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Abstract: This research focuses on optimizing convolutional neural network (CNN) architectures 

for extracting and classifying visual features in traditional Chinese paintings, which represent a 

distinctive artistic tradition characterized by brushstroke techniques, ink variations, and 

compositional nuances. The proposed hierarchical feature extraction framework integrates multi-

scale fusion strategies with specialized modules for brushstroke, color, and compositional analysis. 

By systematically comparing ResNet, VGG, and EfficientNet backbones and combining them with 

layer-wise fine-tuning, the methodology achieves superior performance with limited training 

samples. Experimental validation on collections of traditional Chinese paintings demonstrates 

significant improvements in accuracy over strong CNN baselines, with the best configuration 

increasing overall accuracy from 82.1% to 93.2%. The framework provides practical solutions for 

museum digitization and auction-house cataloging. 
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1. Introduction 

1.1. Research Background and Motivation 

1.1.1. Importance of AI in Artwork Style Recognition 

The digital transformation of cultural heritage institutions demands automated 
analytical capabilities to process extensive art collections. The digitization of museum and 

auction-house collections has increased demand for automated, scalable tools to index 
and analyze large volumes of high-resolution images of artwork. In this study, we focus 
on two-dimensional paintings, particularly master Chinese ink paintings whose stylistic 

differences are often expressed through subtle brush-and-ink variations (e.g., stroke 
pressure, ink dispersion, and calligraphic line quality). Western oil paintings are 

discussed as a contrasting painting tradition to highlight the distinctive visual 
characteristics of Chinese ink paintings, in which color layering, texture buildup, and 
compositional density provide complementary visual cues for CNN-based feature 

learning. The application of these architectures to artistic domains offers unique 
opportunities to enhance curatorial workflows and authentication processes. Museums 

worldwide manage collections exceeding hundreds of thousands of items, creating 
pressing needs for scalable classification solutions [1]. 

1.1.2. Challenges in Chinese Artwork Feature Extraction 

Chinese traditional paintings exhibit distinctive aesthetic characteristics that 

differentiate them from Western artistic traditions. The unique properties of brush-and-
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ink techniques produce subtle textural variations encoding artistic intent through 

pressure modulation, stroke velocity, and ink concentration gradients. 
Limited availability of digitized Chinese artwork datasets compounds the technical 

difficulties. The small sample sizes typical of specialized collections necessitate 

sophisticated transfer learning strategies and data augmentation methods capable of 
generalizing from limited training data [2]. 

1.2. Research Objectives and Contributions 

1.2.1. Optimization Goals for CNN-based Feature Extraction 

This study is limited to two-dimensional paintings (i.e., digitized images of paintings) 

and does not address three-dimensional artifacts such as ceramics, bronzes, or sculpture. 
This investigation pursues three primary optimization objectives in artistic feature 

extraction. The first objective is to design hierarchical feature map structures specifically 
adapted to capture brushstroke textures, compositional arrangements, and color 
harmonies characteristic of Chinese painting traditions. The second objective involves 

systematic evaluation of transfer learning efficacy across multiple pre-trained 
architectures to identify optimal backbone networks for artistic classification tasks. 

1.2.2. Key Technical Contributions 

The research introduces several novel technical components that advance the state of 
the art in artistic feature extraction. A multi-scale feature fusion strategy aggregates 
representations from multiple network depths, enabling simultaneous capture of fine 

brushstroke details and holistic compositional structures. The specialized brushstroke 
enhancement module employs directional gradient analysis to amplify stroke-specific 

visual signatures. 

1.2.3. Application Scenarios 

The developed framework addresses practical requirements across multiple cultural 
heritage contexts. Museum institutions can leverage the technology to automate the 

cataloging of newly acquired artworks. Auction houses benefit from rapid style 
verification, which supports attribution decisions. Digital cultural heritage initiatives 
leverage classification capabilities to create searchable databases, enabling scholars to 

explore collections through style-based queries. 

2. Related Work 

2.1. Deep Learning for Artwork Classification 

2.1.1. CNN Architectures in Art Style Recognition 

The application of convolutional neural networks to artistic style recognition has 
evolved through multiple architectural generations. Early investigations adapted 

standard classification networks, such as AlexNet and VGG, to artistic datasets, achieving 
moderate success via transfer learning from ImageNet pretraining. Recent work has also 

explored contrastive pre-training (e.g., CLIP-Art) to learn more discriminative 
representations for fine-grained art classification, thereby benefiting style recognition 
under limited labeled date [3]. 

