Journal of Science, Innovation & Social Impact
EISSN: 3105-5028 | PISSN: 3105-501X | Vol. 1, No. 2 (2025)

Article

Enhanced CNN-based Feature Extraction and Classification for
Chinese Artwork Styles

Jiaying Li v*

Received: 08 November 2025
Revised: 01 January 2026
Accepted: 13 January 2026
Published: 18 January 2026

1 Integrated Marketing Communications, Northwestern University, Chicago, IL, USA
* Correspondence: Jiaying Li, Integrated Marketing Communications, Northwestern University, Chicago, IL,
USA

Abstract: This research focuses on optimizing convolutional neural network (CNN) architectures
for extracting and classifying visual features in traditional Chinese paintings, which represent a
distinctive artistic tradition characterized by brushstroke techniques, ink variations, and
compositional nuances. The proposed hierarchical feature extraction framework integrates multi-
scale fusion strategies with specialized modules for brushstroke, color, and compositional analysis.
By systematically comparing ResNet, VGG, and EfficientNet backbones and combining them with
layer-wise fine-tuning, the methodology achieves superior performance with limited training
samples. Experimental validation on collections of traditional Chinese paintings demonstrates
significant improvements in accuracy over strong CNN baselines, with the best configuration
increasing overall accuracy from 82.1% to 93.2%. The framework provides practical solutions for
museum digitization and auction-house cataloging.
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1. Introduction
1.1. Research Background and Motivation
1.1.1. Importance of Al in Artwork Style Recognition

The digital transformation of cultural heritage institutions demands automated
analytical capabilities to process extensive art collections. The digitization of museum and
auction-house collections has increased demand for automated, scalable tools to index
and analyze large volumes of high-resolution images of artwork. In this study, we focus
on two-dimensional paintings, particularly master Chinese ink paintings whose stylistic
differences are often expressed through subtle brush-and-ink variations (e.g., stroke
pressure, ink dispersion, and calligraphic line quality). Western oil paintings are
discussed as a contrasting painting tradition to highlight the distinctive visual
characteristics of Chinese ink paintings, in which color layering, texture buildup, and
compositional density provide complementary visual cues for CNN-based feature
learning. The application of these architectures to artistic domains offers unique
opportunities to enhance curatorial workflows and authentication processes. Museums
worldwide manage collections exceeding hundreds of thousands of items, creating
pressing needs for scalable classification solutions [1].

1.1.2. Challenges in Chinese Artwork Feature Extraction

Chinese traditional paintings exhibit distinctive aesthetic characteristics that
differentiate them from Western artistic traditions. The unique properties of brush-and-
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ink techniques produce subtle textural variations encoding artistic intent through
pressure modulation, stroke velocity, and ink concentration gradients.

Limited availability of digitized Chinese artwork datasets compounds the technical
difficulties. The small sample sizes typical of specialized collections necessitate
sophisticated transfer learning strategies and data augmentation methods capable of
generalizing from limited training data [2].

1.2. Research Objectives and Contributions
1.2.1. Optimization Goals for CNN-based Feature Extraction

This study is limited to two-dimensional paintings (i.e., digitized images of paintings)
and does not address three-dimensional artifacts such as ceramics, bronzes, or sculpture.
This investigation pursues three primary optimization objectives in artistic feature
extraction. The first objective is to design hierarchical feature map structures specifically
adapted to capture brushstroke textures, compositional arrangements, and color
harmonies characteristic of Chinese painting traditions. The second objective involves
systematic evaluation of transfer learning efficacy across multiple pre-trained
architectures to identify optimal backbone networks for artistic classification tasks.

1.2.2. Key Technical Contributions

The research introduces several novel technical components that advance the state of
the art in artistic feature extraction. A multi-scale feature fusion strategy aggregates
representations from multiple network depths, enabling simultaneous capture of fine
brushstroke details and holistic compositional structures. The specialized brushstroke
enhancement module employs directional gradient analysis to amplify stroke-specific
visual signatures.

1.2.3. Application Scenarios

The developed framework addresses practical requirements across multiple cultural
heritage contexts. Museum institutions can leverage the technology to automate the
cataloging of newly acquired artworks. Auction houses benefit from rapid style
verification, which supports attribution decisions. Digital cultural heritage initiatives
leverage classification capabilities to create searchable databases, enabling scholars to
explore collections through style-based queries.

