned with their specific constraints regarding 

computational resources and accuracy requirements. 

4.3. Food Waste Reduction Potential and Economic Impact 

Theoretical waste reduction potential stems directly from forecast accuracy 

improvements, as more precise demand predictions enable retailers to order quantities 

that better align with actual sales. Studies of retail operations using basic forecasting 

methods report waste rates ranging from 8% to 15% for perishable categories. Advanced 

forecasting implementations demonstrate waste reductions between 10% and 30% 

relative to baseline approaches, with the magnitude correlating with initial waste rates 

and category volatility. Economic benefit quantification encompasses multiple value 

streams beyond direct spoilage cost savings. Reduced waste translates into lower product 

write-off expenses. Improved forecast accuracy enables better inventory turnover, 

reducing working capital requirements. Better product availability through reduced 

stockouts increases revenue capture and customer satisfaction. 

Environmental impact assessment translates waste reduction into greenhouse gas 

emission equivalents and landfill diversion quantities. Based on lifecycle assessment data 

from the U.S. Environmental Protection Agency's WARM model, each kilogram of 

prevented food waste avoids approximately 2.5 kilograms of CO₂ equivalent emissions 

when accounting for agricultural production, transportation, refrigeration, and anaerobic 

decomposition in landfills. For illustrative purposes, consider a medium-sized grocery 

chain with 50 stores, each generating an estimated 50–150 metric tons of annual perishable 

waste (based on industry benchmarks of 2–6 tons per store per week). A 20% waste 

reduction across perishable categories would prevent 500 to 1,500 metric tons of food from 

entering landfills annually, corresponding to 1,250 to 3,750 metric tons of CO₂ equivalent 

emissions avoided—equivalent to removing approximately 270 to 815 passenger vehicles 

from the road for one year, as illustrated in Figure 3. 

 

Figure 3. Waste Reduction Projection by Technique and Forecast Horizon. 
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This multi-panel line graph presents waste reduction projections across different 

forecast horizons for each technique family. The visualization contains three vertically 

stacked panels sharing a common horizontal axis representing forecast horizon (1-day, 3-

day, 5-day, and 7-day ahead predictions). The vertical axis in each panel shows projected 

waste reduction percentage ranging from 0% to 35%. The top panel displays statistical 

methods (ARIMA and SARIMA) with solid and dashed lines respectively, showing 

gradual decline in waste reduction effectiveness as forecast horizon extends. The middle 

panel presents machine learning techniques (Random Forest, XGBoost, LightGBM) with 

different line styles and markers, demonstrating more stable waste reduction across 

horizons with XGBoost and LightGBM maintaining 20-25% reduction even at 7-day 

horizons. The bottom panel shows deep learning approaches (LSTM and BiLSTM) with 

bold lines, illustrating their superior performance at extended horizons where they 

achieve 22-28% waste reduction at the 7-day forecast, outperforming other technique 

families. Each line includes confidence bands shown as shaded regions representing 

uncertainty in waste reduction estimates derived from Monte Carlo simulation across 

different retail scenarios. The panels include reference lines at 15% and 25% waste 

reduction levels, representing industry benchmarks for acceptable and excellent 

performance respectively. Panel titles clearly indicate the technique family, and a shared 

legend appears below the bottom panel. 

5. Discussion, Recommendations, and Conclusion 

5.1. Key Findings and Insights 

The comparative evaluation yields several critical insights regarding technique 

selection for retail food waste reduction applications. Statistical baseline methods provide 

value primarily in scenarios with limited data infrastructure, computational resources, or 

technical expertise. ARIMA and SARIMA models offer interpretability advantages that 

facilitate stakeholder communication and regulatory compliance documentation. 

Machine learning techniques, particularly gradient boosting implementations, achieve 

optimal tradeoffs between forecasting accuracy and practical deployment feasibility. 

XGBoost demonstrates superior prediction performance across diverse product categories 

while maintaining reasonable training durations and inference latency. LightGBM 

provides comparable accuracy with enhanced computational efficiency. Deep learning 

architectures justify their substantial computational requirements primarily for specific 

use cases where their unique capabilities provide decisive advantages. LSTM networks 

excel at capturing long-term dependencies in products with strong seasonal patterns. 

Context-dependent selection criteria emerge as the predominant theme. Data availability 

fundamentally constrains technique selection. Computational resources determine 

feasible technique complexity. Forecast horizon requirements influence optimal technique 

selection. Product characteristics shape performance expectations and guide category-

specific technique deployment. 

5.2. Practical Recommendations for Retail Implementation 

Successful forecasting system implementation follows a structured approach that 

manages risk while building organizational capabilities progressively. The initial phase 

focuses on pilot testing within a constrained scope, typically targeting a single product 

category and limited store subset. Pilot implementations enable learning about data 

integration challenges, model performance characteristics, and operational workflow 

adjustments. Iterative deployment expands forecasting system coverage across additional 

product categories and store locations based on pilot learnings. Performance monitoring 

mechanisms track forecasting accuracy, waste reduction impacts, and operational 

adoption metrics. Data infrastructure prerequisites establish the technical foundation. 

Cloud platform selection involves evaluating offerings from major providers including 

Amazon Web Services, Microsoft Azure, and Google Cloud Platform. The infrastructure 

must support data ingestion pipelines that integrate transaction systems, external data 

sources, and real-time operational feeds. Organizational considerations extend beyond 
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technical implementation. Staff training programs build capability for system operation, 

performance interpretation, and exception handling. Change management initiatives 

address the behavioral and cultural adaptations necessary for forecast-driven decision-

making. 

5.3. Limitations and Future Research Directions 

The current research scope imposes several constraints that future investigations 

should address. Data coverage spans a single large retail chain within a specific 

geographic region, limiting generalizability to other retail formats, international markets, 

or alternative distribution channels. Regional variations in climate, consumer preferences, 

and competitive dynamics influence technique performance. Integration opportunities 

extend forecasting capabilities into adjacent decision domains that jointly optimize retail 

operations. Dynamic pricing models adjust product prices based on inventory levels, 

remaining shelf-life, and demand forecasts. Replenishment optimization algorithms 

determine optimal order quantities based on forecast distributions. Emerging 

technologies offer promising capabilities. Transfer learning techniques enable models 

trained on data from one product category to accelerate learning for new contexts with 

limited historical data. Federated learning frameworks train models across distributed 

datasets without centralizing sensitive information. Edge computing architectures deploy 

forecasting inference engines at store locations. The path forward combines theoretical 

advancement with practical implementation refinement, driven by recognition that food 

waste reduction requires sustained commitment across technical, operational, and 

organizational dimensions. 
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