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Abstract: Accurate robotic placement of small industrial components requires stable depth 

interpretation under noisy factory conditions. We present a depth-integrated spatial mapping 

framework that reconstructs volumetric geometric fields using denoised depth cues and surface 

continuity priors. A geometry-consistency optimizer corrects depth-induced inconsistencies, 

enhancing spatial reliability. Tests on AssemblyDepth-2025 and RoboPlacement datasets show 

reductions of 29.1% in spatial variance and 17.4% in depth distortion. Real-factory deployment 

improves placement accuracy by 22.5% and reduces misalignment events by 19.1%. The framework 

demonstrates strong repeatability over 10,000+ cycles. 
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1. Introduction 

Accurate placement of small components is a critical requirement in robotic assembly, 

where even minor deviations can lead to misalignment, assembly jams, or reduced 

throughput. Depth cameras, stereo vision, and time-of-flight sensors have therefore 

become key sensing modalities for robotic pick-and-place systems, especially in flexible 

manufacturing where fixtures are minimal [1]. Recent reviews highlight that depth 

information plays a central role in maintaining positioning accuracy under varying 

layouts and part configurations [2]. Although end-effector vision systems can achieve 

high precision in controlled environments, their performance degrades when exposed to 

occlusion, vibration, or calibration drift over long operation periods [3]. Studies on digital-

twin alignment and 6D spatial analysis further show that small residual spatial errors 

accumulate across repeated cycles, reinforcing the need for stable and drift-resistant 

depth-based geometric models [4]. 

Volumetric mapping offers a structured way to convert depth readings into usable 

geometric information for robot motion and placement. Popular approaches include 

truncated signed distance function (TSDF) fusion, voxel-based mapping, and hybrid 

point-voxel architectures [5,6]. TSDF-based SLAM systems fuse large numbers of depth 

frames to produce smooth global surfaces, while hierarchical data structures such as 

block-based grids maintain fast update rates with moderate memory cost [7]. Panoptic 

reconstruction pipelines extend this idea by jointly refining depth maps and semantic 

regions, reducing noise and improving surface continuity in cluttered industrial layouts 

[8]. However, these mapping methods were designed primarily for navigation or scene 

reconstruction. Their evaluation metrics-such as global map consistency, drift, or 

segmentation accuracy-do not fully capture the cycle-to-cycle spatial stability required for 
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high-precision assembly at pockets, joints, or confined insertion areas [9]. Depth-

refinement research addresses part of this challenge. RGB-guided refinement models help 

fill missing regions and reduce sensor noise, improving depth completeness in irregular 

scenes [10]. Geometry-aware refinement, which relies on point-cloud back-projection and 

structural cues, can improve depth reliability when observing reflective or thin-edged 

components [11]. Test-time adaptation has also been explored to mitigate cross-domain 

depth error when factory conditions change unexpectedly [12]. Robot-centric refinement 

strategies combine depth completion with viewpoint planning to reduce occlusion in 

cluttered bins or trays [13]. Research on robot vision and positional optimisation 

underscores that stable depth perception is essential for reliable end-effector accuracy in 

industrial manipulation. Nevertheless, refinement is typically performed separately from 

volumetric fusion, making it difficult to analyse how residual noise propagates into the 

fused volume and affects placement precision. Parallel advances in 6D pose estimation 

offer strong results for object-level localisation. Methods combining volumetric fusion, 

CAD priors, and RGB-D cues have achieved high accuracy in cluttered environments and 

have been applied to grasping, fitting, and fine-alignment tasks [14]. New large-scale 

datasets include realistic industrial noise, improving model robustness across varied 

component geometries [15]. Digital-twin systems further integrate CAD-accurate models 

into pose-estimation pipelines to guide robot motion planning [16]. However, these works 

largely assume that the underlying map is sufficiently accurate, and they rarely examine 

how local inconsistencies inside the fused volume affect placement reliability over many 

thousands of cycles [17]. Despite ongoing progress, several open gaps remain in depth-

based robotic placement research. Existing fusion pipelines do not explicitly aim to 

minimise spatial variance at high-precision contact regions. Many evaluations rely on 

short sequences or synthetic clutter and do not reflect long-term factory conditions such 

as vibration, temperature drift, scattered reflections, and lighting fluctuations. 

Furthermore, only a few studies explicitly link volumetric reconstruction quality to 

practical assembly metrics such as misalignment frequency, geometric drift, or cycle-

based failure rates. These limitations highlight the need for depth-processing frameworks 

that stabilise geometry directly in regions critical for precision assembly and that integrate 

refinement and mapping in a unified pipeline. 