2. Related Work
2.1. Deep Learning for Artwork Classification
2.1.1. CNN Architectures in Art Style Recognition

The application of convolutional neural networks to artistic style recognition has
evolved through multiple architectural generations. Early investigations adapted
standard classification networks, such as AlexNet and VGG, to artistic datasets, achieving
moderate success via transfer learning from ImageNet pretraining. Recent work has also
explored contrastive pre-training (e.g., CLIP-Art) to learn more discriminative
representations for fine-grained art classification, thereby benefiting style recognition
under limited labeled date [3].

Recent research has explored specialized architectural modifications tailored to
artistic visual characteristics. Attention mechanisms have been incorporated to focus
network processing on visually distinctive regions within artworks. Multi-branch
architectures process images at varying resolutions, capturing both fine artistic details and
overall compositional structures [4].

2.1.2. Feature Map Hierarchy Design

The hierarchical organization of convolutional feature maps plays a critical role in
artistic representation learning. Lower network layers typically capture edge orientations,
color contrasts, and basic textures relevant to brushstroke analysis. Middle layers encode
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more complex patterns, including compositional elements and spatial relationships.
Higher layers develop abstract style representations, enabling discrimination between
artistic movements [5].

2.2. Transfer Learning in Visual Art Analysis
2.2.1. Comparison of ResNet, VGG, and EfficientNet

Transfer learning leverages knowledge acquired from large-scale datasets to
accelerate training and improve performance on specialized target tasks. The choice of
pre-trained backbone architecture significantly influences artistic classification outcomes.
VGG networks employ uniform architectural patterns with small convolutional kernels,
providing straightforward feature extraction pipelines. ResNet architectures introduce
skip connections, enabling gradient flow through dense networks [6].

EfficientNet represents a more recent architectural family optimizing network depth,
width, and resolution through principled scaling methods. Comparative studies on
artistic datasets have revealed varying performance characteristics across these
architectures. EfficientNet variants often achieve superior accuracy per parameter count,
offering computational efficiency advantages [7].

2.2.2. Fine-tuning Strategies for the Art Domain

Effective transfer learning requires careful calibration of fine-tuning strategies to
balance the retention of pre-trained knowledge with adaptation to target-domain
characteristics. Layer freezing approaches maintain lower-layer parameters while
adapting higher layers, preserving general visual representations while learning style-
specific features.

Layer-wise fine-tuning with discriminative learning rates applies different update
magnitudes to varying depths within the network. Lower layers receive smaller learning
rates to preserve edge and texture detectors, while higher layers undergo larger updates
to adapt abstract representations to artistic styles [8].

2.2.3. Cross-domain Feature Transfer

The transfer of visual features between natural and artistic domains poses unique
challenges due to differences in the distributions of visual statistics. Natural photographs
exhibit different color distributions, texture patterns, and compositional conventions
compared to painted artworks. Despite these differences, pre-trained networks capture
visual primitives that remain useful for artistic analysis.

2.3. Data Augmentation and Few-shot Learning
2.3.1. Traditional Augmentation Techniques

Standard data augmentation methods apply geometric transformations and color
perturbations to generate synthetic training examples from limited source datasets.
Rotation, translation, and scaling operations increase sample diversity while preserving
artistic content. Color jittering modifies brightness, contrast, and saturation to simulate
imaging variations without altering fundamental artistic characteristics.

2.3.2. GAN-based Data Generation

Generative adversarial networks offer sophisticated augmentation capabilities
beyond simple geometric transformations. GANs trained on artistic datasets learn to
synthesize novel artworks that exhibit statistical properties matching the training
distributions. Beyond standard CNN baselines, prior studies have explored separating
style-relevant cues via difference-component modeling to better distinguish painting
styles, indicating that explicitly emphasizing discriminative components can improve
classification robustness [9].
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2.3.3. Meta-learning Approaches for Limited Samples

Meta-learning frameworks address few-shot classification challenges by learning to
learn from minimal examples. Prototypical networks represent each style category
through prototype embedding computed from available training examples. Brushstroke-
level representations have been used to distinguish between Chinese and Western
painting images, highlighting that stroke patterns provide strong style cues that can
complement global CNN features [10].

