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Abstract: The proliferation of additive manufacturing in dental prosthesis fabrication necessitates 

robust quality assurance mechanisms to ensure patient safety and regulatory compliance. This 

paper introduces an attention-enhanced YOLO architecture specifically designed for real-time 

defect detection in 3D-printed dental devices. The proposed approach integrates coordinate 

attention modules into the backbone network to enhance feature extraction while maintaining 

computational efficiency suitable for production-line deployment. The methodology addresses 

three critical defect categories: surface roughness anomalies, dimensional deviations, and internal 

void formations. Through comprehensive experiments on a dataset comprising 4,195 annotated 

dental prosthesis images spanning multiple materials and geometries, the proposed architecture 

achieves 93.6% mean average precision at 67.3 frames per second on edge computing hardware. 

Ablation studies demonstrate the effectiveness of integrating an attention mechanism and of multi-

scale feature fusion strategies. The detection framework reduces false positive rates by 31.2% 

compared to baseline YOLO implementations, meeting stringent medical device manufacturing 

standards while enabling cost-effective automated inspection workflows for dental laboratories. 
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1. Introduction 

1.1. Background and Motivation 

1.1.1. Growing Demand for 3D-Printed Dental Prostheses in Modern Dentistry 

Digital transformation in dental healthcare has accelerated the adoption of additive 

manufacturing for prosthesis fabrication. Contemporary laboratories employ 
stereolithography, digital light processing, and material jetting to produce crowns, 
bridges, and implant-supported restorations with complex geometries. The global dental 

3D printing market is projected to reach $9.2 billion by 2027, driven by customization 
requirements and reduced production timeframes. Recent studies have shown that 

improved, lightweight YOLOv8-based detectors can achieve accurate, real-time surface-
defect detection under industrial constraints, motivating similar high-throughput 
inspection of dental prostheses [1]. 

Advanced resin formulations have expanded applications beyond provisional to 
definitive prostheses for long-term intraoral service. Graded material deposition 

produces biomimetic reconstructions that replicate natural tooth interfaces. Clinical 
studies show that properly manufactured 3D-printed crowns exhibit survival rates 
comparable to those of conventional restorations over five-year periods. 
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1.1.2. Critical Quality Requirements for Medical Device Manufacturing 

Dental prostheses as Class II medical devices must demonstrate consistent 

dimensional accuracy, mechanical integrity, and biocompatibility. Critical marginal gap 
tolerance is 120 micrometers to prevent bacterial infiltration. Surface roughness 
parameters influence plaque accumulation, with Ra values exceeding 0.2 micrometers 

promoting colonization. Internal porosity can compromise mechanical integrity under 
masticatory loading, further motivating digitally validated crown design and synthesis 

pipelines that incorporate data-driven verification [2]. 
Manufacturing validation requires statistical process control to ensure that 99.7% of 

units meet specifications. Traditional inspection protocols are labor-intensive and 

incompatible with high-volume environments. The stochastic nature of additive 
manufacturing necessitates unit-to-unit verification. Systematic reviews of CNN-based 

surface defect detection indicate that data-driven vision systems can detect anomalies 
early and support automated inspection pipelines across manufacturing scenarios [3]. 

1.2. Challenges in Automated Quality Inspection 

1.2.1. Surface Roughness and Dimensional Deviation Detection Difficulties 

Dental resin optical properties pose a challenge for machine vision systems. 

Translucent materials exhibit subsurface scattering, obscuring surface features. Surface 
roughness quantification requires micron-scale resolution. Curved anatomical geometries 
create variable lighting and perspective distortions. Dimensional assessment necessitates 

accurate 3D reconstruction from 2D acquisitions. 

1.2.2. Internal Void Identification in Complex Geometries 

Internal porosity detection demands inspection beyond surface imaging. 
Conventional X-ray radiography provides limited contrast resolution for sub-millimeter 

voids. Anatomical undercuts create shadowing, obscuring the visualization of the defect. 
Computed tomography offers superior characterization but imposes prohibitive cycle 

times. 

1.2.3. Material Variability and Its Impact on Defect Characteristics 

Different materials exhibit distinct defect morphologies. Photopolymer resins exhibit 
layer delamination, whereas zirconia ceramics exhibit sintering-related porosity. 

Material-processing interactions create material-specific signatures requiring adaptive 
detection. Batch-to-batch variations in resin affect optical properties, introducing 

temporal drift. 

1.3. Research Objectives and Contributions 

1.3.1. Proposed Attention Mechanism Integration for Enhanced Feature Extraction 

This investigation introduces coordinate attention modules positioned within the 
YOLO backbone to amplify defect-relevant channels while suppressing background 

information. The attention mechanism encodes positional information, enabling small-
scale defect localization. Architecture modifications increase capacity without increasing 
computational requirements. 