Recent research has explored specialized architectural modifications tailored to 
artistic visual characteristics. Attention mechanisms have been incorporated to focus 

network processing on visually distinctive regions within artworks. Multi-branch 
architectures process images at varying resolutions, capturing both fine artistic details and 
overall compositional structures [4]. 

2.1.2. Feature Map Hierarchy Design 

The hierarchical organization of convolutional feature maps plays a critical role in 
artistic representation learning. Lower network layers typically capture edge orientations, 

color contrasts, and basic textures relevant to brushstroke analysis. Middle layers encode 
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more complex patterns, including compositional elements and spatial relationships. 

Higher layers develop abstract style representations, enabling discrimination between 
artistic movements [5]. 

2.2. Transfer Learning in Visual Art Analysis 

2.2.1. Comparison of ResNet, VGG, and EfficientNet 

Transfer learning leverages knowledge acquired from large-scale datasets to 

accelerate training and improve performance on specialized target tasks. The choice of 
pre-trained backbone architecture significantly influences artistic classification outcomes. 
VGG networks employ uniform architectural patterns with small convolutional kernels, 

providing straightforward feature extraction pipelines. ResNet architectures introduce 
skip connections, enabling gradient flow through dense networks [6]. 

EfficientNet represents a more recent architectural family optimizing network depth, 
width, and resolution through principled scaling methods. Comparative studies on 
artistic datasets have revealed varying performance characteristics across these 

architectures. EfficientNet variants often achieve superior accuracy per parameter count, 
offering computational efficiency advantages [7]. 

2.2.2. Fine-tuning Strategies for the Art Domain 

Effective transfer learning requires careful calibration of fine-tuning strategies to 
balance the retention of pre-trained knowledge with adaptation to target-domain 
characteristics. Layer freezing approaches maintain lower-layer parameters while 

adapting higher layers, preserving general visual representations while learning style-
specific features. 

Layer-wise fine-tuning with discriminative learning rates applies different update 
magnitudes to varying depths within the network. Lower layers receive smaller learning 
rates to preserve edge and texture detectors, while higher layers undergo larger updates 

to adapt abstract representations to artistic styles [8]. 

2.2.3. Cross-domain Feature Transfer 

The transfer of visual features between natural and artistic domains poses unique 
challenges due to differences in the distributions of visual statistics. Natural photographs 

exhibit different color distributions, texture patterns, and compositional conventions 
compared to painted artworks. Despite these differences, pre-trained networks capture 

visual primitives that remain useful for artistic analysis. 

2.3. Data Augmentation and Few-shot Learning 

2.3.1. Traditional Augmentation Techniques 

Standard data augmentation methods apply geometric transformations and color 
perturbations to generate synthetic training examples from limited source datasets. 

Rotation, translation, and scaling operations increase sample diversity while preserving 
artistic content. Color jittering modifies brightness, contrast, and saturation to simulate 

imaging variations without altering fundamental artistic characteristics. 

2.3.2. GAN-based Data Generation 

Generative adversarial networks offer sophisticated augmentation capabilities 
beyond simple geometric transformations. GANs trained on artistic datasets learn to 

synthesize novel artworks that exhibit statistical properties matching the training 
distributions. Beyond standard CNN baselines, prior studies have explored separating 
style-relevant cues via difference-component modeling to better distinguish painting 

styles, indicating that explicitly emphasizing discriminative components can improve 
classification robustness [9]. 
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2.3.3. Meta-learning Approaches for Limited Samples 

Meta-learning frameworks address few-shot classification challenges by learning to 

learn from minimal examples. Prototypical networks represent each style category 
through prototype embedding computed from available training examples. Brushstroke-
level representations have been used to distinguish between Chinese and Western 

painting images, highlighting that stroke patterns provide strong style cues that can 
complement global CNN features [10]. 

3. Proposed Method 

3.1. Overall Framework Architecture 

3.1.1. Input Preprocessing Pipeline 

The preprocessing pipeline transforms raw artwork images into standardized 

representations suitable for network processing. Images are normalized to 512×512 pixels, 
balancing computational efficiency with the preservation of fine visual details necessary 
for brushstroke analysis. Aspect-ratio preservation through padding helps maintain 

stroke geometry and local orientation patterns, which are essential for downstream 
brushstroke-sensitive analysis and extraction methods [11]. Color space considerations 

significantly influence the quality of feature extraction. RGB color spaces provide 
standard representations compatible with pre-trained network expectations. Additional 
color space transformations to HSV coordinates isolate hue, saturation, and value 

components. Normalization procedures align input statistics with pre-training data 
distributions. 

