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Abstract: Computational drug design (CDD) has emerged as a powerful tool for accelerating the
discovery of novel therapeutics, particularly for diseases affecting pediatric populations. However,
traditional CDD methods often struggle with the complexities of pediatric diseases, including
unique biological targets and developmental considerations. Graph Neural Networks (GNNs), a
class of deep learning models capable of processing graph-structured data, have shown remarkable
promise in various CDD tasks, such as drug-target interaction prediction, molecular property
prediction, and de novo drug design. This review provides a comprehensive overview of the
integration of GNNs into CDD for pediatric diseases. We begin with a historical overview of CDD
and its applications in pediatrics, highlighting the limitations of traditional approaches. We then
delve into the core concepts of GNNs and their specific adaptations for CDD. We discuss the
application of GNNs across diverse pediatric diseases, including cancers, genetic disorders, and
infectious diseases, focusing on how GNNs can address specific challenges such as data scarcity and
target heterogeneity. A comparative analysis of different GNN architectures and their performance
in pediatric CDD is presented, along with a discussion of current challenges and limitations, such
as the need for improved interpretability and validation. Finally, we explore future perspectives
and opportunities for GNN-driven CDD in pediatrics, including the integration of multi-omics data,
the development of personalized medicine approaches, and the application of explainable Al
techniques. This review aims to provide a valuable resource for researchers and practitioners
interested in leveraging GNNs to accelerate the development of safe and effective treatments for
pediatric diseases.
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1. Introduction
1.1. Background and Motivation

Computational drug design (CDD) has become an indispensable tool in modern
drug discovery, accelerating the identification of promising drug candidates and reducing
development costs. However, pediatric drug development faces unique hurdles,
including limited patient populations, ethical considerations in clinical trials, and age-
related differences in drug metabolism and efficacy. Graph Neural Networks (GNNs)
offer a powerful approach to address these challenges by leveraging the structural
information of molecules and biological networks to predict drug-target interactions and
optimize drug properties specifically for pediatric populations, potentially accelerating
the development of safe and effective treatments [1].
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1.2. Scope and Objectives

This review focuses on the application of Graph Neural Networks (GNNs) within
Computational Drug Design (CDD) specifically targeting pediatric diseases. We will
cover GNN-based methods for target identification, drug-target interaction prediction, de
novo molecule design, and drug repurposing. The objectives are to summarize current
research employing GNNs in these areas, identify key challenges such as data scarcity and
model validation, and outline promising future directions, including the development of
more robust and interpretable GNN models tailored for pediatric drug discovery,
considering factors like p, and IC5, values.

2. Historical Overview of CDD in Pediatrics
2.1. Early Approaches to Pediatric Drug Design

Early computational drug design (CDD) efforts in pediatrics largely mirrored adult
approaches, employing structure-based and ligand-based methods (Table 1). Structure-
based design utilized protein structures, when available, to identify potential drug
candidates that bind to target proteins implicated in pediatric diseases. This involved
techniques like molecular docking and scoring to predict binding affinity. Ligand-based
design, conversely, relied on known active molecules to build pharmacophore models or
quantitative structure-activity relationship (QSAR) models, relating chemical structure to
biological activity (IC_50, K_i, etc.). Successes included the identification of compounds
with promising activity in vitro. However, these early methods often failed to adequately
address the unique physiological characteristics of children, such as differences in drug
metabolism, distribution, and target expression. This resulted in limited in vivo efficacy
and highlighted the need for pediatric-specific CDD strategies.

Table 1. Comparison of Traditional CDD Methods in Pediatrics.

Feature Structure-Based Design Ligand-Based Design
Basis Protein structure Known active molecules

Pharmacophore models,

Techniques Molecular docking, scoring OSAR models
. Chemical structures and
Input Data 3D structure of target protein ..
activity data (IC5o, K;, etc.)
QSAR models relating
Output Potential drug candidates structure to activity;
that bind to target proteins  identification of promising
compounds.
Identification of compounds Identification of compounds
Successes with promising in vitro with promising in vitro
activity activity.
Fails to adequately address Fails to adequately address
unique pediatric unique pediatric

physiological characteristics, physiological characteristics,
Limitations in Pediatrics such as drug metabolism, such as drug metabolism,

distribution, and target distribution, and target
expression. This leads to expression. This leads to
limited in vivo efficacy. limited in vivo efficacy.