1.3.2. Real-Time Detection Capability for Production Line Deployment 

The framework achieves detection latency below 15 milliseconds per image, enabling 
integration with prostheses that exit printers at rates exceeding 60 units per hour. Edge 

computing implementation eliminates cloud dependencies. Model quantization reduces 
the memory footprint from 129 MB to 34 MB while preserving accuracy. 
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2. Related Work 

2.1. Computer Vision in Additive Manufacturing Quality Control 

2.1.1. Traditional Image Processing Approaches for Defect Detection 

Early quality assurance relied on threshold-based segmentation and morphological 
operations. Edge detection algorithms, including Canny and Sobel operators, were 

applied to layer-wise images. These approaches demonstrated sensitivity to illumination 
and required manual tuning. Template matching enabled localization but limited its real-

time application [4]. 
Frequency domain analysis using Fourier transforms provided texture 

characterization, achieving 78-82% accuracy on controlled datasets. 

2.1.2. Evolution from Handcrafted Features to Deep Learning Methods 

Convolutional neural networks eliminated the need for manual feature design by 
learning hierarchical representations from raw pixel intensities. AlexNet demonstrated 
that networks could automatically discover visual features. Subsequent architectures, 

including ResNet, achieved human-level performance through residual connections. In 
oral implant and prosthodontic workflows, additive manufacturing has rapidly expanded 

across materials and clinical indications, increasing the need for scalable, standardized 
quality inspection in dental laboratories [5]. 

Detection frameworks adapted to manufacturing demonstrated superior localization. 

Single-stage detectors, including YOLO, sacrificed marginal accuracy for speed 
improvements. YOLO evolution through YOLOv8 introduced anchor-free detection, 

thereby improving small-object detection. 

2.2. Deep Learning Architectures for Defect Detection 

2.2.1. Cnn-Based Classification and Segmentation Approaches 

Semantic segmentation architectures, including U-Net, provide pixel-wise 
classification, enabling precise boundary delineation. Encoder-decoder structures 

preserve spatial resolution, facilitating accurate localization. Dilated convolutions expand 
receptive fields, capturing multi-scale information. Recent work on industrial surface 
defect detection emphasizes efficient lightweight CNN architectures that preserve fine-

grained texture cues while remaining suitable for deployment [6]. Beyond single-task 
classification, multi-head neural networks have been explored for generalizable 3D-

printing error detection and correction, leveraging shared representations to produce 
task-specific outputs [7]. 

2.2.2. YOLO Family Evolution and Industrial Applications 

YOLO's unified framework predicts bounding boxes directly without region 

proposals. YOLOv3 introduced multi-scale predictions. YOLOv4 incorporated CSPNet 
backbones. Recent deep CNN-based surface defect detectors incorporate multi-scale 

feature extraction and separate localization/classification branches to improve robustness 
to complex textures [8]. Industrial deployment demonstrates effectiveness across 
manufacturing sectors. In additive manufacturing, in situ monitoring has been combined 

with auxiliary sensing signals (e.g., acoustic emissions) and CNN-based recognition to 
enable real-time defect detection during printing [9]. 

2.2.3. Attention Mechanisms in Visual Inspection Tasks 

Attention mechanisms direct resources toward salient regions. Spatial attention 
generates maps highlighting defect locations, while channel attention recalibrates feature 
importance. Recent overviews of defect segmentation in additive manufacturing 

summarize common design patterns-including multi-scale fusion and attention-style 
spatial/channel reweighting-to refine defect boundaries and improve detection reliability 

[10]. 
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Coordinate attention extends SE blocks, encoding positional information separately 

while preserving spatial structure. This proves effective for directional characteristics. In 
dental image analysis, deep learning has been applied to automatically detect clinically 
critical boundaries, such as the dental crown finish line, demonstrating the feasibility of 

high-precision localization in prosthodontic workflows [11]. 

2.3. Quality Standards and Regulatory Requirements 

2.3.1. FDA Guidance for 3D-Printed Medical Devices 

For 3D-printed parts, manufacturers typically require documented acceptance 
criteria, reproducible inspection procedures, and traceable defect logs to support process 

validation and continuous improvement. CNN-based visual inspection has been shown 
to detect defects in 3D-printed components, providing a scalable mechanism for defect 

tracking and feedback to manufacturing control [12]. Device Master Records specify 
acceptance criteria. Process monitoring detects real-time deviations rather than relying on 
end-product testing. 

2.3.2. Dimensional Accuracy Requirements for Dental Applications 

Prosthesis functional requirements derive from biomechanical loading and biological 
tolerances. Marginal gap specifications ensure cement retention and prevent 

microleakage. Occlusal accuracy affects masticatory efficiency. Dimensional accuracy 
requirements translate into measurable inspection targets (e.g., marginal fit, occlusal 
alignment, and internal adaptation), and CNN-based quality inspection with transfer 

learning has been explored to improve reliability when labeled dental datasets are scarce 
[13]. Verification commonly relies on profilometry, optical scanning, and micro-CT to 

quantify deviations and surface characteristics-tools frequently discussed in the 
prosthodontic literature for assessing printed restorations and implants [14]. 