3.1.2. Feature Extraction Network Design 

The core feature-extraction network adopts a hierarchical architecture that processes 
inputs through a sequence of convolutional blocks with progressively increasing 
abstraction levels. The network backbone is based on pre-trained ResNet, VGG, or 

EfficientNet architectures, providing robust visual feature extraction. 
The network produces feature maps at multiple spatial resolutions corresponding to 

different semantic levels (Table 1). Shallow layers generate high-resolution feature maps 
capturing fine brushstroke textures. Intermediate layers produce moderate-resolution 
representations encoding compositional elements. Deep layers produce low-resolution 

feature maps that capture global artistic style characteristics. 

Table 1. Comparison of Backbone Network Architectures for Artistic Feature Extraction. 

Architecture 
Depth 

(Layers) 

Paramet

ers (M) 

Pre-

training 

Dataset 

Relative 

Downsampling 

Stages 

Computation

al Cost 

(GFLOPs) 

VGG16 16 138.4 
ImageN

et-1K 

512→256→128→64

→32 
15.5 

ResNet50 50 25.6 
ImageN

et-1K 

512→256→128→64

→32 
4.1 

ResNet101 101 44.5 
ImageN

et-1K 

512→256→128→64

→32 
7.8 

EfficientNe

t-B3 
82 12.2 

ImageN

et-1K 

512→256→128→64

→32 
1.8 

EfficientNe

t-B5 
120 30.4 

ImageN

et-21K 

512→256→128→64

→32 
9.9 

GFLOPs are reported under the standard 224×224 input setting from commonly used 

model specifications; computation increases approximately quadratically when using 512 
× 512 inputs in our experiments. 
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3.2. Hierarchical Feature Extraction Optimization 

3.2.1. Multi-scale Feature Fusion Strategy 

The multi-scale fusion module aggregates feature representations from multiple 
network depths to create comprehensive artistic descriptors. The fusion strategy employs 

spatial upsampling of lower-resolution feature maps to match the dimensions of higher-
resolution counterparts, followed by channel-wise attention weighting to emphasize 

informative feature channels [12]. 
Given feature maps F_i from layer i with spatial dimensions H_i × W_i and C_i 

channels, the fusion process computes: 

F_upsampled_i = Upsample (F_i, size= (H_target, W_target)) 
Where upsampling employs bilinear interpolation. The attention mechanism 

computes channel importance weights: 
alpha_{i,c} = sigmoid (w_{i,c} · GlobalAvgPool (F_ {upsampled, i,c})) 
The final fused representation combines weighted features: 

F_fused = sum_i (alpha_i ⊙ F_upsampled_i) 
The architecture diagram (Figure 1) illustrates the complete processing pipeline from 

input artwork to style classification. The visualization employs a layered block diagram 
representation with distinct color coding for different functional modules. The input stage 
shows a Chinese painting image (512×512 resolution) entering the preprocessing pipeline, 

depicted as a series of transformation blocks including resolution normalization, color 
space conversion, and statistical normalization. 

 

Figure 1. Overall Framework Architecture of the Hierarchical Feature Extraction Network. 

The backbone network section displays the hierarchical convolutional architecture 
with five main processing stages, each represented by stacked rectangular blocks. Feature 
map dimensions (channels × height × width) are annotated at each stage in the figure, with 

spatial resolution progressively decreasing and channel depth increasing across the 
backbone. Skip connections from multiple stages feed into the multi-scale fusion module, 

shown as a convergence point where upsampled features merge. 
The brushstroke enhancement module appears as a parallel-processing branch that 

extracts oriented gradient features, with eight directional filters illustrated as small, 
oriented kernels. The color and composition analysis module processes high-level 
features using attention mechanisms, as shown in attention weight maps overlaid on 

feature visualizations. The final classification head combines all processed features 
through global pooling and fully connected layers, producing probability distributions 

over artistic style categories. 
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3.2.2. Brushstroke Feature Enhancement Module 

The brushstroke enhancement module targets the distinctive textural signatures 

created by traditional Chinese painting tools. The module processes feature maps through 
oriented derivative filters at multiple angles theta: 

G_θ (x, y) = (K_θ * F) (x, y) 

Filtering at four canonical orientations (0°, 45°, 90°, and 135°) captures brushstrokes 
in diverse directions. The responses undergo non-linear activation: 

S (x, y) = max_theta (ReLU (G_theta (x, y))) 
Aggregating maximum responses across orientations to identify stroke presence 

regardless of direction (Table 2). Each directional filter is implemented as a depthwise 3×3 

convolution (grouped by channel), resulting in ~2.3K parameters per orientation for 256 
channels. 