3. Proposed Method
3.1. Overall Framework Architecture
3.1.1. Input Preprocessing Pipeline

The preprocessing pipeline transforms raw artwork images into standardized
representations suitable for network processing. Images are normalized to 512x512 pixels,
balancing computational efficiency with the preservation of fine visual details necessary
for brushstroke analysis. Aspect-ratio preservation through padding helps maintain
stroke geometry and local orientation patterns, which are essential for downstream
brushstroke-sensitive analysis and extraction methods [11]. Color space considerations
significantly influence the quality of feature extraction. RGB color spaces provide
standard representations compatible with pre-trained network expectations. Additional
color space transformations to HSV coordinates isolate hue, saturation, and value
components. Normalization procedures align input statistics with pre-training data
distributions.

3.1.2. Feature Extraction Network Design

The core feature-extraction network adopts a hierarchical architecture that processes
inputs through a sequence of convolutional blocks with progressively increasing
abstraction levels. The network backbone is based on pre-trained ResNet, VGG, or
EfficientNet architectures, providing robust visual feature extraction.

The network produces feature maps at multiple spatial resolutions corresponding to
different semantic levels (Table 1). Shallow layers generate high-resolution feature maps
capturing fine brushstroke textures. Intermediate layers produce moderate-resolution
representations encoding compositional elements. Deep layers produce low-resolution
feature maps that capture global artistic style characteristics.

Table 1. Comparison of Backbone Network Architectures for Artistic Feature Extraction.

Pre- Relative Computation
. Depth  Paramet .. .
Architecture (Layers)  ers (M) training Downsampling al Cost
y Dataset Stages (GFLOPs)
VGCI6 16 138.4 ImageN  512—256—128—64 15.5
et-1K —32
ResNet50 50 256 mageN  512m236-128-064 4.1
et-1K —32
ResNet101 101 445 ImageN  512—256—128—64 78
et-1K —32
EfficientNe ImageN  512—256—128—64
t-B3 82 122 et-1K —32 18
EfficientNe ImageN  512—256—128—64
t-B5 120 304 et-21K —32 79

GFLOPs are reported under the standard 224x224 input setting from commonly used
model specifications; computation increases approximately quadratically when using 512
x 512 inputs in our experiments.
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3.2. Hierarchical Feature Extraction Optimization
3.2.1. Multi-scale Feature Fusion Strategy

The multi-scale fusion module aggregates feature representations from multiple
network depths to create comprehensive artistic descriptors. The fusion strategy employs
spatial upsampling of lower-resolution feature maps to match the dimensions of higher-
resolution counterparts, followed by channel-wise attention weighting to emphasize
informative feature channels [12].

Given feature maps F_i from layer i with spatial dimensions H_i x W_i and C_i
channels, the fusion process computes:

F_upsampled_i = Upsample (F_i, size= (H_target, W_target))

Where upsampling employs bilinear interpolation. The attention mechanism
computes channel importance weights:

alpha_{i,c} = sigmoid (w_{i,c} - GlobalAvgPool (F_ {upsampled, i,c}))

The final fused representation combines weighted features:

F_fused = sum_i (alpha_i © F_upsampled_i)

The architecture diagram (Figure 1) illustrates the complete processing pipeline from
input artwork to style classification. The visualization employs a layered block diagram
representation with distinct color coding for different functional modules. The input stage
shows a Chinese painting image (512x512 resolution) entering the preprocessing pipeline,
depicted as a series of transformation blocks including resolution normalization, color
space conversion, and statistical normalization.

Stage 1
Conv Blocks
512x64x64

Input Image

Chinese Painting

512x512

v Stage 2
Conv Blocks Pty Scate P—
Preprocessing 256x128x128 Fusion Module Classification
i § Color & Comp. Head
Resolution Norm Feature Upsampling \ Analysi
Color Space Conv. Attention Weighting Global Avg Pool
Statistical Norm. Stage 3 Attention Mechanism FC Layer (512)
Conv Blocks Style Encoding
128x256x256 FCS;:yer s
max
Stage 4 Brushstroke
c Enhancement
‘onv Blocks Output
64x512x512 Oriented Gradients .
S Style Categories
' 8-Direction Filters (8 classes)
Max Pooli
Stage 5
Conv Blocks
32x1024x1024

Legend:

‘:l Input/Output E’ Conv Stages
—> Skip Connections —> Main Flow

Figure 1. Overall Framework Architecture of the Hierarchical Feature Extraction Network.