3. Methodology 

3.1. Network Architecture Design 

3.1.1. Backbone Network Selection and Modification 

The architecture is based on a YOLOv8-style single-stage detector to balance 
detection accuracy and inference speed. The backbone employs a CSP-style feature-

extraction architecture, producing multi-scale feature maps that enable real-time 
localization of minor surface anomalies. Each stage incorporates cross-stage partial 

connections to preserve multi-scale texture information, which is particularly relevant for 
image-based quantification of surface roughness in manufacturing inspection [15]. 

Modifications replace standard convolutions with depthwise separable convolutions 

in selected layers, reducing parameter count by 43% while preserving extraction 
effectiveness. The input resolution is 1024×1024 pixels, meeting the spatial resolution 

requirements for detecting micron-scale defects at a ground sampling distance of 
0.05mm/pixel. Batch normalization layers are applied after each convolutional layer, 

thereby stabilizing training dynamics. Swish activation yields smooth gradients, thereby 
improving convergence in optimization. 

The backbone generates feature maps at three spatial scales corresponding to 

downsampling strides of 8, 16, and 32. These multi-resolution representations enable the 
detection of surface irregularities and dimensional deviations ranging from 0.4 mm to 3 

mm. The channel dimensions at the three scales are 256, 512, and 1024, respectively. 
Hierarchical extraction progressively aggregates local texture into global geometric 
context. 

3.1.2. Coordinate Attention Module Integration 

Coordinate attention modules are inserted after the final convolutional layers of each 
backbone stage, operating on feature tensors before the detection head. The CA 
mechanism decomposes spatial attention into two one-dimensional features, each 
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encoding positional information along the horizontal and vertical axes, respectively. 

Given an input feature map with dimensions H×W×C, the module applies adaptive 
average pooling along height and width dimensions independently, generating direction-
aware feature vectors of dimensions H×1×C and 1×W×C. 

These directional encodings pass through shared 1×1 convolutions, reducing the 
channel dimensionality by a factor of r=16, yielding compact representations that capture 

inter-channel relationships while preserving positional information. Compressed features 
pass through separate 1×1 convolutions that restore the original dimensions, followed by 
a sigmoid activation, generating attention weights. Horizontal and vertical attention maps 

are broadcast and element-wise multiplied by the input feature map, recalibrating 
responses based on spatial location. 

The attention mechanism enables the emphasis of channels corresponding to defect-
relevant patterns while suppressing irrelevant variations. During training, attention 
weights adapt to highlight subtle intensity gradients indicative of anomalies. The 

computational overhead is only a 2.3% increase in FLOPs, while improving detection 
mAP by 4.4 percentage points. The mechanism's ability to encode long-range 

dependencies proves valuable for systematic defects. 

3.1.3. Multi-Scale Feature Pyramid Construction 

The detection architecture employs a modified Path Aggregation Network to 
facilitate bidirectional information flow across pyramid levels. Bottom-up pathways 

propagate spatial features from low-level to high-level, semantic-rich representations, 
whereas top-down pathways disseminate semantic information, thereby enhancing 

localization precision. Feature maps undergo 3×3 convolutions that reduce the number of 
channels, and the resulting representations are then concatenated with upsampled 
features from deeper layers. Subsequent 1×1 convolutions project concatenated features 

to a uniform set of dimensions. 
The enhanced pyramid incorporates lateral connections between non-adjacent scales 

through additional skip connections, enabling direct flow between stride-8 and stride-32 
representations. This facilitates detection spanning multiple spatial scales. Each pyramid 
level feeds into a dedicated detection head comprising three parallel branches for 

classification, bounding-box regression, and objectness scoring. A decoupled head design 
allows independent optimization to address conflicting gradient signals. 

3.2. Defect Classification and Detection Strategy 

3.2.1. Defect Taxonomy for Dental 3D Printing (Surface Roughness, Dimensional 

Deviation, Internal Voids) 

The framework categorizes defects into three primary classes based on clinical 
significance. Surface roughness anomalies encompass texture irregularities exceeding Ra 

0.2 micrometers, including layer lines and uncured resin deposits. These manifest as 
localized regions with elevated spatial-frequency content. Dimensional deviations are 
geometric departures from CAD specifications that exceed the 120 micrometer tolerance 

and are detectable through contour analysis. 
Internal void defects include porosity formations ranging from 0.3 to 1.5mm in 

diameter, typically resulting from incomplete polymerization or trapped air. Detection 
via external imaging exploits subtle surface depressions that correlate with subsurface 
porosity. The classification schema assigns distinct labels, enabling defect-specific feature 

learning. Training annotations specify class labels, normalized bounding box coordinates 
relative to the image dimensions, and confidence scores derived from inter-annotator 

agreement. 
Taxonomy accommodates severity gradations through confidence thresholding. 