2.2. Challenges in Pediatric Drug Development

Pediatric drug development faces unique hurdles beyond those encountered in adult
populations. Significant differences in physiology, including organ system maturation,
body composition (V4,04y), and renal function (GFR), impact drug absorption, distribution,
metabolism, and excretion (ADME). Metabolic pathways, particularly those involving
cytochrome P450 enzymes ( CYP450), exhibit age-dependent activity, leading to
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unpredictable drug clearance and potential toxicity. Furthermore, disease presentation
can vary significantly between children and adults, necessitating age-specific clinical trial
designs and endpoints. These factors, compounded by ethical considerations in pediatric
research and the relatively small market size for individual pediatric indications,
underscore the urgent need for innovative approaches, such as computational drug
design, to accelerate the development of safe and effective therapies for children [2].

3. GNNs for Drug-Target Interaction Prediction in Pediatric Diseases
3.1. GNN Architectures for DTI Prediction

GNNs have emerged as powerful tools for DTI prediction, offering various
architectures suited for different aspects of drug and target representation. Graph
Convolutional Networks (GCNs) utilize spectral convolutions to aggregate information
from neighboring nodes, effectively capturing local structural patterns in both drug and

: , a+n) _
protein graphs. The aggregation process can be represented as h; ' = o(Xjenq)
%W(Dhj(l)), where hi(l) is the node feature at layer I, N(i) is the neighborhood of node i,

ij

c;j is a normalization constant, and W® is a trainable weight matrix. GCNs are
computationally efficient but can be limited in capturing long-range dependencies.

Graph Attention Networks (GATs) address this limitation by introducing attention
mechanisms, allowing nodes to selectively attend to their neighbors based on learned
weights. This is particularly relevant for pediatric targets, where subtle structural
variations can significantly impact drug binding. The attention coefficient e;; is
calculated as a(W h;, Wh;). While GATs offer improved expressiveness, they can be more
computationally demanding than GCNss.

Message Passing Neural Networks (MPNNs) provide a general framework
encompassing GCNs and GATs (Table 2). MPNNSs consist of a message passing phase and
a readout phase. The message passing phase iteratively updates node representations by
aggregating information from their neighbors. The readout phase then uses these updated
representations to predict DTI. The flexibility of MPNNSs allows for customization to
specific pediatric disease contexts, but requires careful design of the message and update
functions.

Table 2.: Performance Comparison of GNN Architectures for DTI Prediction.

Relevant to

NN tational
G, Advantages Disadvantages Pediatric Computationa
Architecture Cost
Targets?
Graph Computationally Limited in Useful for
Convolutional efficient, effectively capturing long- capturing basic Low
Networks captures local range structural ©
(GCNs) structural patterns. dependencies. features.
Improved Particularly
Graph expressiveness, More relevant due to
. allows nodes to . the need to
Attention . computationally .
selectively attend to . capture subtle High
Networks neighbors, suitable demanding than structural
(GATSs) DOIS, GCNGs. o
for capturing subtle variations in
structural variations. pediatric targets.
Highly relevant
Message General framework Requires careful due to the
. & encompassing GCNs quire ability to ~ Medium to High
Passing Neural . design of . .
and GATs, high customize to  (depending on
Networks flexibility and message and specific implementation)
(MPNNSs) . Y . update functions. . p L. P
customization. pediatric disease
contexts.

177



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

3.2. Application to Specific Pediatric Diseases

GNNs are increasingly being applied to predict drug-target interactions (DTIs) for
pediatric diseases, offering a promising avenue for accelerating drug discovery [3]. In
childhood cancers, for example, GNNs have been employed to identify potential drug
candidates for leukemia. By representing both drugs and target proteins as nodes in a
graph, and their interactions as edges, GNN models can learn complex relationships and
predict the likelihood of a drug binding to a specific target implicated in leukemia
development. Features such as gene expression data or protein sequence information can
be incorporated as node attributes, enhancing the predictive power of the model. Similarly,
in neuroblastoma research, GNNs can be used to prioritize compounds that target
proteins involved in tumor growth and metastasis. The ability of GNNs to handle
heterogeneous data, including genomic, proteomic, and chemical information, is
particularly beneficial in understanding the complex interplay of factors contributing to
pediatric cancers. Furthermore, GNNs can be adapted to predict DTIs for genetic
disorders affecting children, where identifying drugs that modulate the activity of specific
disease-causing proteins is crucial. The benefits of using GNNs in these applications
include improved prediction accuracy compared to traditional methods, the ability to
identify novel drug targets, and the potential to personalize treatment strategies based on
individual patient profiles.