‘:l Fusion Module I:I Enhancement

The backbone network section displays the hierarchical convolutional architecture
with five main processing stages, each represented by stacked rectangular blocks. Feature
map dimensions (channels x height x width) are annotated at each stage in the figure, with
spatial resolution progressively decreasing and channel depth increasing across the
backbone. Skip connections from multiple stages feed into the multi-scale fusion module,
shown as a convergence point where upsampled features merge.

The brushstroke enhancement module appears as a parallel-processing branch that
extracts oriented gradient features, with eight directional filters illustrated as small,
oriented kernels. The color and composition analysis module processes high-level
features using attention mechanisms, as shown in attention weight maps overlaid on
feature visualizations. The final classification head combines all processed features
through global pooling and fully connected layers, producing probability distributions
over artistic style categories.
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3.2.2. Brushstroke Feature Enhancement Module

The brushstroke enhancement module targets the distinctive textural signatures
created by traditional Chinese painting tools. The module processes feature maps through
oriented derivative filters at multiple angles theta:

G_0 (%, y) = (K_O*F) (x,y)

Filtering at four canonical orientations (0°, 45°, 90°, and 135°) captures brushstrokes
in diverse directions. The responses undergo non-linear activation:

S (x, y) = max_theta (ReLU (G_theta (X, y)))

Aggregating maximum responses across orientations to identify stroke presence
regardless of direction (Table 2). Each directional filter is implemented as a depthwise 3x3
convolution (grouped by channel), resulting in ~2.3K parameters per orientation for 256
channels.

Table 2. Feature Extraction Module Specifications for Brushstroke Enhancement.

K 1
Module Input Conefrinilra Output Activation Paramet
Component Dimensions tiorgl Dimensions Function ers (K)
Directional 33
. 256 x 64 x 64  depthwise 256 x 64 x 64 Linear 2.3
Filter 0° .
oriented
Directional  »oc . 6ax6a  2*%  256x64x64  Linear 23
Filter 45° diagonal
Directional  »o¢  6ax6a  *%  256xeax64  Linear 23
Filter 90° horizontal
Directional  »o¢ . 6ax6a  2*%  256x64x64  Linear 23
Filter 135° diagonal
4 x 256
) x 64 Max over
Max Poolin 64 orientation
. & (concatenate 256 x 64 x 64 ReLU 0.0
Aggregation das s (channel-
1024x6ax6a)  V1%©)
Feature 1x1
Enhancement 256 x 64 x 64 . . 512 x 64 x 64 ReLU 131.6
pointwise
Conv
Residual .
Addition 512 x 64 x 64 - 512 x 64 x 64 Identity 0.0
3.2.3. Color and Composition Feature Extraction
Color palette analysis and compositional structure recognition provide

complementary information to texture-based brushstroke features. The color extraction
pathway processes HSV-transformed inputs to isolate hue distributions characteristic of
different painting traditions. Histogram-based color representations capture the
frequency of specific hue ranges:

H_color(b) = sum_ {x, y} indicator (H (x, y) in bin_b)

Compositional analysis examines the spatial distributions of visual elements by
aggregating region-based features. The artwork is divided into a 3x3 grid, with separate
feature pooling within each region:

F_composition = [F_region_1, F_region_2, ..., F_region_9]

The resulting color histogram and 3x3 grid-pooled composition descriptors are
concatenated with the deep CNN feature vector before the final classifier.
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3.3. Transfer Learning Strategy
3.3.1. Backbone Network Selection and Comparison

The selection of an appropriate backbone architecture balances multiple competing
considerations, including accuracy, computational efficiency, and transfer learning
effectiveness. ResNet architectures provide robust baseline performance through well-
established skip connection mechanisms. Beyond pure visual classification, combining
deep learning with structured cultural heritage knowledge (e.g., knowledge graphs) has
been shown to enhance digital cultural heritage management, motivating more context-
aware design choices in art understanding pipelines [13].