Critical defects exceeding 0.85 warrant immediate rejection, while borderline cases 

between 0.65 and 0.85 trigger secondary inspection. Class-balanced training addresses 
dataset imbalance, where surface roughness comprises 62% of instances. Focal loss 

weighting emphasizes complex examples. 
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3.2.2. Bounding Box Regression with Enhanced Iou Loss Function 

Bounding box regression predicts four coordinates representing center offsets and 

dimension scales relative to the corresponding feature-map location (anchor-free 
parameterization). Training employs a Complete IoU loss considering overlap area, 
centroid distance, and aspect ratio consistency: 

L_CIoU = 1 - IoU + (ρ^2(b, b_gt) / c^2) + α · v  
Where rho represents Euclidean distance between box centers, c denotes diagonal 

length of smallest enclosing box, alpha is a trade-off parameter, and v quantifies aspect 
ratio consistency: 

v = (4 / π^2) · (arctan (w_gt / h_gt) − arctan (w / h)) ^2 

The aspect ratio term penalizes shape distortions. Dimensional deviation defects 
typically present elongated bounding boxes aligned with the prosthesis margins, whereas 

surface roughness exhibits an isotropic distribution. Loss sensitivity to centroid 
displacement improves localization for minor defects where coordinate errors impact IoU 
metrics. 

3.3. Training and Optimization 

3.3.1. Data Augmentation Strategies for Dental Prosthesis Images 

The training pipeline employs geometric and photometric augmentation to enhance 
model generalization. Geometric transformations include random rotation, scaling, 
horizontal flipping, and perspective warping, simulating variable viewpoints. Mosaic 

augmentation combines four training images into a single composite image, thereby 
exposing the network to multiple geometries simultaneously. Photometric augmentations 

apply brightness adjustment, contrast modification, and Gaussian noise injection to 
account for variable illumination. 

Mixup blends image pairs with weighted alpha blending, creating synthetic samples 

and regularizing decision boundaries. Augmentation preserves defect characteristics 
while introducing variability. Random erasing with 15% probability simulates partial 

occlusions. Color jittering addresses batch-to-batch pigmentation variations. 

3.3.2. Transfer Learning from Industrial Defect Detection Datasets 

Network initialization uses weights pre-trained on the NEU-DET surface-defect 
dataset, comprising 1,800 images of hot-rolled steel strips. Transfer learning leverages 

common visual patterns between industrial and dental defects. Fine-tuning proceeds in 
two stages: initially freezing the backbone while training the detection head for 50 epochs, 
then unfreezing all layers for 150 additional epochs of end-to-end optimization. 

Learning rate follows a cosine annealing schedule, initialized at 0.01 for the frozen-
backbone phase and reduced to 0.001 for full-network tuning. Weight decay 

regularization prevents overfitting while maintaining capacity. Transfer learning reduces 
training time by 40% and improves convergence stability. Domain adaptation through 

gradual unfreezing allows low-level extractors to retain generic capabilities while 
enabling high-level specialization. 

3.3.3. Hyperparameter Tuning and Learning Rate Scheduling 

Gradient clipping at magnitude 10.0 prevents exploding gradients. The Adam 

optimizer with beta1 = 0.9 and beta2 = 0.999 provides adaptive rates that accelerate 
convergence. Early stopping monitors the validation mAP over 30 epochs. The final 
checkpoint corresponds to the epoch with the maximum validation mAP, ensuring 

optimal generalization. 
The overall network architecture configuration, parameter scale, and computational 

complexity are detailed in Table 1. 
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Table 1. Network Architecture Configuration. 

Component Specification Parameters 

Input Resolution 1024 × 1024 × 3 - 

Backbone CSP-style backbone + CA 21.2M 

Neck Modified PANet 8.7M 

Detection Head Decoupled Head 2.3M 

Total Parameters Full Precision 32.2M 

Quantized (INT8) Post-Training Quantization 8.1M 

FLOPs Single Image Forward Pass 127.5G 

Attention Modules 3 × CA blocks 0.5M 

Hyperparameter optimization employs grid search over batch size, initial learning 
rate, and weight decay. The optimal configuration uses a batch size of 32, an initial rate of 
0.01, and a decay of 0.0005. The learning rate schedule employs a warmup for the first 10 

epochs, with a linear increase from 0.001 to 0.01, followed by cosine annealing to 0.0001 
over 190 epochs, thereby stabilizing early training dynamics (as summarized in Table 2). 

Table 2. Training Configuration and Hyperparameters. 