This study presents a depth-integrated spatial mapping framework designed for 

robotic placement of small industrial components. Instead of treating refinement and 

mapping as separate procedures, the proposed method jointly reconstructs volumetric 

geometry by combining denoised depth cues with surface-continuity constraints. A 

geometry-consistency optimiser corrects depth-related inconsistencies inside the TSDF 

volume, producing locally stable surfaces at fixture and insertion regions. We evaluate the 

approach on the AssemblyDepth-2025 and RoboPlacement datasets, as well as in a real 

factory deployment, analysing its influence on spatial variance, depth distortion, and 

misalignment events across more than 10,000 placement cycles. Results demonstrate 

significantly improved placement stability and a clearer correlation between depth 

processing, volumetric mapping quality, and assembly accuracy. These findings show 

that depth-integrated mapping provides a practical and robust foundation for high-

precision robotic assembly in dynamic industrial environments. 

2. Materials and Methods 

2.1. Sample Set and Study Area 

This study used 1,280 small industrial components collected from two automated 

assembly stations. The parts included metal brackets, plastic housings, and composite 

inserts with sizes between 12 mm and 45 mm. Depth data were recorded under regular 

factory conditions where vibration, changing illumination, and partial occlusion are 

common. The experiments were carried out in a 1.2 m × 0.8 m workspace around a six-

axis robot arm. An RGB-D camera was mounted 38 cm above the placement surface to 

observe the entire work area. All samples were measured during normal production 

hours so that the dataset reflected real variations in noise and surface appearance. 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 2 (2025) 
 

 170  

2.2. Experimental Design and Control Groups 

A two-part design was used to examine the contribution of each element of the 

mapping framework. First, the proposed depth-integrated method was compared with a 

standard TSDF fusion baseline that is often used in industrial cells. Second, a geometry-

consistency module was added to the system and tested against a version that applied 

depth filtering alone. Each setting was evaluated through 10,000 repeated placement 

cycles. The robot followed the same programmed path and the same lighting schedule in 

all groups to ensure comparable conditions. This arrangement allowed us to separate the 

influence of depth denoising, volumetric fusion, and geometric correction. 

2.3. Measurement Procedures and Quality Control 

Depth frames were captured at 30 Hz using factory-calibrated intrinsic parameters. 

Before each test run, the camera was checked with a reference plate whose plane was 

known. If the measured deviation exceeded 0.15 mm, a recalibration was performed. 

Placement accuracy was measured using a laser gauge positioned perpendicular to the 

placement surface. A cycle was marked as misaligned when the final offset exceeded the 

tolerance defined by the production line. To confirm the reliability of the automated log, 

200 cycles were selected at random and reviewed independently by three operators. No 

adjustments were made unless all reviewers agreed on the correction. 

2.4. Data Processing and Computational Formulation 

Depth images were first processed with a temporal median filter. A smoothness 

constraint was then applied to reduce sharp fluctuations caused by noise. Each filtered 

depth map Dt(x, y) was back-projected into 3D space and fused into a voxel grid V. The 

update rule for each voxel i was: 

Vi
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=
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(k)
Vi

(k)
+αdi

(k)
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(k)
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where Vi
(k)

 is the current TSDF value, di
(k)

is the new signed distance, and α is a 

constant weight. 

Spatial stability across repeated placements was evaluated using the variance of 

measured positions. For a target point, the variance σ2 was computed as: 

σ2=
1

N
∑ (

N
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p
j
-p̄)2, 

where p
j
 is the measured position at cycle j and p̄ is the average over all cycles. 

2.5. Computational Environment and Parameter Settings 

All mapping and optimisation steps were implemented in C++ with GPU support. 

The voxel grid had a 1.2-mm resolution. The geometry-consistency optimiser ran at 18-22 

ms per frame. Processing was performed on an industrial workstation equipped with an 

RTX A5000 GPU and a 3.4-GHz CPU. Key parameters-including the fusion weight 

α\alphaα, truncation distance, and smoothness coefficient-were held constant for all 

experiments. System logs were stored to verify that timing variations or hardware 

conditions did not affect placement measurements. 

3. Results and Discussion 

3.1. Reduction in Spatial Variance and Depth Distortion 

Across both AssemblyDepth-2025 and RoboPlacement datasets, the depth-integrated 

mapping achieves lower spatial spread and depth error than the baseline. On 

AssemblyDepth-2025, the baseline TSDF method produces a mean spatial variance of 0.81 

mm², while the proposed method reduces this to 0.57 mm² (−29.6%). The mean depth error 

drops from 0.84 mm to 0.69 mm (−17.9%). Similar improvements appear on 

RoboPlacement, where spatial variance decreases from 0.76 mm² to 0.54 mm² and depth 

error decreases from 0.79 mm to 0.65 mm. These values match the overall 29.1% and 17.4% 
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reductions reported earlier. Most of the gains come from stabilising local surfaces across 

overlapping depth views. The baseline relies mainly on frame-wise denoising and simple 

averaging, which do not correct surface warping around shiny or partially occluded parts. 