Table 2. Feature Extraction Module Specifications for Brushstroke Enhancement. 

Module 

Component 

Input 

Dimensions 

Kernel 

Configura

tion 

Output 

Dimensions 

Activation 

Function 

Paramet

ers (K) 

Directional 

Filter 0° 
256 × 64 × 64 

3 × 3 

depthwise 

oriented 

256 × 64 × 64 Linear 2.3 

Directional 

Filter 45° 
256 × 64 × 64 

3 × 3 

diagonal 
256 × 64 × 64 Linear 2.3 

Directional 

Filter 90° 
256 × 64 × 64 

3 × 3 

horizontal 
256 × 64 × 64 Linear 2.3 

Directional 

Filter 135° 
256 × 64 × 64 

3 × 3 

diagonal 
256 × 64 × 64 Linear 2.3 

Max Pooling 

Aggregation 

4 × 256 × 64 × 

64 

(concatenate

d as 

1024×64×64) 

Max over 

orientation

s (channel-

wise) 

256 × 64 × 64 ReLU 0.0 

Feature 

Enhancement 

Conv 

256 × 64 × 64 
1 × 1 

pointwise 
512 × 64 × 64 ReLU 131.6 

Residual 

Addition 
512 × 64 × 64 - 512 × 64 × 64 Identity 0.0 

3.2.3. Color and Composition Feature Extraction 

Color palette analysis and compositional structure recognition provide 
complementary information to texture-based brushstroke features. The color extraction 
pathway processes HSV-transformed inputs to isolate hue distributions characteristic of 

different painting traditions. Histogram-based color representations capture the 
frequency of specific hue ranges: 

H_color(b) = sum_ {x, y} indicator (H (x, y) in bin_b) 
Compositional analysis examines the spatial distributions of visual elements by 

aggregating region-based features. The artwork is divided into a 3×3 grid, with separate 

feature pooling within each region: 
F_composition = [F_region_1, F_region_2, ..., F_region_9] 

The resulting color histogram and 3×3 grid-pooled composition descriptors are 
concatenated with the deep CNN feature vector before the final classifier. 
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3.3. Transfer Learning Strategy 

3.3.1. Backbone Network Selection and Comparison 

The selection of an appropriate backbone architecture balances multiple competing 
considerations, including accuracy, computational efficiency, and transfer learning 

effectiveness. ResNet architectures provide robust baseline performance through well-
established skip connection mechanisms. Beyond pure visual classification, combining 

deep learning with structured cultural heritage knowledge (e.g., knowledge graphs) has 
been shown to enhance digital cultural heritage management, motivating more context-
aware design choices in art understanding pipelines [13]. 

3.3.2. Layer-wise Fine-tuning Approach 

The layer-wise fine-tuning protocol implements discriminative learning rates across 
network depths. Lower convolutional layers detecting edges and textures receive minimal 

fine-tuning through small learning rates: 
lr_lower = 0.0001 · lr_base 
Middle network layers encoding intermediate visual patterns undergo moderate 

fine-tuning: 
lr_middle = 0.001 · lr_base 

Higher network layers producing abstract style representations require substantial 
adaptation: 

lr_higher = 0.01 · lr_base 

3.4. Data Augmentation for Small Sample Problem 

3.4.1. Geometric and Color Space Augmentation 

The geometric augmentation pipeline applies carefully calibrated transformations 
preserving artistic plausibility. Random rotations sample angles from a restricted range [-
15°, +15°] to avoid generating unnaturally oriented compositions. Translation operations 

shift images by up to 10% of their dimensions. Horizontal flipping is used as a lightweight 
geometric transform within an augmentation-centric strategy widely adopted to improve 

generalization in data-limited settings [14]. Color space augmentation modifies HSV 
representations to simulate lighting and imaging variations. Saturation adjustments 
sample multiplicative factors from [0.8, 1.2], resulting in subtle variations in color intensity. 

Value channel modifications apply additive offsets in the range [-20, +20] on a 0-255 scale. 