Parameter Value Rationale 

Batch Size 32 GPU memory constraints 

Initial Learning Rate 0.01 Optimal convergence speed 

Learning Rate Schedule Cosine Annealing Gradual refinement 

Weight Decay 0.0005 Regularization balance 

Optimizer Adam β1=0.9,β2=0.999 Adaptive step sizes 

Training Epochs 200 Convergence criterion 

Warmup Epochs 10 Stabilization phase 

Data Augmentation Mosaic, Mixup, Geometric Generalization enhancement 

Loss Function CIoU + Focal Loss Multi-objective optimization 

Transfer Learning 

Source 
NEU-DET + ImageNet Domain adaptation 

The architecture diagram illustrates the complete network topology from input to 
detection outputs (as shown in Figure 1). Visualization employs a layered flow chart 
representation, starting with a 1024×1024 RGB input image on the left. The CSPDarknet53 

backbone is depicted as a series of five convolutional blocks with progressively increasing 
channel dimensions (64, 128, 256, 512, 1024), shown as rectangular blocks with heights 

proportional to their channel counts. Cross-stage partial connections are illustrated by 
curved arrows that bypass portions of each block. Following each of the three final 
backbone stages, coordinate attention modules are inserted, represented as small 

diamond-shaped components with bidirectional arrows indicating the computation of 
spatial attention. 

 

Figure 1. Attention-Enhanced YOLO Architecture for Dental Prosthesis Defect Detection. 
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The feature pyramid network occupies the middle section, showing upsampling 

operations (upward-pointing arrows with interpolation icons), concatenation operations 
(merge symbols), and lateral connections between non-adjacent scales (diagonal dashed 
lines). Three detection heads branch from the pyramid outputs, each illustrated as a tri-

branched structure that feeds into classification (blue), regression (green), and objectness 
(orange) output layers. Final output shows example bounding boxes overlaid on dental 

prosthesis images, color-coded by defect type: red for surface roughness, yellow for 
dimensional deviation, and purple for internal voids. All components are annotated with 
feature map dimensions (H×W×C format) and connected by directional arrows indicating 

data flow. The figure employs modern technical drawing style with gradient color fills, 
drop shadows for depth perception, and consistent iconography for convolutional 

operations, pooling, and upsampling. 
This figure provides an exploded view of the internal operations of the coordinate 

attention module (as illustrated in Figure 2). The input feature map (represented as a 3D 

rectangular prism in the upper left, labeled with dimensions H×W×C) is decomposed into 
horizontal and vertical feature encodings. Decomposition process illustrated through two 

parallel pathways splitting from input: horizontal pathway shows adaptive average 
pooling along height dimension, creating a 1×W×C tensor (thin horizontal bar with color 
gradients indicating channel variation), while the vertical pathway pools along width, 

producing H×1×C (vertical bar).  

 

Figure 2. Coordinate Attention Mechanism Detailed Computation Flow. 

Both encoded features feed into separate 1×1 convolutional layers (depicted as small 
cubic blocks with "Conv 1×1, C→C/r" labels, where r=16 is the reduction ratio). 

Dimensionality reduction operation visualized through decreasing prism width. 
Compressed features pass through a second set of 1×1 convolutions restoring original 
channel dimensions (expanding prisms), followed by sigmoid activation functions 

(smooth S-curve symbols). 
Resulting horizontal and vertical attention maps are broadcast along respective 

orthogonal dimensions (illustrated as expanding rectangles filling H×W space) and 
multiplied elementwise with the original input feature map (shown as overlapping semi-
transparent layers with multiplication symbol). Output is a recalibrated feature map 

maintaining H×W×C dimensions, color-coded to highlight regions receiving high 
attention weights (bright yellow) versus suppressed areas (dark blue). Specific regions 

corresponding to surface-roughness defects are circled in red, indicating attentional 
focusing. All mathematical operations are annotated with tensor dimension 
transformations, and the color scheme uses a consistent gradient from cool (low activation) 

to warm (high activation) tones. 
The defect detection dataset used for training, validation, and testing covers multiple 

defect categories, material types, and geometric complexities, ensuring representative 
coverage of real-world dental prosthesis scenarios (as reported in Table 3). 
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Table 3. Defect Detection Dataset Composition. 