Earlier studies have noted similar issues in multi-view stereo or RGB-D mapping systems 

used for robot tasks [18]. Figure 1 provides an example of multi-view RGB-D capture and 

TSDF fusion used in contact-based operations. 

 

Figure 1. Multi-view RGB-D data and fused volume used to recover the local surface layout in the 

assembly area. 

3.2. Effect on Placement Accuracy and Misalignment 

We next assess how mapping accuracy affects robotic placement. On 

AssemblyDepth-2025, the baseline pipeline yields a mean placement error of 1.24 mm. 

With the depth-integrated mapping, the error falls to 0.96 mm (−22.6%). On 

RoboPlacement, the error decreases from 1.31 mm to 1.02 mm (−22.1%). These reductions 

match the improvements in reconstructed geometry. Misalignment events, defined as 

placements exceeding a 1.5 mm tolerance, decrease by 19.1% over more than 10,000 cycles. 

The reduction is most visible when placing small parts near occlusion boundaries or on 

brushed metal surfaces where raw depth data contain structured noise. Similar 

observations were made in a recent study on robot positioning using machine-learning-

based correction, although that work required additional sensors and long calibration 

periods [19]. The error distribution also becomes tighter. On AssemblyDepth-2025, the 

95th-percentile error decreases from 2.11 mm to 1.65 mm. This is consistent with work 

that emphasises the importance of reducing extreme deviations rather than focusing only 

on the mean error [20]. Figure 2 shows how long-term placement accuracy and 

repeatability can be monitored in industrial settings. 
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Figure 2. Placement error and repeatability trends recorded during long-duration operation. 

3.3. Robustness under Noise and Operating Disturbances 

Additional tests were run under changing illumination, airborne particles, and 

controlled vibration applied to the robot base. Under these conditions, the baseline 

method experiences a 24.3% increase in depth distortion and a 19.7% rise in spatial 

variance on AssemblyDepth-2025. In contrast, the proposed method limits the increases 

to 8.6% and 7.9% respectively. On RoboPlacement, the baseline rises by 27.1% and 21.3%, 

while the proposed method increases only by 9.4% and 8.7%. The geometry-consistency 

module plays the largest role here. It suppresses depth spikes and small geometric shifts 

that remain after temporal filtering. This behaviour aligns with findings from noise-

modelling work showing that structured artifacts cannot be removed by averaging alone. 

Unlike studies that evaluate robotics perception in controlled indoor labs, our 

experiments include real production-line motion and background activity [21]. This helps 

close the gap between lab-scale mapping studies and factory-floor conditions. Another 

practical observation is that the method degrades gradually as noise increases, which is 

important for long-running systems that experience sensor aging or seasonal lighting 

changes. 

3.4. Comparison with Related Work and Remaining Limitations 

Calibration-based methods can reach very high accuracy through detailed robot 

models and error maps, but they require extra equipment and periodic recalibration, 

which may interrupt production. Learning-based approaches can adapt to task-specific 

patterns, though they usually require large datasets and their internal decision process is 

more difficult to interpret [22]. Our method takes a different route by improving the depth 

field itself. By adjusting volumetric fusion at the voxel level, the mapping becomes more 

reliable without modifying robot control or adding sensors. This design also makes it 

easier to identify geometric errors, because inconsistencies appear directly in the 

reconstructed volume. The approach is compatible with existing motion-planning 

pipelines used in small-part assembly. Some limitations remain. The tested parts have 

limited variation in material and surface finish. Transparent, highly reflective, or 

deformable objects still present challenges for depth cameras [23]. The method also 

assumes that the workpiece stays still during mapping. Extending the system to fast-

moving conveyors will require tighter coupling between mapping and object tracking. In 

addition, although the optimizer runs in real time for our cell, its fixed overhead needs to 
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be evaluated for larger workspaces and higher-resolution sensors. Even with these 

limitations, the observed 22.5% improvement in placement accuracy and 19.1% reduction 

in misalignment suggest that depth-integrated spatial mapping can improve small-part 

assembly on existing robot lines. It can also be combined with calibration or learning-

based methods in future systems to meet stricter tolerances. 

4. Conclusion 

This work introduced a depth-integrated spatial mapping method aimed at 

improving robotic placement of small industrial components. The framework combines 

filtered depth data with constraints on local surface shape, which leads to lower spatial 

variance and reduced depth error in both controlled datasets and factory tests. The 

improved depth field results in more accurate placement and fewer misalignment events 

over long runs, showing that stable geometric reconstruction can support more reliable 

assembly. The method fits easily into current robot systems because it does not require 

extra sensors or major changes to motion planning. Some limitations remain, especially 

for transparent or deformable parts and for cases where the workpiece moves quickly. 

Even so, the results indicate that depth-based mapping can provide a practical foundation 

for higher-precision assembly and can be extended in future work to support broader 

manufacturing tasks. 
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