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Abstract: Accurate robotic placement of small industrial components requires stable depth
interpretation under noisy factory conditions. We present a depth-integrated spatial mapping
framework that reconstructs volumetric geometric fields using denoised depth cues and surface
continuity priors. A geometry-consistency optimizer corrects depth-induced inconsistencies,
enhancing spatial reliability. Tests on AssemblyDepth-2025 and RoboPlacement datasets show
reductions of 29.1% in spatial variance and 17.4% in depth distortion. Real-factory deployment
improves placement accuracy by 22.5% and reduces misalignment events by 19.1%. The framework
demonstrates strong repeatability over 10,000+ cycles.
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1. Introduction

Accurate placement of small components is a critical requirement in robotic assembly,
where even minor deviations can lead to misalignment, assembly jams, or reduced
throughput. Depth cameras, stereo vision, and time-of-flight sensors have therefore
become key sensing modalities for robotic pick-and-place systems, especially in flexible
manufacturing where fixtures are minimal [1]. Recent reviews highlight that depth
information plays a central role in maintaining positioning accuracy under varying
layouts and part configurations [2]. Although end-effector vision systems can achieve
high precision in controlled environments, their performance degrades when exposed to
occlusion, vibration, or calibration drift over long operation periods [3]. Studies on digital-
twin alignment and 6D spatial analysis further show that small residual spatial errors
accumulate across repeated cycles, reinforcing the need for stable and drift-resistant
depth-based geometric models [4].

Volumetric mapping offers a structured way to convert depth readings into usable
geometric information for robot motion and placement. Popular approaches include
truncated signed distance function (TSDF) fusion, voxel-based mapping, and hybrid
point-voxel architectures [5,6]. TSDF-based SLAM systems fuse large numbers of depth
frames to produce smooth global surfaces, while hierarchical data structures such as
block-based grids maintain fast update rates with moderate memory cost [7]. Panoptic
reconstruction pipelines extend this idea by jointly refining depth maps and semantic
regions, reducing noise and improving surface continuity in cluttered industrial layouts
[8]. However, these mapping methods were designed primarily for navigation or scene
reconstruction. Their evaluation metrics-such as global map consistency, drift, or
segmentation accuracy-do not fully capture the cycle-to-cycle spatial stability required for
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high-precision assembly at pockets, joints, or confined insertion areas [9]. Depth-
refinement research addresses part of this challenge. RGB-guided refinement models help
fill missing regions and reduce sensor noise, improving depth completeness in irregular
scenes [10]. Geometry-aware refinement, which relies on point-cloud back-projection and
structural cues, can improve depth reliability when observing reflective or thin-edged
components [11]. Test-time adaptation has also been explored to mitigate cross-domain
depth error when factory conditions change unexpectedly [12]. Robot-centric refinement
strategies combine depth completion with viewpoint planning to reduce occlusion in
cluttered bins or trays [13]. Research on robot vision and positional optimisation
underscores that stable depth perception is essential for reliable end-effector accuracy in
industrial manipulation. Nevertheless, refinement is typically performed separately from
volumetric fusion, making it difficult to analyse how residual noise propagates into the
fused volume and affects placement precision. Parallel advances in 6D pose estimation
offer strong results for object-level localisation. Methods combining volumetric fusion,
CAD priors, and RGB-D cues have achieved high accuracy in cluttered environments and
have been applied to grasping, fitting, and fine-alignment tasks [14]. New large-scale
datasets include realistic industrial noise, improving model robustness across varied
component geometries [15]. Digital-twin systems further integrate CAD-accurate models
into pose-estimation pipelines to guide robot motion planning [16]. However, these works
largely assume that the underlying map is sufficiently accurate, and they rarely examine
how local inconsistencies inside the fused volume affect placement reliability over many
thousands of cycles [17]. Despite ongoing progress, several open gaps remain in depth-
based robotic placement research. Existing fusion pipelines do not explicitly aim to
minimise spatial variance at high-precision contact regions. Many evaluations rely on
short sequences or synthetic clutter and do not reflect long-term factory conditions such
as vibration, temperature drift, scattered reflections, and lighting fluctuations.
Furthermore, only a few studies explicitly link volumetric reconstruction quality to
practical assembly metrics such as misalignment frequency, geometric drift, or cycle-
based failure rates. These limitations highlight the need for depth-processing frameworks
that stabilise geometry directly in regions critical for precision assembly and that integrate
refinement and mapping in a unified pipeline.

