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Abstract: Random Forest models rely on well-chosen hyperparameters, but common search
methods often run slowly and give uneven results across datasets. This study introduces an
Improved Whale Optimization Algorithm (IWOA) that updates inertia weight and step size during
the search. The method was tested on twelve UCI classification datasets and compared with
standard WOA-RF, PSO-RF, and DE-RF. IWOA-RF increased mean accuracy by 3.8% over WOA-
RF and lowered training time by 11%. It also showed steadier results across repeated runs. The
convergence curves showed that INOA reached good solutions in fewer iterations. These results
suggest that small changes in the update rules can make WOA more suitable for tuning RF models.
The study also notes that only classification tasks were tested, and future work should include
regression datasets and more complex RF settings.
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1. Introduction

Random Forest (RF) is widely applied in classification tasks because it models
nonlinear patterns, handles heterogeneous data types, and remains robust under
moderate noise with minimal preprocessing [1]. Despite these strengths, RF performance
depends critically on its hyperparameters-such as the number of trees, maximum depth,
and feature-sampling rate-which jointly affect predictive accuracy and computational cost.
Classical tuning strategies including grid search and random search become inefficient
when the search space grows large, as they require repeated model evaluations and often
fail to capture complex interactions among parameters [2]. This limitation has motivated
a growing body of research that applies metaheuristic optimization to automate RF
hyperparameter selection and improve accuracy across diverse datasets [3]. Recent
advances show that the design of the metaheuristic itself can substantially influence the
stability and convergence of the optimization process. For example, one recent study
introduced an improved dung beetle-based optimizer for RF tuning, demonstrating that
enhanced update mechanisms and adaptive search strategies can yield more reliable
hyperparameter selection compared with conventional approaches [4]. This result
highlights a broader trend: performance gains increasingly depend not only on which
metaheuristic is used, but on how its search operators, parameter control rules, and
exploration-exploitation balance are designed.

Metaheuristic algorithms such as particle swarm optimization, evolutionary
strategies, and nature-inspired methods have been widely used for feature selection,
engineering design, and data-driven modeling [5,6]. Among these approaches, the Whale
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Optimization Algorithm (WOA) has received particular attention due to its simple
structure and minimal parameterization [7]. Although WOA performs well on many
optimization tasks, its standard formulation may suffer from early convergence or rapid
loss of diversity in complex, multimodal search spaces [8-10]. These limitations have
motivated a series of WOA variants incorporating adaptive inertia weights, dynamic step-
size control or Lévy-flight-based perturbations to improve global exploration and
maintain stable convergence behavior [11,12]. Despite progress in applying WOA to
machine learning models-including neural networks, SVMs, and ensemble methods-its
improved variants remain underexplored for RF tuning. Existing work often employs
basic versions of the algorithms, fixes internal parameters, or focuses mainly on final
accuracy without examining convergence speed, training time, or robustness across
datasets [13]. Furthermore, many studies evaluate improved optimizers only on synthetic
benchmarks or small engineering problems rather than realistic classification datasets.

This study proposes an Improved Whale Optimization Algorithm (IWOA)
integrating a dynamic inertia weight and an adaptive Lévy-flight-based step mechanism.
The goal is to enhance global exploration during early iterations while preserving strong
local refinement later, thus mitigating early convergence. The proposed IWOA is applied
to RF hyperparameter tuning and evaluated on several UCI datasets. Performance is
assessed in terms of classification accuracy, optimization stability, and training efficiency.
The results show that the enhanced WOA design can significantly improve RF tuning
while maintaining a simple and practical optimization framework for real-world
applications.

2. Materials and Methods
2.1. Dataset and Study Description

This study used twelve UCI classification datasets, covering different data sizes and
attribute types. The number of samples in these datasets ranged from 150 to more than
10,000, with both numerical and categorical variables. All datasets were publicly available
and widely used for testing classification models. No additional preprocessing was
performed apart from handling missing values and encoding categorical attributes. The
goal of using several datasets was to examine the behavior of the proposed method under
different data scales and feature distributions.

2.2. Experimental Design and Comparison Groups

The experiments compared the Improved Whale Optimization Algorithm applied to
Random Forest (IWOA-RF) with three reference groups. The test group used RF
hyperparameters tuned by IWOA. The first comparison group was the standard WOA-
RF, which used the original WOA without inertia or step-size adjustments. The second
group used Particle Swarm Optimization (PSO-RF), and the third group used Differential
Evolution (DE-RF). These methods were selected because they represent common choices
for hyperparameter tuning in machine learning. All models were trained with the same
training and test splits for each dataset to ensure fair comparison. Each experiment was
repeated ten times to reduce the effect of randomness in both the optimizer and the RF
model.