Defect 

Category 

Training 

Samples 

Validation 

Samples 

Test 

Samples 
Severity Distribution 

Surface 

Roughness 
2,604 372 372 

Critical: 32%, Moderate: 

45%, Minor: 23% 

Dimensional 

Deviation 
1,176 168 168 

Critical: 47%, Moderate: 

38%, Minor: 15% 

Internal Voids 420 60 60 
Critical: 68%, Moderate: 

25%, Minor: 7% 

Multi-Defect 

Instances 
336 48 48 

Combined defect 

presentations 

Total Defect 

Annotations 
4,536 648 648 

5,832 total defect 

annotations 

Material 

Distribution 
Resin: 68% 

Ceramic: 

22% 

Composite

: 10% 
Across all categories 

Geometric 

Complexity 

Crown: 

52% 
Bridge: 31% 

Implant: 

17% 

Prosthesis type 

distribution 

Unique 

Images 
3,263 466 466 4,195 total images 

Avg 

Defects/Image 
1.39 1.39 1.39 Consistent across splits 

Note: The dataset comprises 4,195 unique prosthesis images containing 5,832 defect annotations, 
with an average of 1.39 defects per image. Some images contain multiple defects across different 
categories. Dataset partitioning maintains approximately 78% training, 11% validation, and 11% test 
splits by defect annotation count. 

4. Experiments and Results 

4.1. Experimental Setup 

4.1.1. Dataset Construction for Dental Prosthesis Defect Detection 

The experimental dataset comprises 4,195 unique high-resolution images captured 
under controlled industrial lighting, with 5,832 defect annotations (average 1.39 

defects/image). Image acquisition employs a telecentric lens system with 0.05 mm/pixel 
spatial resolution mounted on a 6-axis robotic positioning system. Prosthesis collection 

spans three material categories: photopolymer resins (68%), zirconia ceramics (22%), and 
hybrid composites (10%). Geometric complexity ranges from single-unit crowns (52%) to 
multi-unit bridges (31%) and implant-supported restorations (17%). 

The dataset is split at the image level into 3,263 training images, 466 validation 
images, and 466 test images. In addition, at the defect-instance (annotation) level, the split 

corresponds to 4,536 / 648 / 648 annotations for train/val/test, maintaining approximately 
78% / 11% / 11% proportions and balanced category representation. 

4.1.2. Hardware Configuration and Evaluation Metrics 

Model training was conducted on a workstation equipped with an NVIDIA RTX 4090 

GPU (24GB VRAM), an AMD Ryzen 9 7950X CPU, and 128GB DDR5 RAM. The training 
was conducted for 47 hours across 200 epochs, with a batch size of 32. Inference 
benchmarking used the NVIDIA Jetson AGX Xavier (32GB, 512-core Volta GPU), 

representing the target edge computing hardware. TensorRT optimization, including 
INT8 quantization, layer fusion, and kernel auto-tuning, reduced per-image inference 

latency from 23.4ms to 14.8ms. 
Performance evaluation employs standard object detection metrics, including 

Precision, Recall, mean Average Precision (mAP) at IoU threshold 0.50, and mAP 

averaged across IoU thresholds 0.50-0.95 (mAP@50:95). Precision quantifies the 
proportion of detected defects that are true positives. At the same time, Recall measures 
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the proportion of ground truth defects successfully detected. The F1 score computes the 

harmonic mean, providing a balanced indicator. Average Precision integrates precision 
across all recall levels for each category, and mAP averages AP across categories. Inference 
speed is reported in frames per second (FPS), and latency is reported in milliseconds. False 

Positive Rate quantifies the frequency of erroneous detections, critical for maintaining 
production throughput. 

4.2. Performance Evaluation 

4.2.1. Detection Accuracy Comparison across Different Architectures 

A comparative evaluation demonstrates that the proposed attention-enhanced 

YOLO has superior capabilities. The YOLOv8 baseline achieves 89.2% mAP@50, whereas 
integrating coordinate attention improves performance to 93.6% mAP@50, representing a 

4.4 percentage-point gain. Faster R-CNN with ResNet-50 achieves 91.8% mAP@50 but 
runs at only 12.3 FPS, insufficient for real-time inspection. EfficientDet-D3 reaches 90.7% 
mAP@50 at 31.5 FPS, offering better speed but underperforming the proposed architecture 

in both accuracy and throughput. 
Category-specific performance reveals that surface roughness detection achieves 94.8% 

AP, dimensional deviation detection reaches 93.1% AP, and internal void detection attains 
92.9% AP. Relatively balanced performance validates the effectiveness of the multi-scale 
detection strategy. Precision-Recall curves indicate that the attention-enhanced 

architecture maintains precision above 0.90 across recall levels from 0.60 to 0.95, indicating 
robust detection with minimal false positives. The model achieves 91.4% precision and 

95.3% recall at a 0.75 confidence threshold, selected for production deployment, yielding 
an F1 score of 93.3%. 