3.3.2. Layer-wise Fine-tuning Approach

The layer-wise fine-tuning protocol implements discriminative learning rates across
network depths. Lower convolutional layers detecting edges and textures receive minimal
fine-tuning through small learning rates:

Ir_lower =0.0001 - Ir_base

Middle network layers encoding intermediate visual patterns undergo moderate
fine-tuning;:

Ir_middle =0.001 - Ir_base

Higher network layers producing abstract style representations require substantial
adaptation:

Ir_higher =0.01 - Ir_base

3.4. Data Augmentation for Small Sample Problem
3.4.1. Geometric and Color Space Augmentation

The geometric augmentation pipeline applies carefully calibrated transformations
preserving artistic plausibility. Random rotations sample angles from a restricted range [-
15°, +15°] to avoid generating unnaturally oriented compositions. Translation operations
shift images by up to 10% of their dimensions. Horizontal flipping is used as a lightweight
geometric transform within an augmentation-centric strategy widely adopted to improve
generalization in data-limited settings [14]. Color space augmentation modifies HSV
representations to simulate lighting and imaging variations. Saturation adjustments
sample multiplicative factors from [0.8, 1.2], resulting in subtle variations in color intensity.
Value channel modifications apply additive offsets in the range [-20, +20] on a 0-255 scale.

3.4.2. Style-preserving Augmentation Techniques

In our experiments, we primarily use Mixup as a lightweight style-preserving
augmentation; VAE-based augmentation is discussed as an optional approach. Advanced
augmentation techniques employ learned transformations maintaining artistic style
invariance. The style-preserving augmentation module trains a conditional variational
autoencoder on artistic datasets, learning latent representations disentangling style and
content factors. In a VAE-based optional augmentation setting, the encoder maps input
artworks to latent codes:

z = Encoder(x)

Where z decomposes into style component z_style and content component z_content.
Random sampling generates synthetic variations:

x_augmented = Decoder ([z_style, z_content_random])

Mixup augmentation creates convex combinations of training samples and their
labels. For artwork pairs (x_i, y_i) and (x_j, y_j), the augmented sample forms:

x_mix =lambda - x_i + (1 - lambda) - x_j

y_mix =lambda - y_i + (1 - lambda) - y_j

where lambda samples from Beta (alpha, alpha) distribution with alpha =0.2.
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4. Experiments and Results
4.1. Experimental Setup
4.1.1. Dataset Description

The experimental validation uses three curated datasets of Chinese artworks,
representing diverse painting traditions and historical periods. The primary dataset
aggregates 4,832 digitized scroll paintings from the Ming and Qing dynasties, curated
from multiple publicly available digital archives and museum collections, including
sources from the Palace Museum and provincial collections. The artworks span eight
major style categories: landscape, bird-and-flower, figure painting, bamboo-and-rock,
calligraphy-painting integration, ink-wash abstraction, colored meticulous style, and
freehand brushwork.

A secondary validation dataset contains 1,247 contemporary Chinese artworks from
20th and 21st-century painters (Table 3). A third test set comprises 628 artworks from
regional painting schools, including the Lingnan, Shanghai, and Beijing School traditions.

Table 3. Dataset Statistics and Category Distribution.

Tot Bir Bam Callig In . Tmag Anno
al d- . k- Go Xi e .
Dataset Land Fig boo- raphy- tation
. Im Flo .. W ngb ey Resol .
Split scape ure Roc Painti - ; . Quali
age we K n as 1 1 ution ¢
s r 8 h (avg) y
Exper
Trainin 3,38 24 21 2847x t-
o Set 5 892 674 523 318 287 5 231 > 2134 verifi
ed
Exper
Validati 2912x t-
on Set 725 178 152 124 86 73 58 47 43 2089 verifi
ed
Exper
TestSet 725 183 147 129 81 77 62 39 51 2789 t_. .
2156  verifi
ed
Conte Crow
1,24 10 3156x d-
mporar 284 267 198 112 95 87 103 1 2378 sourc
y ed
Region 2634x Ext}_)er
al 628 152 134 98 67 58 43 38 38 .
1987  verifi
Schools od

4.1.2. Evaluation Metrics

Classification performance assessment employs multiple complementary metrics
capturing different aspects of model behavior. Overall accuracy measures the proportion
of correctly classified test samples across all style categories. Per-category precision
quantifies the fraction of predicted category instances that truly belong to that category.
Recall metrics measure the fraction of actual category instances that are successfully
identified.

Fl-scores provide a harmonic mean of precision and recall, offering balanced
performance measures. Macro-averaged F1 computes separate F1 scores for each category
and averages them. Top-k accuracy (k=3) measures the proportion of test samples where
the proper category appears within the model's top 3 predicted classes.
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4.1.3. Implementation Details

All networks are trained using the PyTorch 2.0 framework on NVIDIA A100 GPUs
with 40GB memory. The optimization uses stochastic gradient descent with a momentum
coefficient of 0.9 and a weight-decay regularization coefficient of 0.0001. Learning rate
scheduling follows a cosine annealing strategy with an initial rate of 0.01, decreasing to
0.0001 over 100 training epochs. Batch size is set to 32 samples.

