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Abstract: Computational drug design (CDD) has emerged as a powerful tool for accelerating the 

discovery of novel therapeutics, particularly for diseases affecting pediatric populations. However, 

traditional CDD methods often struggle with the complexities of pediatric diseases, including 

unique biological targets and developmental considerations. Graph Neural Networks (GNNs), a 

class of deep learning models capable of processing graph-structured data, have shown remarkable 

promise in various CDD tasks, such as drug-target interaction prediction, molecular property 

prediction, and de novo drug design. This review provides a comprehensive overview of the 

integration of GNNs into CDD for pediatric diseases. We begin with a historical overview of CDD 

and its applications in pediatrics, highlighting the limitations of traditional approaches. We then 

delve into the core concepts of GNNs and their specific adaptations for CDD. We discuss the 

application of GNNs across diverse pediatric diseases, including cancers, genetic disorders, and 

infectious diseases, focusing on how GNNs can address specific challenges such as data scarcity and 

target heterogeneity. A comparative analysis of different GNN architectures and their performance 

in pediatric CDD is presented, along with a discussion of current challenges and limitations, such 

as the need for improved interpretability and validation. Finally, we explore future perspectives 

and opportunities for GNN-driven CDD in pediatrics, including the integration of multi-omics data, 

the development of personalized medicine approaches, and the application of explainable AI 

techniques. This review aims to provide a valuable resource for researchers and practitioners 

interested in leveraging GNNs to accelerate the development of safe and effective treatments for 

pediatric diseases. 
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1. Introduction 

1.1. Background and Motivation 

Computational drug design (CDD) has become an indispensable tool in modern 

drug discovery, accelerating the identification of promising drug candidates and reducing 
development costs. However, pediatric drug development faces unique hurdles, 

including limited patient populations, ethical considerations in clinical trials, and age-
related differences in drug metabolism and efficacy. Graph Neural Networks (GNNs) 
offer a powerful approach to address these challenges by leveraging the structural 

information of molecules and biological networks to predict drug-target interactions and 
optimize drug properties specifically for pediatric populations, potentially accelerating 

the development of safe and effective treatments [1]. 
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1.2. Scope and Objectives 

This review focuses on the application of Graph Neural Networks (GNNs) within 

Computational Drug Design (CDD) specifically targeting pediatric diseases. We will 
cover GNN-based methods for target identification, drug-target interaction prediction, de 
novo molecule design, and drug repurposing. The objectives are to summarize current 

research employing GNNs in these areas, identify key challenges such as data scarcity and 
model validation, and outline promising future directions, including the development of 

more robust and interpretable GNN models tailored for pediatric drug discovery, 
considering factors like 𝑝𝑘 and 𝐼𝐶50 values. 

2. Historical Overview of CDD in Pediatrics 

2.1. Early Approaches to Pediatric Drug Design 

Early computational drug design (CDD) efforts in pediatrics largely mirrored adult 

approaches, employing structure-based and ligand-based methods (Table 1). Structure-
based design utilized protein structures, when available, to identify potential drug 
candidates that bind to target proteins implicated in pediatric diseases. This involved 

techniques like molecular docking and scoring to predict binding affinity. Ligand-based 
design, conversely, relied on known active molecules to build pharmacophore models or 

quantitative structure-activity relationship (QSAR) models, relating chemical structure to 
biological activity (IC_50, K_i, etc.). Successes included the identification of compounds 
with promising activity in vitro. However, these early methods often failed to adequately 

address the unique physiological characteristics of children, such as differences in drug 
metabolism, distribution, and target expression. This resulted in limited in vivo efficacy 

and highlighted the need for pediatric-specific CDD strategies. 

Table 1. Comparison of Traditional CDD Methods in Pediatrics. 

Feature Structure-Based Design Ligand-Based Design 

Basis Protein structure Known active molecules 

Techniques Molecular docking, scoring 
Pharmacophore models, 

QSAR models 

Input Data 3D structure of target protein 
Chemical structures and 

activity data (IC50, 𝐾𝑖, etc.) 

Output 
Potential drug candidates 

that bind to target proteins 

QSAR models relating 

structure to activity; 

identification of promising 

compounds. 