4. GNNs for Molecular Property Prediction and De Novo Design in Pediatrics
4.1. Predicting ADMET Properties with GNNs

Graph Neural Networks (GNNs) offer a powerful approach to predict ADMET
(absorption, distribution, metabolism, excretion, and toxicity) properties of drug
candidates, crucial for pediatric drug development. Accurately predicting these
properties can significantly reduce the risk of adverse drug reactions in children, a
population particularly vulnerable due to their developing physiology. GNNs can learn
complex relationships between molecular structure and ADMET outcomes by
representing molecules as graphs, where nodes represent atoms and edges represent
bonds. These models can then be trained on existing ADMET data to predict these
properties for novel compounds [4].

Specifically, GNNs can predict parameters like oral bioavailability (F), volume of
distribution (V_d), metabolic clearance (CL), and potential for drug-drug interactions
mediated by cytochrome P450 enzymes (Table 3). Furthermore, GNNs can be used to
assess potential toxicities, such as hepatotoxicity and cardiotoxicity. By integrating these
predictions early in the drug discovery process, researchers can prioritize compounds
with favorable ADMET profiles, leading to safer and more effective medications for
pediatric patients and reducing the need for extensive in vivo testing.

Table 3. GNN-based ADMET prediction performance for Pediatric Drug Candidates.

Significance for Pediatric Drug

ADMET Property GNN Prediction Development

Predicts the fraction of d
redicts the Hactlon OF MUE crycial for determining appropriate oral

Oral absorbed into systemic L , ; ,
, s . . dosages, considering children’s variable
Bioavailability (F) circulation after oral )
. . absorption rates.
administration.
Essential for calculating loading doses
Estimates the extent to and understanding drug exposure in
Volume of . . . . e
. which a drug distributes  different tissues, especially in the context
Distribution (V) ..
throughout the body. of age-related body composition

changes.

Quantifies the rate at which

a drug is removed from the
body.

Metabolic
Clearance (CL)

Critical for determining dosing intervals,
considering that children’s metabolic
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pathways may be immature or different
from adults.
Important for minimizing the risk of
adverse drug reactions resulting from
altered drug metabolism, as children
may be more susceptible to these
interactions.
Essential for identifying and avoiding
drugs that may pose a risk to children’s
developing livers.

Predicts the potential for a
Cytochrome P450 drug to inhibit CYP
(CYP) Inhibition enzymes, leading to drug-
drug interactions.

Assesses the potential for a

Hepatotoxicit
patotoxiclty drug to cause liver damage.

. . Critical to prevent any cardiac
. . Estimates the risk of adverse L.
Cardiotoxicity complications that can severely affect

effects on the heart. children.

4.2. De Novo Drug Design Using GNN's

GNNss offer a powerful approach to de novo drug design, enabling the generation of
novel molecules tailored for pediatric diseases. These models can be trained on datasets
of existing drugs and bioactive compounds, learning the complex relationships between
molecular structure and desired properties like target affinity and ADMET profiles. By
sampling from the learned chemical space, GNNs can propose new molecular structures
predicted to possess specific characteristics relevant to treating childhood illnesses.

However, applying de novo design to pediatric drug development presents unique
challenges. Ensuring safety and efficacy in children requires careful consideration of age-
related physiological differences, such as variations in drug metabolism and organ
development. GNN-generated molecules must be rigorously evaluated for potential off-
target effects and toxicity in pediatric-specific models. Furthermore, the limited
availability of pediatric-specific data for training GNNs necessitates the development of
transfer learning strategies and data augmentation techniques to improve model accuracy
and reliability. The use of appropriate scoring functions that incorporate pediatric-specific
parameters is also crucial for prioritizing promising drug candidates [5].