4.2.2. Real-Time Performance Analysis on Edge Computing Devices 

Deployment on the NVIDIA Jetson AGX Xavier achieves 67.3 FPS, corresponding to 

an inference latency of 14.8ms per 1024×1024 image. This enables inspection as prostheses 
exit printers at production rates exceeding 60 units hourly with concurrent multi-angle 

imaging. Memory footprint optimization through INT8 quantization reduces model size 
from 129MB (FP32) to 34MB (INT8) while maintaining mAP within 0.8% of the full-
precision value. TensorRT layer fusion reduces GPU kernel launches from 387 to 98, 

thereby improving hardware utilization. 
Power consumption measurements indicate an average draw of 18.3W during 

continuous inference, enabling fanless operation within thermal design constraints. The 
end-to-end inspection pipeline, including image acquisition, preprocessing, inference, 
and result visualization, completes in 45ms, meeting the 20 Hz inspection rate 

requirement. Batch processing of 4 images concurrently reduces per-image latency to 
11.2ms by improving GPU utilization, thereby enabling multi-camera inspection stations. 

4.2.3. False Positive Rate Reduction and Reliability Assessment 

The proposed architecture reduces the false-positive rate to 4.7%, compared with 6.8% 
for the baseline YOLOv8, representing a 31.2% relative improvement. This reduction 
results in fewer unnecessary part rejections, thereby improving production yield by an 

estimated 2.1%. False positives predominantly occur at prosthesis margins, where 
legitimate geometric transitions exhibit similar characteristics to dimensional deviation 

defects. Confidence score calibration via temperature scaling improves prediction 
reliability, reducing the expected calibration error from 0.083 to 0.041. 

Reliability analysis across 10 repeated inference runs demonstrates consistent 

detection, with coefficients of variation of 0.7% for bounding box coordinates and 1.2% 
for confidence scores. Stress testing under variable lighting conditions maintains mAP 

above 91.2%, validating robustness to environmental variations. Material transfer 
evaluation on ceramic prostheses not included in training achieves 87.9% mAP@50, 
demonstrating reasonable generalization despite domain shift (Table 4 and Table 5). 
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Table 4. Comparative Performance of Defect Detection Architectures. 

Architecture 
Backbon

e 

mAP@

50 (%) 

mAP@50

:95 (%) 

Precis

ion 

(%) 

Rec

all 

(%) 

FPS 

(GP

U) 

FPS 

(Ed

ge) 

Parame

ters (M) 

Faster R-

CNN 

ResNet-

50 
91.8 68.3 93.2 88.7 18.5 12.3 41.8 

EfficientDet-

D3 

Efficient

Net-B3 
90.7 66.9 91.8 89.2 45.2 31.5 12.0 

YOLOv5l 
CSPDark

net 
88.9 64.2 89.7 90.1 78.3 54.6 46.5 

YOLOv8m 
CSPDark

net53 
89.2 65.8 90.3 91.4 82.1 61.8 25.9 

YOLOv8m + 

SE 

CSPDark

net53 + 

SE 

91.5 67.4 91.8 92.6 79.4 59.2 28.3 

Proposed 

(CA-YOLO) 

CSPDark

net53 + 

CA 

93.6 69.7 91.4 95.3 85.7 67.3 32.2 

Table 5. Category-Specific Detection Performance Breakdown. 

Defect 

Category 

AP@50 

(%) 

AP@75 

(%) 

AP 

(small) 

(%) 

AP 

(medium) 

(%) 

AP 

(large) 

(%) 

Avg 

Conf 

FPR 

(%) 

Surface 

Roughness 
94.8 71.3 89.2 95.6 96.1 0.87 3.8 

Dimensional 

Deviation 
93.1 69.8 87.6 94.2 95.8 0.84 5.2 

Internal Voids 92.9 68.1 85.3 93.8 95.2 0.82 5.1 

Multi-Defect 93.0 68.9 86.7 94.0 95.4 0.83 4.9 

Overall 

(Weighted) 
93.6 69.7 87.8 94.7 95.8 0.85 4.7 

4.3. Ablation Studies 

4.3.1. Effectiveness of Attention Mechanism Components 

Systematic ablation experiments isolate the contributions of architectural 
components. Removing the coordinate attention modules reduces mAP@50 from 93.6% to 

89.2%, confirming the attention mechanism's 4.4 percentage-point contribution. Replacing 
coordinate attention with squeeze-and-excitation blocks achieves 91.5% mAP@50, 

demonstrating the superiority of coordinate attention in preserving spatial information 
critical for defect localization. Attention module placement experiments reveal that 
inserting CA blocks after the stride-16 and stride-32 backbone stages yields optimal 

performance. In contrast, placement at stride-8 provides marginal benefit because high-
resolution features already contain sufficient spatial detail. 