Successes 

Identification of compounds 

with promising in vitro 

activity 

Identification of compounds 

with promising in vitro 

activity. 

Limitations in Pediatrics 

Fails to adequately address 

unique pediatric 

physiological characteristics, 

such as drug metabolism, 

distribution, and target 

expression. This leads to 

limited in vivo efficacy. 

Fails to adequately address 

unique pediatric 

physiological characteristics, 

such as drug metabolism, 

distribution, and target 

expression. This leads to 

limited in vivo efficacy. 

2.2. Challenges in Pediatric Drug Development 

Pediatric drug development faces unique hurdles beyond those encountered in adult 
populations. Significant differences in physiology, including organ system maturation, 

body composition (𝑉body), and renal function (𝐺𝐹𝑅), impact drug absorption, distribution, 

metabolism, and excretion (ADME). Metabolic pathways, particularly those involving 
cytochrome P450 enzymes ( 𝐶𝑌𝑃450 ), exhibit age-dependent activity, leading to 
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unpredictable drug clearance and potential toxicity. Furthermore, disease presentation 

can vary significantly between children and adults, necessitating age-specific clinical trial 
designs and endpoints. These factors, compounded by ethical considerations in pediatric 
research and the relatively small market size for individual pediatric indications, 

underscore the urgent need for innovative approaches, such as computational drug 
design, to accelerate the development of safe and effective therapies for children [2]. 

3. GNNs for Drug-Target Interaction Prediction in Pediatric Diseases 

3.1. GNN Architectures for DTI Prediction 

GNNs have emerged as powerful tools for DTI prediction, offering various 

architectures suited for different aspects of drug and target representation. Graph 
Convolutional Networks (GCNs) utilize spectral convolutions to aggregate information 

from neighboring nodes, effectively capturing local structural patterns in both drug and 

protein graphs. The aggregation process can be represented as ℎ𝑖
(𝑙+1)

= 𝜎(∑𝑗∈𝑁(𝑖)
1

𝑐𝑖𝑗
𝑊(𝑙)ℎ𝑗

(𝑙)
), where ℎ𝑖

(𝑙)
 is the node feature at layer 𝑙, 𝑁(𝑖) is the neighborhood of node 𝑖, 

𝑐𝑖𝑗  is a normalization constant, and 𝑊(𝑙)  is a trainable weight matrix. GCNs are 

computationally efficient but can be limited in capturing long-range dependencies. 

Graph Attention Networks (GATs) address this limitation by introducing attention 
mechanisms, allowing nodes to selectively attend to their neighbors based on learned 
weights. This is particularly relevant for pediatric targets, where subtle structural 

variations can significantly impact drug binding. The attention coefficient 𝑒𝑖𝑗  is 

calculated as 𝑎(𝑊ℎ𝑖 ,𝑊ℎ𝑗). While GATs offer improved expressiveness, they can be more 

computationally demanding than GCNs. 
Message Passing Neural Networks (MPNNs) provide a general framework 

encompassing GCNs and GATs (Table 2). MPNNs consist of a message passing phase and 
a readout phase. The message passing phase iteratively updates node representations by 

aggregating information from their neighbors. The readout phase then uses these updated 
representations to predict DTI. The flexibility of MPNNs allows for customization to 

specific pediatric disease contexts, but requires careful design of the message and update 
functions. 

Table 2.: Performance Comparison of GNN Architectures for DTI Prediction. 

GNN 

Architecture 
Advantages Disadvantages 

Relevant to 

Pediatric 

Targets? 

Computational 

Cost 

Graph 

Convolutional 

Networks 

(GCNs) 

Computationally 

efficient, effectively 

captures local 

structural patterns. 

Limited in 

capturing long-

range 

dependencies. 

Useful for 

capturing basic 

structural 

features. 

Low 

Graph 

Attention 

Networks 

(GATs) 

Improved 

expressiveness, 

allows nodes to 

selectively attend to 

neighbors, suitable 

for capturing subtle 

structural variations. 

More 

computationally 

demanding than 

GCNs. 

Particularly 

relevant due to 

the need to 

capture subtle 

structural 

variations in 

pediatric targets. 