5. Comparison of GNNs with Other Methods and Current Challenges
5.1. Comparison with Traditional Machine Learning Methods

GNNs offer distinct advantages over traditional machine learning methods like
support vector machines (SVMs) and random forests (RF) in computational drug design
(CDD) for pediatric diseases (Table 4). Traditional methods often require manual feature
engineering, a time-consuming and potentially biased process. GNNs, conversely, learn
directly from the graph structure of molecules, capturing complex relationships between
atoms and bonds without explicit feature definition. This is particularly beneficial when
dealing with limited data, a common challenge in pediatric drug development. However,
traditional methods can be more computationally efficient and require less training data
than GNNs [6]. Furthermore, the interpretability of models like RF can be higher
compared to the “black box” nature of some GNN architectures. The choice between
GNNs and traditional methods depends on the specific application, data availability, and
the need for interpretability versus predictive accuracy.

Table 4. Comparative Analysis of GNNs vs. Traditional ML in CDD for Pediatrics.

Feature GNNs Traditional ML (SVM, RF)

. . Automates feature extraction from Requires manual, often time-
Feature Engineering

graph structure. consuming, feature engineering.
. Can handle limited data but Can perform well with less
Data Requirements . ..
generally benefit from more data. training data.
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Can be computationally
expensive, especially for large
graphs.
Often considered “black box”
models with lower
Interpretability interpretability, although progress
is being made in explainable
GNNEs.
Capability to Excellent at capturing complex Limited ability to capture
capture complex relationships between atoms and complex relationships without

Computational
Efficiency

Generally more computationally
efficient.

Can offer higher interpretability
(e.g., RF feature importance).

relationships bonds. extensive feature engineering.
g ats Particularly beneficial when Can be effective with limited

Suitability for dealing with limited data, a data, but performance may be

Limited Data & ’ P Y

. . common challenge in pediatric  limited by the need for manual
(Pediatrics) . .
drug development. feature engineering.
Potentially higher predictive Predictive accuracy depends
Predictive Accuracy accuracy by learning directly from heavily on the quality of hand-

the graph structure. engineered features.

5.2. Challenges and Limitations of GNNs in Pediatric CDD

GNNSs, while promising, face significant hurdles in pediatric computational drug
design (CDD) (Table 5). Data scarcity is a primary concern, as pediatric-specific datasets
for drug activity and safety are often limited compared to adult data [7]. This can lead to
overfitting and poor generalization of GNN models. Furthermore, the “black box” nature
of many GNN architectures hinders interpretability. Understanding why a GNN predicts
a certain outcome is crucial for building trust and facilitating rational drug design.
Improved methods for explaining GNN predictions, such as attention mechanisms or
feature importance analysis, are needed. Finally, rigorous validation of GNN predictions
is essential [8]. Due to the limited availability of pediatric clinical trial data, alternative
validation strategies, such as physiologically-based pharmacokinetic (PBPK) modeling
and in vitro studies, are necessary to ensure the safety and efficacy of predicted drug
candidates. Addressing these challenges is critical for realizing the full potential of GNNs
in pediatric CDD [9,10].

Table 5. Challenges in Applying GNNs to Pediatric Drug Discovery.

Challenge Description

Limited pediatric-specific datasets for drug activity and safety
Data Scarcity compared to adult data. This can lead to overfitting and poor
generalization of GNN models.
The “black box” nature of many GNN architectures hinders
understanding why a GNN predicts a certain outcome, which is crucial

Lack of
ack ot for building trust and facilitating rational drug design. Improved
Interpretability . - .
methods for explaining GNN predictions, such as attention
mechanisms or feature importance analysis, are needed.

Limited availability of pediatric clinical trial data necessitates

Validation alternative validation strategies, such as physiologically-based

Difficulties pharmacokinetic (PBPK) modeling and in vitro studies, to ensure the

safety and efficacy of predicted drug candidates.

6. Future Perspectives
6.1. Integrating Multi-Omics Data

Integrating multi-omics data holds immense promise for enhancing GNN-driven
drug discovery for pediatric diseases [11]. By incorporating genomics, transcriptomics,
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effective treatments for pediatric diseases. Future work should focus on developing novel
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