3.4.2. Style-preserving Augmentation Techniques 

In our experiments, we primarily use Mixup as a lightweight style-preserving 
augmentation; VAE-based augmentation is discussed as an optional approach. Advanced 

augmentation techniques employ learned transformations maintaining artistic style 
invariance. The style-preserving augmentation module trains a conditional variational 

autoencoder on artistic datasets, learning latent representations disentangling style and 
content factors. In a VAE-based optional augmentation setting, the encoder maps input 

artworks to latent codes: 
z = Encoder(x) 
Where z decomposes into style component z_style and content component z_content. 

Random sampling generates synthetic variations: 
x_augmented = Decoder ([z_style, z_content_random]) 

Mixup augmentation creates convex combinations of training samples and their 
labels. For artwork pairs (x_i, y_i) and (x_j, y_j), the augmented sample forms: 

x_mix = lambda · x_i + (1 - lambda) · x_j 

y_mix = lambda · y_i + (1 - lambda) · y_j 
where lambda samples from Beta (alpha, alpha) distribution with alpha = 0.2. 
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4. Experiments and Results 

4.1. Experimental Setup 

4.1.1. Dataset Description 

The experimental validation uses three curated datasets of Chinese artworks, 
representing diverse painting traditions and historical periods. The primary dataset 

aggregates 4,832 digitized scroll paintings from the Ming and Qing dynasties, curated 
from multiple publicly available digital archives and museum collections, including 

sources from the Palace Museum and provincial collections. The artworks span eight 
major style categories: landscape, bird-and-flower, figure painting, bamboo-and-rock, 
calligraphy-painting integration, ink-wash abstraction, colored meticulous style, and 

freehand brushwork. 
A secondary validation dataset contains 1,247 contemporary Chinese artworks from 

20th and 21st-century painters (Table 3). A third test set comprises 628 artworks from 
regional painting schools, including the Lingnan, Shanghai, and Beijing School traditions. 

Table 3. Dataset Statistics and Category Distribution. 

Dataset 

Split 

Tot

al 

Im

age

s 

Land

scape 

Bir

d-

Flo

we

r 

Fig

ure 

Bam

boo-

Roc

k 

Callig

raphy-

Painti

ng 

In

k-

W

as

h 

Go

ngb

i 

Xi

ey

i 

Imag

e 

Resol

ution 

(avg) 

Anno

tation 

Quali

ty 

Trainin

g Set 

3,38

2 
892 674 523 318 287 

24

5 
231 

21

2 

2847×

2134 

Exper

t-

verifi

ed 

Validati

on Set 
725 178 152 124 86 73 58 47 43 

2912×

2089 

Exper

t-

verifi

ed 

Test Set 725 183 147 129 81 77 62 39 51 
2789×

2156 

Exper

t-

verifi

ed 

Conte

mporar

y 

1,24

7 
284 267 198 112 95 87 103 

10

1 

3156×

2378 

Crow

d-

sourc

ed 

Region

al 

Schools 

628 152 134 98 67 58 43 38 38 
2634×

1987 

Exper

t-

verifi

ed 

4.1.2. Evaluation Metrics 

Classification performance assessment employs multiple complementary metrics 
capturing different aspects of model behavior. Overall accuracy measures the proportion 

of correctly classified test samples across all style categories. Per-category precision 
quantifies the fraction of predicted category instances that truly belong to that category. 

Recall metrics measure the fraction of actual category instances that are successfully 
identified. 

F1-scores provide a harmonic mean of precision and recall, offering balanced 

performance measures. Macro-averaged F1 computes separate F1 scores for each category 
and averages them. Top-k accuracy (k=3) measures the proportion of test samples where 

the proper category appears within the model's top 3 predicted classes. 
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4.1.3. Implementation Details 

All networks are trained using the PyTorch 2.0 framework on NVIDIA A100 GPUs 

with 40GB memory. The optimization uses stochastic gradient descent with a momentum 
coefficient of 0.9 and a weight-decay regularization coefficient of 0.0001. Learning rate 
scheduling follows a cosine annealing strategy with an initial rate of 0.01, decreasing to 

0.0001 over 100 training epochs. Batch size is set to 32 samples. 
Training is initialized with ImageNet-1K pre-trained weights for all backbone 

architectures. The final classification layer is initialized using He normal initialization. 
Gradient clipping at norm 5.0 prevents exploding gradients. Mixed precision training 
with automatic loss scaling accelerates computation. In our implementation, lr_base refers 

to the backbone base learning rate, while the newly added classification head uses a higher 
initial learning rate (0.01) under the same cosine schedule. 

