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Abstract: Random Forest models rely on well-chosen hyperparameters, but common search 

methods often run slowly and give uneven results across datasets. This study introduces an 

Improved Whale Optimization Algorithm (IWOA) that updates inertia weight and step size during 

the search. The method was tested on twelve UCI classification datasets and compared with 

standard WOA-RF, PSO-RF, and DE-RF. IWOA-RF increased mean accuracy by 3.8% over WOA-

RF and lowered training time by 11%. It also showed steadier results across repeated runs. The 

convergence curves showed that IWOA reached good solutions in fewer iterations. These results 

suggest that small changes in the update rules can make WOA more suitable for tuning RF models. 

The study also notes that only classification tasks were tested, and future work should include 

regression datasets and more complex RF settings. 
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1. Introduction 

Random Forest (RF) is widely applied in classification tasks because it models 

nonlinear patterns, handles heterogeneous data types, and remains robust under 

moderate noise with minimal preprocessing [1]. Despite these strengths, RF performance 

depends critically on its hyperparameters-such as the number of trees, maximum depth, 

and feature-sampling rate-which jointly affect predictive accuracy and computational cost. 

Classical tuning strategies including grid search and random search become inefficient 

when the search space grows large, as they require repeated model evaluations and often 

fail to capture complex interactions among parameters [2]. This limitation has motivated 

a growing body of research that applies metaheuristic optimization to automate RF 

hyperparameter selection and improve accuracy across diverse datasets [3]. Recent 

advances show that the design of the metaheuristic itself can substantially influence the 

stability and convergence of the optimization process. For example, one recent study 

introduced an improved dung beetle-based optimizer for RF tuning, demonstrating that 

enhanced update mechanisms and adaptive search strategies can yield more reliable 

hyperparameter selection compared with conventional approaches [4]. This result 

highlights a broader trend: performance gains increasingly depend not only on which 

metaheuristic is used, but on how its search operators, parameter control rules, and 

exploration-exploitation balance are designed. 

Metaheuristic algorithms such as particle swarm optimization, evolutionary 

strategies, and nature-inspired methods have been widely used for feature selection, 

engineering design, and data-driven modeling [5,6]. Among these approaches, the Whale 
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Optimization Algorithm (WOA) has received particular attention due to its simple 

structure and minimal parameterization [7]. Although WOA performs well on many 

optimization tasks, its standard formulation may suffer from early convergence or rapid 

loss of diversity in complex, multimodal search spaces [8-10]. These limitations have 

motivated a series of WOA variants incorporating adaptive inertia weights, dynamic step-

size control or Lévy-flight-based perturbations to improve global exploration and 

maintain stable convergence behavior [11,12]. Despite progress in applying WOA to 

machine learning models-including neural networks, SVMs, and ensemble methods-its 

improved variants remain underexplored for RF tuning. Existing work often employs 

basic versions of the algorithms, fixes internal parameters, or focuses mainly on final 

accuracy without examining convergence speed, training time, or robustness across 

datasets [13]. Furthermore, many studies evaluate improved optimizers only on synthetic 

benchmarks or small engineering problems rather than realistic classification datasets. 

This study proposes an Improved Whale Optimization Algorithm (IWOA) 

integrating a dynamic inertia weight and an adaptive Lévy-flight-based step mechanism. 

The goal is to enhance global exploration during early iterations while preserving strong 

local refinement later, thus mitigating early convergence. The proposed IWOA is applied 

to RF hyperparameter tuning and evaluated on several UCI datasets. Performance is 

assessed in terms of classification accuracy, optimization stability, and training efficiency. 

The results show that the enhanced WOA design can significantly improve RF tuning 

while maintaining a simple and practical optimization framework for real-world 

applications. 

2. Materials and Methods 

2.1. Dataset and Study Description 

This study used twelve UCI classification datasets, covering different data sizes and 

attribute types. The number of samples in these datasets ranged from 150 to more than 

10,000, with both numerical and categorical variables. All datasets were publicly available 

and widely used for testing classification models. No additional preprocessing was 

performed apart from handling missing values and encoding categorical attributes. The 

goal of using several datasets was to examine the behavior of the proposed method under 

different data scales and feature distributions. 

2.2. Experimental Design and Comparison Groups 

The experiments compared the Improved Whale Optimization Algorithm applied to 

Random Forest (IWOA-RF) with three reference groups. The test group used RF 

hyperparameters tuned by IWOA. The first comparison group was the standard WOA-

RF, which used the original WOA without inertia or step-size adjustments. The second 

group used Particle Swarm Optimization (PSO-RF), and the third group used Differential 

Evolution (DE-RF). These methods were selected because they represent common choices 

for hyperparameter tuning in machine learning. All models were trained with the same 

training and test splits for each dataset to ensure fair comparison. Each experiment was 

repeated ten times to reduce the effect of randomness in both the optimizer and the RF 

model. 