High 

Message 

Passing Neural 

Networks 

(MPNNs) 

General framework 

encompassing GCNs 

and GATs, high 

flexibility and 

customization. 

Requires careful 

design of 

message and 

update functions. 

Highly relevant 

due to the 

ability to 

customize to 

specific 

pediatric disease 

contexts. 

Medium to High 

(depending on 

implementation) 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 2 (2025) 
 

 178  

3.2. Application to Specific Pediatric Diseases 

GNNs are increasingly being applied to predict drug-target interactions (DTIs) for 

pediatric diseases, offering a promising avenue for accelerating drug discovery [3]. In 
childhood cancers, for example, GNNs have been employed to identify potential drug 
candidates for leukemia. By representing both drugs and target proteins as nodes in a 

graph, and their interactions as edges, GNN models can learn complex relationships and 
predict the likelihood of a drug binding to a specific target implicated in leukemia 

development. Features such as gene expression data or protein sequence information can 
be incorporated as node attributes, enhancing the predictive power of the model. Similarly, 
in neuroblastoma research, GNNs can be used to prioritize compounds that target 

proteins involved in tumor growth and metastasis. The ability of GNNs to handle 
heterogeneous data, including genomic, proteomic, and chemical information, is 

particularly beneficial in understanding the complex interplay of factors contributing to 
pediatric cancers. Furthermore, GNNs can be adapted to predict DTIs for genetic 
disorders affecting children, where identifying drugs that modulate the activity of specific 

disease-causing proteins is crucial. The benefits of using GNNs in these applications 
include improved prediction accuracy compared to traditional methods, the ability to 

identify novel drug targets, and the potential to personalize treatment strategies based on 
individual patient profiles. 

4. GNNs for Molecular Property Prediction and De Novo Design in Pediatrics 

4.1. Predicting ADMET Properties with GNNs 

Graph Neural Networks (GNNs) offer a powerful approach to predict ADMET 

(absorption, distribution, metabolism, excretion, and toxicity) properties of drug 
candidates, crucial for pediatric drug development. Accurately predicting these 
properties can significantly reduce the risk of adverse drug reactions in children, a 

population particularly vulnerable due to their developing physiology. GNNs can learn 
complex relationships between molecular structure and ADMET outcomes by 

representing molecules as graphs, where nodes represent atoms and edges represent 
bonds. These models can then be trained on existing ADMET data to predict these 
properties for novel compounds [4]. 

Specifically, GNNs can predict parameters like oral bioavailability (F), volume of 
distribution (V_d), metabolic clearance (CL), and potential for drug-drug interactions 

mediated by cytochrome P450 enzymes (Table 3). Furthermore, GNNs can be used to 
assess potential toxicities, such as hepatotoxicity and cardiotoxicity. By integrating these 
predictions early in the drug discovery process, researchers can prioritize compounds 

with favorable ADMET profiles, leading to safer and more effective medications for 
pediatric patients and reducing the need for extensive in vivo testing. 

Table 3. GNN-based ADMET prediction performance for Pediatric Drug Candidates. 

ADMET Property GNN Prediction 
Significance for Pediatric Drug 

Development 

Oral 

Bioavailability (𝐹) 

Predicts the fraction of drug 

absorbed into systemic 

circulation after oral 

administration. 

Crucial for determining appropriate oral 

dosages, considering children’s variable 

absorption rates. 

Volume of 

Distribution (𝑉𝑑) 

Estimates the extent to 

which a drug distributes 

throughout the body. 

Essential for calculating loading doses 

and understanding drug exposure in 

different tissues, especially in the context 

of age-related body composition 

changes. 

Metabolic 

Clearance (𝐶𝐿) 

Quantifies the rate at which 

a drug is removed from the 

body. 

Critical for determining dosing intervals, 

considering that children’s metabolic 
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pathways may be immature or different 

from adults. 

Cytochrome P450 

(CYP) Inhibition 

Predicts the potential for a 

drug to inhibit CYP 

enzymes, leading to drug-

drug interactions. 

Important for minimizing the risk of 

adverse drug reactions resulting from 

altered drug metabolism, as children 

may be more susceptible to these 

interactions. 

Hepatotoxicity 
Assesses the potential for a 

drug to cause liver damage. 