Training is initialized with ImageNet-1K pre-trained weights for all backbone
architectures. The final classification layer is initialized using He normal initialization.
Gradient clipping at norm 5.0 prevents exploding gradients. Mixed precision training
with automatic loss scaling accelerates computation. In our implementation, Ir_base refers
to the backbone base learning rate, while the newly added classification head uses a higher
initial learning rate (0.01) under the same cosine schedule.

4.2. Comparison with Baseline Methods
4.2.1. Performance of Different CNN Architectures

Comprehensive comparison across backbone architectures reveals significant
performance variations in the artistic classification domain. EfficientNet-B3 achieves the
highest overall test accuracy of 87.4%, surpassing ResNet50 (84.6%) and VGG16 (82.1%)
baselines. The remaining confusions are consistent with observations in traditional
Chinese painting image analysis, where visually similar material/texture cues are hard to
separate, and metric-learning approaches such as prototypical networks can provide
stronger class separation in the embedding space [15].

ResNet architectures demonstrate robust performance across diverse style categories,
with ResNet101 achieving 86.2% accuracy through increased network depth (Table 4).
VGG16 networks exhibit competitive performance on gongbi and bird-flower categories,
emphasizing color and fine detail, but struggle with abstract xieyi styles requiring higher-
level semantic understanding.

Table 4. Classification Performance Comparison Across Backbone Architectures and Training

Strategies.
Bird To Train
. Ove . .
Pre- Fine- Ma Land - Fig p-3 ing
Back . . rall .
Method train  tuning cro scape Flo wure Ac Time
bone Acc
ing  Strategy %) F1 F1  wer F1 ¢ (hour
’ F1 (%) 9
Ima
Baseline VGG geN Full 0.7 081 0.7 94.
VGG16 16 et-  network 82.1 98 0834 2 56 3 124
1K
Ima
Baseline ResN geN Full 0.8 083 0.7 95.
ResNet50 et50  et- network 84.6 21 0856 1 82 8 87
1K
Baseline Ima
ResN geN Full 0.8 084 0.8 96.
ResNet10 ot101 et network 86.2 18 0.871 ” 01 4 14.2
1
1K
Ima
Baseline  Effici
Full . . . 7.
Efficient entN 55 Pl gy 08 gy 086 05970,
et-  network 52 1 19 1
Net-B3  et-B3 1K
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Ima

Layer- Discrimi
ResN N 0.8 0.85 0.7 96.
wise esN 8¢ native 863 0.869 9.1
etb0 et- 41 4 98 2
ResNet50 1K rates
. Ima
Multi-  poon gen  Full? 0.8 087 08 97.
scale fusion 88.1 0.891 11.5
et50 et- 63 3 27 6
ResNet50 1K module
Proposed Ima I;vZ: 1:
ResN geN . 0.8 090 0.8 98
Frarrnkewo ot50 - :E;::;;t 91.3 9% 0.918 4 61 4 13.8
1K ation
Layer-
Ima
Proposed  Effici wise +
(Efficient  entN getN fusion+  93.2 359 0.934 Ofo (;;3 998' 15.2
Net-B3)  et-B3 iK augment
ation

The proposed framework integrating multi-scale fusion, brushstroke enhancement,
and style-preserving augmentation achieves substantial improvements over single-
component baselines. The complete ResNet50-based framework achieves 91.3% accuracy,
representing a 6.7 percentage-point improvement over standard ResNet50 fine-tuning.
Combining the optimized framework with the EfficientNet-B3 backbone yields the best
overall performance at 93.2% accuracy.

4.2.2. Transfer Learning Effectiveness Analysis

Systematic ablation of transfer learning components quantifies their individual
contributions to overall performance. Models trained from random initialization without
ImageNet pre-training achieve only 68.4% accuracy, confirming the critical importance of
transfer learning for artistic classification with limited training data.

Layer-wise fine-tuning with discriminative learning rates improves performance by
1.7 percentage points over uniform learning rate approaches. Analysis of learned feature
representations reveals that layer-wise fine-tuning better preserves useful low-level edge
detection filters while enabling substantial high-level adaptation to artistic style
characteristics.