This study presents a depth-integrated spatial mapping framework designed for
robotic placement of small industrial components. Instead of treating refinement and
mapping as separate procedures, the proposed method jointly reconstructs volumetric
geometry by combining denoised depth cues with surface-continuity constraints. A
geometry-consistency optimiser corrects depth-related inconsistencies inside the TSDF
volume, producing locally stable surfaces at fixture and insertion regions. We evaluate the
approach on the AssemblyDepth-2025 and RoboPlacement datasets, as well as in a real
factory deployment, analysing its influence on spatial variance, depth distortion, and
misalignment events across more than 10,000 placement cycles. Results demonstrate
significantly improved placement stability and a clearer correlation between depth
processing, volumetric mapping quality, and assembly accuracy. These findings show
that depth-integrated mapping provides a practical and robust foundation for high-
precision robotic assembly in dynamic industrial environments.

2. Materials and Methods
2.1. Sample Set and Study Area

This study used 1,280 small industrial components collected from two automated
assembly stations. The parts included metal brackets, plastic housings, and composite
inserts with sizes between 12 mm and 45 mm. Depth data were recorded under regular
factory conditions where vibration, changing illumination, and partial occlusion are
common. The experiments were carried out in a 1.2 m x 0.8 m workspace around a six-
axis robot arm. An RGB-D camera was mounted 38 cm above the placement surface to
observe the entire work area. All samples were measured during normal production
hours so that the dataset reflected real variations in noise and surface appearance.
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2.2. Experimental Design and Control Groups

A two-part design was used to examine the contribution of each element of the
mapping framework. First, the proposed depth-integrated method was compared with a
standard TSDF fusion baseline that is often used in industrial cells. Second, a geometry-
consistency module was added to the system and tested against a version that applied
depth filtering alone. Each setting was evaluated through 10,000 repeated placement
cycles. The robot followed the same programmed path and the same lighting schedule in
all groups to ensure comparable conditions. This arrangement allowed us to separate the
influence of depth denoising, volumetric fusion, and geometric correction.

2.3. Measurement Procedures and Quality Control

Depth frames were captured at 30 Hz using factory-calibrated intrinsic parameters.
Before each test run, the camera was checked with a reference plate whose plane was
known. If the measured deviation exceeded 0.15 mm, a recalibration was performed.
Placement accuracy was measured using a laser gauge positioned perpendicular to the
placement surface. A cycle was marked as misaligned when the final offset exceeded the
tolerance defined by the production line. To confirm the reliability of the automated log,
200 cycles were selected at random and reviewed independently by three operators. No
adjustments were made unless all reviewers agreed on the correction.

2.4. Data Processing and Computational Formulation

Depth images were first processed with a temporal median filter. A smoothness
constraint was then applied to reduce sharp fluctuations caused by noise. Each filtered
depth map Dy(x, y) was back-projected into 3D space and fused into a voxel grid V. The
update rule for each voxel i was:
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where Vi(k) is the current TSDF value, di(k)is the new signed distance, and « is a
constant weight.

Spatial stability across repeated placements was evaluated using the variance of

measured positions. For a target point, the variance o> was computed as:
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where P, is the measured position at cycle j and p is the average over all cycles.

2.5. Computational Environment and Parameter Settings

All mapping and optimisation steps were implemented in C++ with GPU support.
The voxel grid had a 1.2-mm resolution. The geometry-consistency optimiser ran at 18-22
ms per frame. Processing was performed on an industrial workstation equipped with an
RTX A5000 GPU and a 3.4-GHz CPU. Key parameters-including the fusion weight
a\alphaa, truncation distance, and smoothness coefficient-were held constant for all
experiments. System logs were stored to verify that timing variations or hardware
conditions did not affect placement measurements.

3. Results and Discussion
3.1. Reduction in Spatial Variance and Depth Distortion

Across both AssemblyDepth-2025 and RoboPlacement datasets, the depth-integrated
mapping achieves lower spatial spread and depth error than the baseline. On
AssemblyDepth-2025, the baseline TSDF method produces a mean spatial variance of 0.81
mm?, while the proposed method reduces this to 0.57 mm? (-29.6%). The mean depth error
drops from 0.84 mm to 0.69 mm (-17.9%). Similar improvements appear on
RoboPlacement, where spatial variance decreases from 0.76 mm? to 0.54 mm? and depth
error decreases from 0.79 mm to 0.65 mm. These values match the overall 29.1% and 17.4%
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reductions reported earlier. Most of the gains come from stabilising local surfaces across
overlapping depth views. The baseline relies mainly on frame-wise denoising and simple
averaging, which do not correct surface warping around shiny or partially occluded parts.
Earlier studies have noted similar issues in multi-view stereo or RGB-D mapping systems
used for robot tasks [18]. Figure 1 provides an example of multi-view RGB-D capture and
TSDF fusion used in contact-based operations.