Essential for identifying and avoiding 

drugs that may pose a risk to children’s 

developing livers. 

Cardiotoxicity 
Estimates the risk of adverse 

effects on the heart. 

Critical to prevent any cardiac 

complications that can severely affect 

children. 

4.2. De Novo Drug Design Using GNNs 

GNNs offer a powerful approach to de novo drug design, enabling the generation of 
novel molecules tailored for pediatric diseases. These models can be trained on datasets 

of existing drugs and bioactive compounds, learning the complex relationships between 
molecular structure and desired properties like target affinity and ADMET profiles. By 

sampling from the learned chemical space, GNNs can propose new molecular structures 
predicted to possess specific characteristics relevant to treating childhood illnesses. 

However, applying de novo design to pediatric drug development presents unique 

challenges. Ensuring safety and efficacy in children requires careful consideration of age-
related physiological differences, such as variations in drug metabolism and organ 

development. GNN-generated molecules must be rigorously evaluated for potential off-
target effects and toxicity in pediatric-specific models. Furthermore, the limited 
availability of pediatric-specific data for training GNNs necessitates the development of 

transfer learning strategies and data augmentation techniques to improve model accuracy 
and reliability. The use of appropriate scoring functions that incorporate pediatric-specific 

parameters is also crucial for prioritizing promising drug candidates [5]. 

5. Comparison of GNNs with Other Methods and Current Challenges 

5.1. Comparison with Traditional Machine Learning Methods 

GNNs offer distinct advantages over traditional machine learning methods like 
support vector machines (SVMs) and random forests (RF) in computational drug design 

(CDD) for pediatric diseases (Table 4). Traditional methods often require manual feature 
engineering, a time-consuming and potentially biased process. GNNs, conversely, learn 

directly from the graph structure of molecules, capturing complex relationships between 
atoms and bonds without explicit feature definition. This is particularly beneficial when 
dealing with limited data, a common challenge in pediatric drug development. However, 

traditional methods can be more computationally efficient and require less training data 
than GNNs [6]. Furthermore, the interpretability of models like RF can be higher 

compared to the “black box” nature of some GNN architectures. The choice between 
GNNs and traditional methods depends on the specific application, data availability, and 
the need for interpretability versus predictive accuracy. 

Table 4. Comparative Analysis of GNNs vs. Traditional ML in CDD for Pediatrics. 

Feature GNNs Traditional ML (SVM, RF) 

Feature Engineering 
Automates feature extraction from 

graph structure. 

Requires manual, often time-

consuming, feature engineering. 

Data Requirements 
Can handle limited data but 

generally benefit from more data. 

Can perform well with less 

training data. 
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Computational 

Efficiency 

Can be computationally 

expensive, especially for large 

graphs. 

Generally more computationally 

efficient. 

Interpretability 

Often considered “black box” 

models with lower 

interpretability, although progress 

is being made in explainable 

GNNs. 

Can offer higher interpretability 

(e.g., RF feature importance). 

Capability to 

capture complex 

relationships 

Excellent at capturing complex 

relationships between atoms and 

bonds. 

Limited ability to capture 

complex relationships without 

extensive feature engineering. 

Suitability for 

Limited Data 

(Pediatrics) 

Particularly beneficial when 

dealing with limited data, a 

common challenge in pediatric 

drug development. 

Can be effective with limited 

data, but performance may be 

limited by the need for manual 

feature engineering. 

Predictive Accuracy 

Potentially higher predictive 

accuracy by learning directly from 

the graph structure. 

Predictive accuracy depends 

heavily on the quality of hand-

engineered features. 

5.2. Challenges and Limitations of GNNs in Pediatric CDD 

GNNs, while promising, face significant hurdles in pediatric computational drug 

design (CDD) (Table 5). Data scarcity is a primary concern, as pediatric-specific datasets 
for drug activity and safety are often limited compared to adult data [7]. This can lead to 
overfitting and poor generalization of GNN models. Furthermore, the “black box” nature 

of many GNN architectures hinders interpretability. Understanding why a GNN predicts 
a certain outcome is crucial for building trust and facilitating rational drug design. 