This composite visualization (Figure 2) presents three interconnected subfigures
illustrating the multi-scale fusion mechanism. The left panel displays a sample Chinese
landscape painting as input, with a spatial resolution of 512x512 pixels, showing
mountain peaks, mist, and scattered pine trees rendered in the traditional ink-wash
technique. Overlaid on the artwork are five colored bounding boxes in different sizes,
representing the receptive fields of features extracted at different network depths.

(b) Attention Weight Distribution (c) Feature Maps
1.0 Stage 1 Stage 2 Stage 3
(a) Multi-scale Regions 08 082 -
L T L T T L LT T L] 078 -
H
........... = 06 Edge Detection Branches  Mountains
o
°
= 0.61 Stage 4 Stage 5
§ 0.4
S 0.
E 054 0.48
<
0.2 Composition Global Style
Input: 512512 pixels Activation Intensity
00 m
s1 s2 s3 s4 S5

Network Stage Low High

Figure 2. Multi-Scale Feature Fusion Visualization and Attention Weight Distribution.
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The center panel shows a 3D bar chart visualization of attention weight distributions
across five network stages and eight feature channel groups. The vertical axis represents
attention magnitude (range 0.0 to 1.0), the horizontal axes span network stages (1-5) and
channel groups (1-8). The bars use a gradient from blue (low attention) to red (high
attention), revealing that intermediate stages (e.g., Stage 2-3) tend to receive higher
attention weights in a representative run.

The right panel presents feature map visualizations for each of the five stages,
displayed as a 4x4 grid of activation heatmaps. Stage 1 activations show sharp edge
responses highlighting brushstroke boundaries. Stage 2 maps reveal structured patterns
corresponding to tree branches. Stage 3 visualizations capture larger compositional
elements, including mountain silhouettes. All heatmaps employ the "viridis" colormap
with warmer colors indicating stronger activations.

4.3. Ablation Study and Analysis
4.3.1. Impact of Hierarchical Feature Design

Systematic ablation experiments isolate the contributions of individual framework
components. Removal of the multi-scale fusion module reduces accuracy by 3.1
percentage points, demonstrating its effectiveness in capturing visual information across
multiple abstraction levels. The performance drop is particularly pronounced in
landscape and ink-wash categories.

Eliminating the brushstroke enhancement module reduces accuracy by 2.4
percentage points, with the most significant impact on xieyi and bamboo-rock categories
characterized by distinctive brush techniques (Table 5). Feature visualization analysis
confirms that the enhancement module amplifies responses to oriented stroke patterns.

Table 5. Ablation Study Results Showing Individual Component Contributions.

Mul Style- Xie
Framewo  ti- Brushstr Color- . Over Landsc . Infere
rk scal oke Compos preservin  an ape Kl nce
Configur e Enhance ition Aug%nent Acc Acc CC Time
ation Fusi ment Module . (%) (%) (ms)
ation (%)
on
Baseline 79.
ResNet50 X X X X 84.6 86.8 ) 23.4
+ Multi- &
scale v X X X 87.7 89.6 1 ) 28.7
Fusion
+
Brushstro 85
ke X v X X 87.0 88.3 6. 31.2
Enhance
ment
+ Color- 80
Composit X X v X 86.4 88.9 7 ) 26.1
ion
+ Style- 81
preservin X X X v 86.8 88.1 4 ’ 23.4
g Aug
Fusion + 86
Brushstro v v X X 89.3 91.2 g ’ 34.5
ke
Fusion+ X v X 889 917 OO 314
Color 3

145



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

All g8
Compone Vv v v v 91.3 93.4 7 - 389
nts
The color and composition analysis module contributes 1.8 percentage point
improvement, with most significant impact on gongbi and bird-flower categories where
color palette and spatial arrangement serve as primary style discriminators.

4.3.2. Effect of Data Augmentation Strategies

Data augmentation significantly improves classification robustness and
generalization performance. Models trained without augmentation (Baseline ResNet50)
achieve 84.6% test accuracy (Table 5), compared to 91.3% with the whole pipeline (All
Components), representing a 6.7 percentage-point improvement. The performance gap
widens further when evaluated on the contemporary artwork test set, where
augmentation provides a 5.2 percentage-point improvement.

Comparison between standard geometric augmentation and style-preserving
augmentation reveals complementary benefits. Style-preserving augmentation alone
improves accuracy from 84.6% to 86.8% (+2.2 pp) (Table 5) and yields further gains when
combined with other components in the whole pipeline.