2.3. Measurement Procedures and Quality Control 

Model performance was evaluated using accuracy, precision, recall, and F1 score. For 

each dataset, the training and testing sets were created with a fixed random seed to ensure 

consistent comparison across methods. A five-fold cross-validation was carried out to 

check the stability of the results. To reduce noise in the evaluation, each optimizer was 

run with the same population size, maximum iteration number, and stopping criteria. All 

failed runs, such as those caused by numerical overflow or invalid parameter settings, 

were removed and repeated to keep the comparison fair. During analysis, we inspected 

the convergence curves of each method to identify early stagnation or unstable oscillations. 
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2.4. Data Processing and Model Formulation 

Before optimization, input features were normalized to zero mean and unit variance. 

RF accuracy was used as the objective function for the optimizer. For a given set of 

hyperparameters, the fitness value was defined as: 
f=1-Accuracy, 

So that the optimizer aimed to minimize f. To examine the error behavior, the mean 

absolute error (MAE) across repeated runs was computed as: 

MAE=
1

n
∑ |

n

i=1

y
i
-ŷ

i
|, 

where y
i
 represents the true class and ŷ

i
 denotes the predicted class. These 

formulas allowed the analysis of both classification accuracy and stability. All optimizers 

were implemented in Python, and RF was trained using the same entropy-based splitting 

rule for all experiments [14]. 

2.5. Statistical Analysis and Evaluation Criteria 

Differences between IWOA-RF and the comparison groups were evaluated using 

paired t-tests with a significance level of p < 0.05. Mean accuracy, standard deviation, and 

convergence time were reported for each dataset. Performance consistency was examined 

by comparing the variance of the results across repeated runs. To assess convergence 

speed, the number of iterations required to reach 90% of the best accuracy was recorded. 

These evaluations helped determine whether the improvements came from higher 

accuracy, faster convergence, or more stable search behavior across datasets. 

3. Results and Discussion 

3.1. Overall Accuracy on UCI Datasets 

Across the twelve UCI datasets, IWOA-RF achieved the highest mean accuracy in 

most tests (Figure 1). Its average accuracy was 3.8% higher than standard WOA-RF, and 

it also performed better than PSO-RF and DE-RF. The advantage was clearer on datasets 

with moderate dimension and noticeable class overlap. 

 

Figure 1. Mean accuracy and standard deviation for the four methods on the UCI datasets. 
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3.2. Convergence Speed and Computation Time 

IWOA-RF also showed faster convergence (Figure 2). It reached near-optimal 

accuracy in fewer iterations and reduced training time by 11% compared with WOA-RF. 

Standard WOA-RF and DE-RF generally required more iterations to reach similar 

accuracy [15]. PSO-RF converged quickly on smaller datasets but showed larger variation 

across runs. 

 

Figure 2. Convergence curves of the four methods averaged over ten runs. 

3.3. Stability across Datasets and Comparison with Existing Work 

IWOA-RF showed lower variance across repeated runs than the three comparison 

methods. This suggests that the adaptive inertia and step-size design helps keep the 

search stable and reduces dependence on the initial population. Previous studies on RF 

tuning have noted that many optimizers perform well on some datasets but become less 

stable when the data distribution changes [16,17]. In this study, the twelve datasets 

differed in size, feature type, and class balance. IWOA-RF remained stable under these 

changes. Compared with earlier RF-metaheuristic models developed for specific domains 

such as traffic analysis or blasting design, this work places more emphasis on broad 

testing and on analyzing both accuracy and consistency across datasets [18]. 

3.4. Influence of IWOA Components and Remaining Limitations 

Further tests examined the role of the two main update steps. Removing the dynamic 

inertia term slowed down convergence and lowered accuracy. Removing the adaptive 

step-size update increased the number of runs that became trapped in local optima. These 

findings match earlier observations that multi-step WOA designs can help maintain 

search diversity and improve local refinement [19,20]. This study still has limits. Only 

twelve UCI datasets were used, and the focus was on classification tasks. High-

dimensional problems and regression tasks were not included. In addition, only a small 

set of RF hyperparameters was tuned [21]. Future work should examine more complex 

RF settings, larger datasets, and comparisons with newer optimizers, while also studying 

how population size and stopping rules influence IWOA performance [22]. 

4. Conclusion 

This study introduced an Improved Whale Optimization Algorithm for adjusting 

Random Forest hyperparameters. The method uses a dynamic inertia weight and a simple 

step-size update to guide the search. Across twelve UCI datasets, it reached higher 

accuracy than standard WOA-RF, PSO-RF, and DE-RF, and it also needed fewer iterations 
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to approach a stable result. The repeated runs showed smaller spread in accuracy, which 

suggests that the update rules help keep the search steady. These findings show that a 

light change in the update process can make WOA more suitable for routine machine-

learning tasks without adding extra tuning steps. The study still has limits, as only 

classification datasets and a small group of RF parameters were tested. Future work 

should include regression tasks, larger datasets, and more complex RF settings, and 

should also examine whether the same ideas work for feature-selection problems or other 

ensemble models. 
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