Figure 1. Multi-view RGB-D data and fused volume used to recover the local surface layout in the
assembly area.

3.2. Effect on Placement Accuracy and Misalignment

We next assess how mapping accuracy affects robotic placement. On
AssemblyDepth-2025, the baseline pipeline yields a mean placement error of 1.24 mm.
With the depth-integrated mapping, the error falls to 0.96 mm (-22.6%). On
RoboPlacement, the error decreases from 1.31 mm to 1.02 mm (-22.1%). These reductions
match the improvements in reconstructed geometry. Misalignment events, defined as
placements exceeding a 1.5 mm tolerance, decrease by 19.1% over more than 10,000 cycles.
The reduction is most visible when placing small parts near occlusion boundaries or on
brushed metal surfaces where raw depth data contain structured noise. Similar
observations were made in a recent study on robot positioning using machine-learning-
based correction, although that work required additional sensors and long calibration
periods [19]. The error distribution also becomes tighter. On AssemblyDepth-2025, the
95th-percentile error decreases from 2.11 mm to 1.65 mm. This is consistent with work
that emphasises the importance of reducing extreme deviations rather than focusing only
on the mean error [20]. Figure 2 shows how long-term placement accuracy and
repeatability can be monitored in industrial settings.
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Figure 2. Placement error and repeatability trends recorded during long-duration operation.

3.3. Robustness under Noise and Operating Disturbances

Additional tests were run under changing illumination, airborne particles, and
controlled vibration applied to the robot base. Under these conditions, the baseline
method experiences a 24.3% increase in depth distortion and a 19.7% rise in spatial
variance on AssemblyDepth-2025. In contrast, the proposed method limits the increases
to 8.6% and 7.9% respectively. On RoboPlacement, the baseline rises by 27.1% and 21.3%,
while the proposed method increases only by 9.4% and 8.7%. The geometry-consistency
module plays the largest role here. It suppresses depth spikes and small geometric shifts
that remain after temporal filtering. This behaviour aligns with findings from noise-
modelling work showing that structured artifacts cannot be removed by averaging alone.
Unlike studies that evaluate robotics perception in controlled indoor labs, our
experiments include real production-line motion and background activity [21]. This helps
close the gap between lab-scale mapping studies and factory-floor conditions. Another
practical observation is that the method degrades gradually as noise increases, which is
important for long-running systems that experience sensor aging or seasonal lighting
changes.

3.4. Comparison with Related Work and Remaining Limitations

Calibration-based methods can reach very high accuracy through detailed robot
models and error maps, but they require extra equipment and periodic recalibration,
which may interrupt production. Learning-based approaches can adapt to task-specific
patterns, though they usually require large datasets and their internal decision process is
more difficult to interpret [22]. Our method takes a different route by improving the depth
field itself. By adjusting volumetric fusion at the voxel level, the mapping becomes more
reliable without modifying robot control or adding sensors. This design also makes it
easier to identify geometric errors, because inconsistencies appear directly in the
reconstructed volume. The approach is compatible with existing motion-planning
pipelines used in small-part assembly. Some limitations remain. The tested parts have
limited variation in material and surface finish. Transparent, highly reflective, or
deformable objects still present challenges for depth cameras [23]. The method also
assumes that the workpiece stays still during mapping. Extending the system to fast-
moving conveyors will require tighter coupling between mapping and object tracking. In
addition, although the optimizer runs in real time for our cell, its fixed overhead needs to
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be evaluated for larger workspaces and higher-resolution sensors. Even with these
limitations, the observed 22.5% improvement in placement accuracy and 19.1% reduction
in misalignment suggest that depth-integrated spatial mapping can improve small-part
assembly on existing robot lines. It can also be combined with calibration or learning-
based methods in future systems to meet stricter tolerances.

4. Conclusion

This work introduced a depth-integrated spatial mapping method aimed at
improving robotic placement of small industrial components. The framework combines
filtered depth data with constraints on local surface shape, which leads to lower spatial
variance and reduced depth error in both controlled datasets and factory tests. The
improved depth field results in more accurate placement and fewer misalignment events
over long runs, showing that stable geometric reconstruction can support more reliable
assembly. The method fits easily into current robot systems because it does not require
extra sensors or major changes to motion planning. Some limitations remain, especially
for transparent or deformable parts and for cases where the workpiece moves quickly.
Even so, the results indicate that depth-based mapping can provide a practical foundation
for higher-precision assembly and can be extended in future work to support broader
manufacturing tasks.
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