2.3. Measurement Procedures and Quality Control

Model performance was evaluated using accuracy, precision, recall, and F1 score. For
each dataset, the training and testing sets were created with a fixed random seed to ensure
consistent comparison across methods. A five-fold cross-validation was carried out to
check the stability of the results. To reduce noise in the evaluation, each optimizer was
run with the same population size, maximum iteration number, and stopping criteria. All
failed runs, such as those caused by numerical overflow or invalid parameter settings,
were removed and repeated to keep the comparison fair. During analysis, we inspected
the convergence curves of each method to identify early stagnation or unstable oscillations.

156



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

2.4. Data Processing and Model Formulation

Before optimization, input features were normalized to zero mean and unit variance.
RF accuracy was used as the objective function for the optimizer. For a given set of
hyperparameters, the fitness value was defined as:
f=1-Accuracy,
So that the optimizer aimed to minimize f. To examine the error behavior, the mean
absolute error (MAE) across repeated runs was computed as:

n
1
MAE=HZ ly9.1,
i=1
where y. represents the true class and §, denotes the predicted class. These
formulas allowed the analysis of both classification accuracy and stability. All optimizers

were implemented in Python, and RF was trained using the same entropy-based splitting
rule for all experiments [14].

2.5. Statistical Analysis and Evaluation Criteria

Differences between IWOA-RF and the comparison groups were evaluated using
paired t-tests with a significance level of p <0.05. Mean accuracy, standard deviation, and
convergence time were reported for each dataset. Performance consistency was examined
by comparing the variance of the results across repeated runs. To assess convergence
speed, the number of iterations required to reach 90% of the best accuracy was recorded.
These evaluations helped determine whether the improvements came from higher
accuracy, faster convergence, or more stable search behavior across datasets.

3. Results and Discussion
3.1. Overall Accuracy on UCI Datasets

Across the twelve UCI datasets, INOA-RF achieved the highest mean accuracy in
most tests (Figure 1). Its average accuracy was 3.8% higher than standard WOA-RF, and
it also performed better than PSO-RF and DE-RF. The advantage was clearer on datasets
with moderate dimension and noticeable class overlap.
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Figure 1. Mean accuracy and standard deviation for the four methods on the UCI datasets.
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3.2. Convergence Speed and Computation Time

IWOA-RF also showed faster convergence (Figure 2). It reached near-optimal
accuracy in fewer iterations and reduced training time by 11% compared with WOA-RF.
Standard WOA-RF and DE-RF generally required more iterations to reach similar

accuracy [15]. PSO-RF converged quickly on smaller datasets but showed larger variation
across runs.

(e) (f)

Figure 2. Convergence curves of the four methods averaged over ten runs.

3.3. Stability across Datasets and Comparison with Existing Work

IWOA-RF showed lower variance across repeated runs than the three comparison
methods. This suggests that the adaptive inertia and step-size design helps keep the
search stable and reduces dependence on the initial population. Previous studies on RF
tuning have noted that many optimizers perform well on some datasets but become less
stable when the data distribution changes [16,17]. In this study, the twelve datasets
differed in size, feature type, and class balance. IWOA-RF remained stable under these
changes. Compared with earlier RF-metaheuristic models developed for specific domains
such as traffic analysis or blasting design, this work places more emphasis on broad
testing and on analyzing both accuracy and consistency across datasets [18].

3.4. Influence of INOA Components and Remaining Limitations

Further tests examined the role of the two main update steps. Removing the dynamic
inertia term slowed down convergence and lowered accuracy. Removing the adaptive
step-size update increased the number of runs that became trapped in local optima. These
findings match earlier observations that multi-step WOA designs can help maintain
search diversity and improve local refinement [19,20]. This study still has limits. Only
twelve UCI datasets were used, and the focus was on classification tasks. High-
dimensional problems and regression tasks were not included. In addition, only a small
set of RF hyperparameters was tuned [21]. Future work should examine more complex
RF settings, larger datasets, and comparisons with newer optimizers, while also studying
how population size and stopping rules influence INOA performance [22].

4. Conclusion

This study introduced an Improved Whale Optimization Algorithm for adjusting
Random Forest hyperparameters. The method uses a dynamic inertia weight and a simple
step-size update to guide the search. Across twelve UCI datasets, it reached higher
accuracy than standard WOA-RF, PSO-RF, and DE-RF, and it also needed fewer iterations

158



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

to approach a stable result. The repeated runs showed smaller spread in accuracy, which
suggests that the update rules help keep the search steady. These findings show that a
light change in the update process can make WOA more suitable for routine machine-
learning tasks without adding extra tuning steps. The study still has limits, as only
classification datasets and a small group of RF parameters were tested. Future work
should include regression tasks, larger datasets, and more complex RF settings, and
should also examine whether the same ideas work for feature-selection problems or other
ensemble models.
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