4.3.3. Feature Visualization and Interpretability

Feature visualization via dimensionality reduction techniques provides insights into
the structure of the learned representation. t-SNE projection of penultimate layer features
reveals well-separated clusters corresponding to different artistic styles, with landscape
and bird-flower categories forming distinct groupings.

Gradient-weighted class activation mapping visualizes the spatial regions that
influence classification decisions. For landscape paintings, activation maps highlight
mountain silhouettes and compositional balance elements. Bird-flower classifications are
activated based on subject positioning and rendering quality.

This comprehensive analysis visualization (Figure 3) combines three subfigures,
revealing learned representation structure and classification patterns. The left subfigure
presents a t-SNE projection of 512-dimensional feature vectors from the penultimate
network layer, computed from all 725 test set samples. The 2D embedding employs a
perplexity parameter of 30 and 1000 optimization iterations. Each point represents one
artwork, with colors corresponding to the eight style categories. Landscape samples form
a dense cluster in the upper-left quadrant. The visualization includes category centroids
marked with enlarged diamond symbols.
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Figure 3. Feature Space Visualization and Confusion Matrix Analysis.

The center subfigure displays an 8x8 confusion matrix heatmap revealing
classification patterns across all style categories. The matrix employs a sequential
colormap from white (0% confusion) to dark blue (100% confusion), with percentage
values annotated in each cell. The diagonal elements show true-positive rates ranging
from 91.8% to 96.2%. Off-diagonal elements reveal systematic confusion patterns.
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The right subfigure presents per-class precision, recall, and F1l-score metrics as a
grouped bar chart. Three bars per category enable direct comparison of classification
behavior across metrics. The landscape category achieves the highest scores. The chart
reports per-class precision, recall, and F1-score; error bars are omitted for clarity.

5. Conclusion and Future Work
5.1. Summary of Contributions
5.1.1. Key Findings

This investigation demonstrates that hierarchical feature-extraction architectures
specifically optimized for artistic visual characteristics achieve substantial performance
improvements over generic CNNs. The systematic evaluation of transfer learning
strategies confirms that layer-wise fine-tuning with discriminative learning rates
effectively balances preservation of pre-trained knowledge with domain-specific
adaptation.

The multi-scale feature fusion mechanism proves critical for capturing visual
information spanning multiple abstraction levels. The specialized brushstroke
enhancement module successfully amplifies stroke-specific visual signatures through
directional gradient analysis. Style-preserving data augmentation techniques mitigate
limited training sample availability while maintaining artistic plausibility.

5.1.2. Technical Innovations

The research introduces several methodological innovations advancing automated
artistic analysis capabilities. The hierarchical feature extraction framework integrates
complementary visual cues, including textural brushwork characteristics, color palette
distributions, and compositional spatial arrangements. The layer-wise fine-tuning
protocol with discriminative learning rates provides a principled approach for adapting
pre-trained networks to specialized visual domains.

5.2. Limitations and Challenges
5.2.1. Current Constraints

Several limitations constrain the current framework's applicability and performance.
Reliance on supervised classification with categorical labels fails to capture the continuous
spectrum of artistic variation. The framework requires substantial computational
resources during training, with complete optimization cycles consuming 15+ hours on
high-performance GPU hardware.

The dependence on expert-annotated training data creates bottlenecks for scaling to
larger collections. Annotation quality significantly influences model performance,
requiring art historians' expertise for reliable style labeling.

5.3. Future Research Directions
5.3.1. Potential Extensions

Future research can pursue several promising directions extending the current
framework's capabilities. Integration of textual descriptions and historical metadata
through multi-modal learning could enhance classification accuracy. Self-supervised pre-
training on extensive, unlabeled art collections might reduce reliance on expert
annotations.

Exploring few-shot and zero-shot learning methodologies could enable rapid
adaptation to rare artistic styles with minimal training data. Incorporation of uncertainty
quantification techniques would provide confidence estimates for classification decisions.

5.3.2. Application Prospects

The developed technology offers substantial practical value across multiple cultural
heritage domains. Museums can leverage automated classification to catalog extensive
collections efficiently. Digital cultural heritage initiatives benefit from the framework's
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ability to enable style-based search interfaces. Auction houses can employ the technology
for rapid preliminary style verification. Educational institutions may use the framework
to develop interactive learning tools that help students recognize artistic style

characteristics.
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