Improved methods for explaining GNN predictions, such as attention mechanisms or 
feature importance analysis, are needed. Finally, rigorous validation of GNN predictions 
is essential [8]. Due to the limited availability of pediatric clinical trial data, alternative 

validation strategies, such as physiologically-based pharmacokinetic (PBPK) modeling 
and in vitro studies, are necessary to ensure the safety and efficacy of predicted drug 

candidates. Addressing these challenges is critical for realizing the full potential of GNNs 
in pediatric CDD [9,10]. 

Table 5. Challenges in Applying GNNs to Pediatric Drug Discovery. 

Challenge Description 

Data Scarcity 

Limited pediatric-specific datasets for drug activity and safety 

compared to adult data. This can lead to overfitting and poor 

generalization of GNN models. 

Lack of 

Interpretability 

The “black box” nature of many GNN architectures hinders 

understanding why a GNN predicts a certain outcome, which is crucial 

for building trust and facilitating rational drug design. Improved 

methods for explaining GNN predictions, such as attention 

mechanisms or feature importance analysis, are needed. 

Validation 

Difficulties 

Limited availability of pediatric clinical trial data necessitates 

alternative validation strategies, such as physiologically-based 

pharmacokinetic (PBPK) modeling and in vitro studies, to ensure the 

safety and efficacy of predicted drug candidates. 

6. Future Perspectives 

6.1. Integrating Multi-Omics Data 

Integrating multi-omics data holds immense promise for enhancing GNN-driven 

drug discovery for pediatric diseases [11]. By incorporating genomics, transcriptomics, 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 2 (2025) 
 

 181  

proteomics, and metabolomics data, GNNs can gain a more holistic understanding of 

disease mechanisms specific to children. For instance, integrating gene expression data 
( 𝑥𝑖 ) with protein-protein interaction networks can reveal key regulatory pathways 
dysregulated in pediatric cancers [12]. However, significant challenges exist. These 

include the inherent heterogeneity and high dimensionality of multi-omics data, requiring 
sophisticated feature engineering and data normalization techniques. Furthermore, 

effectively integrating data with varying scales and formats, while accounting for patient-
specific variations, remains a crucial hurdle. Overcoming these challenges will be essential 
to fully realize the potential of multi-omics informed GNNs in pediatric drug 

development [13,14]. 

6.2. Personalized Medicine Approaches 

GNNs hold immense promise for personalized medicine in pediatric diseases, 

enabling treatment strategies tailored to individual patient profiles [15]. By integrating 
multi-omic data, such as genomics, transcriptomics, and proteomics, into graph-based 
representations, GNNs can identify patient-specific disease mechanisms [16]. For instance, 

a patient’s genetic mutations (𝑔𝑖), combined with clinical data (𝑐𝑖), can be encoded as node 
features within a patient-specific graph. GNNs can then learn complex relationships 

between these features and predict individual treatment responses [17]. This approach 
allows for the identification of optimal drug candidates and dosages for each patient, 
minimizing adverse effects and maximizing therapeutic efficacy. Furthermore, GNNs can 

facilitate the discovery of novel biomarkers for disease stratification and treatment 
monitoring, paving the way for more precise and effective interventions in pediatric 

populations [18]. 

7. Conclusion 

7.1. Summary of Key Findings 

This review highlights the promising potential of Graph Neural Networks (GNNs) 
in revolutionizing Computational Drug Design (CDD) for pediatric diseases. Our analysis 

reveals that GNNs excel at capturing complex relationships within biological data, 
leading to improved prediction accuracy in tasks such as drug-target interaction 
prediction, toxicity assessment, and de novo molecule generation. Specifically, GNNs 

demonstrate a superior ability to model intricate molecular structures and biological 
networks compared to traditional methods. However, the application of GNNs in 

pediatric CDD remains relatively nascent. Significant challenges persist, including the 
limited availability of pediatric-specific data and the need for GNN architectures tailored 
to the unique biological characteristics of children. Further research is crucial to address 

these limitations and unlock the full potential of GNNs in developing safer and more 
effective treatments for pediatric diseases. Future work should focus on developing novel 

GNN architectures and incorporating multi-omics data to improve prediction accuracy 
and robustness. 
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