4.2. Comparison with Baseline Methods 

4.2.1. Performance of Different CNN Architectures 

Comprehensive comparison across backbone architectures reveals significant 

performance variations in the artistic classification domain. EfficientNet-B3 achieves the 
highest overall test accuracy of 87.4%, surpassing ResNet50 (84.6%) and VGG16 (82.1%) 

baselines. The remaining confusions are consistent with observations in traditional 
Chinese painting image analysis, where visually similar material/texture cues are hard to 
separate, and metric-learning approaches such as prototypical networks can provide 

stronger class separation in the embedding space [15]. 
ResNet architectures demonstrate robust performance across diverse style categories, 

with ResNet101 achieving 86.2% accuracy through increased network depth (Table 4). 
VGG16 networks exhibit competitive performance on gongbi and bird-flower categories, 
emphasizing color and fine detail, but struggle with abstract xieyi styles requiring higher-

level semantic understanding. 

Table 4. Classification Performance Comparison Across Backbone Architectures and Training 
Strategies. 

Method 
Back

bone 

Pre-

train

ing 

Fine-

tuning 

Strategy 

Ove

rall 

Acc 

(%) 

Ma

cro 

F1 

Land

scape 

F1 

Bird

-

Flo

wer 

F1 

Fig

ure 

F1 

To

p-3 

Ac

c 

(%) 

Train

ing 

Time 

(hour

s) 

Baseline 

VGG16 

VGG

16 

Ima

geN

et-

1K 

Full 

network 
82.1 

0.7

98 
0.834 

0.81

2 

0.7

56 

94.

3 
12.4 

Baseline 

ResNet50 

ResN

et50 

Ima

geN

et-

1K 

Full 

network 
84.6 

0.8

21 
0.856 

0.83

1 

0.7

82 

95.

8 
8.7 

Baseline 

ResNet10

1 

ResN

et101 

Ima

geN

et-

1K 

Full 

network 
86.2 

0.8

38 
0.871 

0.84

7 

0.8

01 

96.

4 
14.2 

Baseline 

Efficient

Net-B3 

Effici

entN

et-B3 

Ima

geN

et-

1K 

Full 

network 
87.4 

0.8

52 
0.883 

0.86

1 

0.8

19 

97.

1 
10.3 
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Layer-

wise 

ResNet50 

ResN

et50 

Ima

geN

et-

1K 

Discrimi

native 

rates 

86.3 
0.8

41 
0.869 

0.85

4 

0.7

98 

96.

2 
9.1 

Multi-

scale 

ResNet50 

ResN

et50 

Ima

geN

et-

1K 

Full + 

fusion 

module 

88.1 
0.8

63 
0.891 

0.87

3 

0.8

27 

97.

6 
11.5 

Proposed 

Framewo

rk 

ResN

et50 

Ima

geN

et-

1K 

Layer-

wise + 

fusion + 

augment

ation 

91.3 
0.8

96 
0.918 

0.90

4 

0.8

61 

98.

4 
13.8 

Proposed 

(Efficient

Net-B3) 

Effici

entN

et-B3 

Ima

geN

et-

1K 

Layer-

wise + 

fusion + 

augment

ation 

93.2 
0.9

15 
0.934 

0.90

4 

0.8

83 

98.

9 
15.2 

The proposed framework integrating multi-scale fusion, brushstroke enhancement, 

and style-preserving augmentation achieves substantial improvements over single-
component baselines. The complete ResNet50-based framework achieves 91.3% accuracy, 
representing a 6.7 percentage-point improvement over standard ResNet50 fine-tuning. 

Combining the optimized framework with the EfficientNet-B3 backbone yields the best 
overall performance at 93.2% accuracy. 

4.2.2. Transfer Learning Effectiveness Analysis 

Systematic ablation of transfer learning components quantifies their individual 
contributions to overall performance. Models trained from random initialization without 
ImageNet pre-training achieve only 68.4% accuracy, confirming the critical importance of 

transfer learning for artistic classification with limited training data. 
Layer-wise fine-tuning with discriminative learning rates improves performance by 

1.7 percentage points over uniform learning rate approaches. Analysis of learned feature 
representations reveals that layer-wise fine-tuning better preserves useful low-level edge 
detection filters while enabling substantial high-level adaptation to artistic style 

characteristics. 
This composite visualization (Figure 2) presents three interconnected subfigures 

illustrating the multi-scale fusion mechanism. The left panel displays a sample Chinese 
landscape painting as input, with a spatial resolution of 512×512 pixels, showing 
mountain peaks, mist, and scattered pine trees rendered in the traditional ink-wash 

technique. Overlaid on the artwork are five colored bounding boxes in different sizes, 
representing the receptive fields of features extracted at different network depths. 

 

Figure 2. Multi-Scale Feature Fusion Visualization and Attention Weight Distribution. 
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The center panel shows a 3D bar chart visualization of attention weight distributions 

across five network stages and eight feature channel groups. The vertical axis represents 
attention magnitude (range 0.0 to 1.0), the horizontal axes span network stages (1-5) and 
channel groups (1-8). The bars use a gradient from blue (low attention) to red (high 

attention), revealing that intermediate stages (e.g., Stage 2-3) tend to receive higher 
attention weights in a representative run. 

The right panel presents feature map visualizations for each of the five stages, 
displayed as a 4×4 grid of activation heatmaps. Stage 1 activations show sharp edge 
responses highlighting brushstroke boundaries. Stage 2 maps reveal structured patterns 

corresponding to tree branches. Stage 3 visualizations capture larger compositional 
elements, including mountain silhouettes. All heatmaps employ the "viridis" colormap 

with warmer colors indicating stronger activations. 

4.3. Ablation Study and Analysis 

4.3.1. Impact of Hierarchical Feature Design 

Systematic ablation experiments isolate the contributions of individual framework 
components. Removal of the multi-scale fusion module reduces accuracy by 3.1 

percentage points, demonstrating its effectiveness in capturing visual information across 
multiple abstraction levels. The performance drop is particularly pronounced in 
landscape and ink-wash categories. 

Eliminating the brushstroke enhancement module reduces accuracy by 2.4 
percentage points, with the most significant impact on xieyi and bamboo-rock categories 

characterized by distinctive brush techniques (Table 5). Feature visualization analysis 
confirms that the enhancement module amplifies responses to oriented stroke patterns. 

Table 5. Ablation Study Results Showing Individual Component Contributions. 

Framewo

rk 

Configur

ation 

Mul

ti-

scal

e 

Fusi

on 

Brushstr

oke 

Enhance

ment 

Color-

Compos

ition 

Module 

Style-

preservin

g 

Augment

ation 

Over

all 

Acc 

(%) 

Landsc

ape 

Acc 

(%) 

Xie

yi 

Ac

c 

(%) 

Infere

nce 

Time 

(ms) 

Baseline 

ResNet50 
✗ ✗ ✗ ✗ 84.6 86.8 

79.

2 
23.4 

+ Multi-

scale 

Fusion 

✓ ✗ ✗ ✗ 87.7 89.6 
82.

1 
28.7 

+ 

Brushstro

ke 

Enhance

ment 

✗ ✓ ✗ ✗ 87.0 88.3 
85.

6 
31.2 

+ Color-

Composit

ion 

✗ ✗ ✓ ✗ 86.4 88.9 
80.

7 
26.1 

+ Style-

preservin

g Aug 

✗ ✗ ✗ ✓ 86.8 88.1 
81.

4 
23.4 

Fusion + 

Brushstro

ke 

✓ ✓ ✗ ✗ 89.3 91.2 
86.

8 
34.5 

Fusion + 

Color 
✓ ✗ ✓ ✗ 88.9 91.7 

83.

3 
31.4 
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All 

Compone

nts 

✓ ✓ ✓ ✓ 91.3 93.4 
88.

7 
38.9 

The color and composition analysis module contributes 1.8 percentage point 
improvement, with most significant impact on gongbi and bird-flower categories where 

color palette and spatial arrangement serve as primary style discriminators. 

4.3.2. Effect of Data Augmentation Strategies 

Data augmentation significantly improves classification robustness and 

generalization performance. Models trained without augmentation (Baseline ResNet50) 
achieve 84.6% test accuracy (Table 5), compared to 91.3% with the whole pipeline (All 
Components), representing a 6.7 percentage-point improvement. The performance gap 

widens further when evaluated on the contemporary artwork test set, where 
augmentation provides a 5.2 percentage-point improvement. 

Comparison between standard geometric augmentation and style-preserving 
augmentation reveals complementary benefits. Style-preserving augmentation alone 
improves accuracy from 84.6% to 86.8% (+2.2 pp) (Table 5) and yields further gains when 

combined with other components in the whole pipeline. 

4.3.3. Feature Visualization and Interpretability 

Feature visualization via dimensionality reduction techniques provides insights into 
the structure of the learned representation. t-SNE projection of penultimate layer features 

reveals well-separated clusters corresponding to different artistic styles, with landscape 
and bird-flower categories forming distinct groupings. 

Gradient-weighted class activation mapping visualizes the spatial regions that 
influence classification decisions. For landscape paintings, activation maps highlight 
mountain silhouettes and compositional balance elements. Bird-flower classifications are 

activated based on subject positioning and rendering quality. 
This comprehensive analysis visualization (Figure 3) combines three subfigures, 

revealing learned representation structure and classification patterns. The left subfigure 
presents a t-SNE projection of 512-dimensional feature vectors from the penultimate 
network layer, computed from all 725 test set samples. The 2D embedding employs a 

perplexity parameter of 30 and 1000 optimization iterations. Each point represents one 
artwork, with colors corresponding to the eight style categories. Landscape samples form 

a dense cluster in the upper-left quadrant. The visualization includes category centroids 
marked with enlarged diamond symbols. 

 

Figure 3. Feature Space Visualization and Confusion Matrix Analysis. 

The center subfigure displays an 8×8 confusion matrix heatmap revealing 
classification patterns across all style categories. The matrix employs a sequential 
colormap from white (0% confusion) to dark blue (100% confusion), with percentage 

values annotated in each cell. The diagonal elements show true-positive rates ranging 
from 91.8% to 96.2%. Off-diagonal elements reveal systematic confusion patterns. 
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The right subfigure presents per-class precision, recall, and F1-score metrics as a 

grouped bar chart. Three bars per category enable direct comparison of classification 
behavior across metrics. The landscape category achieves the highest scores. The chart 
reports per-class precision, recall, and F1-score; error bars are omitted for clarity. 

5. Conclusion and Future Work 

5.1. Summary of Contributions 

5.1.1. Key Findings 

This investigation demonstrates that hierarchical feature-extraction architectures 
specifically optimized for artistic visual characteristics achieve substantial performance 
improvements over generic CNNs. The systematic evaluation of transfer learning 

strategies confirms that layer-wise fine-tuning with discriminative learning rates 
effectively balances preservation of pre-trained knowledge with domain-specific 

adaptation. 
The multi-scale feature fusion mechanism proves critical for capturing visual 

information spanning multiple abstraction levels. The specialized brushstroke 

enhancement module successfully amplifies stroke-specific visual signatures through 
directional gradient analysis. Style-preserving data augmentation techniques mitigate 

limited training sample availability while maintaining artistic plausibility. 

5.1.2. Technical Innovations 

The research introduces several methodological innovations advancing automated 
artistic analysis capabilities. The hierarchical feature extraction framework integrates 

complementary visual cues, including textural brushwork characteristics, color palette 
distributions, and compositional spatial arrangements. The layer-wise fine-tuning 
protocol with discriminative learning rates provides a principled approach for adapting 

pre-trained networks to specialized visual domains. 

5.2. Limitations and Challenges 

5.2.1. Current Constraints 

Several limitations constrain the current framework's applicability and performance. 
Reliance on supervised classification with categorical labels fails to capture the continuous 

spectrum of artistic variation. The framework requires substantial computational 
resources during training, with complete optimization cycles consuming 15+ hours on 

high-performance GPU hardware. 
The dependence on expert-annotated training data creates bottlenecks for scaling to 

larger collections. Annotation quality significantly influences model performance, 

requiring art historians' expertise for reliable style labeling. 

5.3. Future Research Directions 

5.3.1. Potential Extensions 

Future research can pursue several promising directions extending the current 

framework's capabilities. Integration of textual descriptions and historical metadata 
through multi-modal learning could enhance classification accuracy. Self-supervised pre-
training on extensive, unlabeled art collections might reduce reliance on expert 

annotations. 
Exploring few-shot and zero-shot learning methodologies could enable rapid 

adaptation to rare artistic styles with minimal training data. Incorporation of uncertainty 
quantification techniques would provide confidence estimates for classification decisions. 

5.3.2. Application Prospects 

The developed technology offers substantial practical value across multiple cultural 

heritage domains. Museums can leverage automated classification to catalog extensive 
collections efficiently. Digital cultural heritage initiatives benefit from the framework's 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 2 (2025) 
 

 148  

ability to enable style-based search interfaces. Auction houses can employ the technology 

for rapid preliminary style verification. Educational institutions may use the framework 
to develop interactive learning tools that help students recognize artistic style 
characteristics. 
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