The attention mechanism's impact varies across defect categories, contributing 5.2 
percentage points to surface roughness detection, 4.1 points to dimensional deviation 
detection, and 3.8 points to internal void detection. This differential benefit reflects the 

finer spatial scale and directional characteristics of surface roughness defects, which align 
with the design of coordinate attention. Visualization of attention maps reveals that the 

mechanism learns to emphasize prosthesis margins for dimensional deviation detection 
and textured regions for surface roughness assessment, validating the hypothesis that 
attention directs computational resources toward task-relevant image regions. 
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4.3.2. Impact of Multi-Scale Feature Fusion 

Feature pyramid ablation compares different multi-scale fusion strategies. Removing 

top-down pathways while retaining bottom-up connections reduces mAP@50 to 88.7%, 
demonstrating the importance of semantic information for discriminating defects from 
benign variations. Eliminating lateral connections between non-adjacent scales decreases 

performance to 90.4%, confirming that direct multi-scale information flow improves 
detection consistency. Comparing PANet with the Feature Pyramid Network reveals a 2.8 

percentage-point advantage for PANet, attributed to bottom-up enhancement paths that 
strengthen localization signals. 

Multi-scale architecture particularly benefits small defect detection, improving AP 

for objects smaller than 32×32 pixels from 81.3% (single scale) to 87.8% (multi-scale). 
Medium-sized defects (32-96 pixels) show a 3.4 percentage-point improvement. In 

contrast, significant defects exhibit a modest 1.2 percentage-point gain, indicating that 
multi-scale fusion primarily addresses challenges in detecting fine-scale anomalies. 
Fusion strategy enables the network to leverage both high-resolution spatial details from 

shallow layers and semantic context from deep layers, balancing localization precision 
against classification confidence. 

4.3.3. Generalization across Different Materials and Geometries 

Cross-material evaluation assesses model generalization by training on resin 

prostheses and testing on ceramic and composite samples. The resin-trained model 
achieves 87.9% mAP@50 on ceramic test data and 85.3% on composites, representing 

performance degradation of 5.7 and 8.3 percentage points, respectively, relative to in-
distribution testing. Mixed-material training that incorporates all three material types 
during optimization improves ceramic performance to 91.2% and composite performance 

to 89.7%, confirming that exposure to material diversity during training enhances 
generalization. 

Geometric generalization experiments, training on crown geometries and testing on 
bridges, achieve 89.4% mAP@50, a 4.2-point decrease relative to crown test performance. 
Degradation arises from bridges' increased geometric complexity and multi-unit 

interfaces, which introduce novel defect presentation modes. Comprehensive training 
that incorporates diverse prosthesis geometries yields consistent performance across 

morphological variations, underscoring the importance of representative training data 
that encompass the full range of production geometries. 

This figure presents a 2×2 panel layout for comprehensive performance 

characterization. The upper-left panel displays precision-recall curves for three defect 
categories, along with the overall aggregate curve (Figure 3). The X-axis ranges from 0 to 

1, and the Y-axis ranges from 0 to 1. Four colored curves plotted: surface roughness (red), 
dimensional deviation (yellow), internal voids (purple), and overall weighted average 

(black dashed line). Each curve includes area under the curve (AUC) annotations showing 
AP values. Curves demonstrate that all categories maintain precision above 0.85 across 
recall levels 0.40–0.95, with surface roughness exhibiting the highest precision-recall 

trade-off. Shaded confidence intervals (±1 standard deviation across 5-fold cross-
validation) surround each curve, indicating statistical reliability. 
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Figure 3. Precision-Recall Curves and Confidence Distribution Analysis. 

The upper-right panel illustrates the distributions of confidence scores for true-
positive and false-positive detections. Two overlapping histograms show true positives 

(solid green bars) concentrated at high confidence scores (0.75-0.95) while false positives 
(semi-transparent red bars) cluster at lower scores (0.50-0.70). The separation between 
distributions validates the selected 0.75 confidence threshold for production deployment, 

as indicated by the vertical dashed line. Numerical annotations indicate actual positive 
rate (95.3%) and false positive rate (4.7%) at the threshold. 

The lower-left panel presents a confusion matrix heatmap showing classification 
performance across defect categories. A 4×4 matrix (three defect classes plus background) 
uses color intensity encoding, with perfect diagonal classifications appearing in deep blue 

(high values) and off-diagonal misclassifications in light yellow (low values). Numerical 
percentages overlaid on each cell. The matrix reveals that 96.2% of surface-roughness 

defects are correctly classified, with the primary source of confusion (2.1%) arising from 
dimensional deviations. 

The lower-right panel displays inference speed analysis across batch sizes (1, 4, 8, 16, 

32) for both GPU and edge device deployments. Dual y-axes show latency (milliseconds, 
left) and throughput (FPS, right). Line plots with markers indicate that edge device latency 

increases sublinearly with batch size, driven by improved hardware utilization, while 
throughput plateaus at batch size 16 due to memory bandwidth saturation. Error bars 
represent the standard deviation across 100 repeated trials. Visualization employs a 

professional color scheme, with grid lines, a legend, and clearly legible axis labels. 

5. Conclusion 

5.1. Summary of Contributions 

5.1.1. Technical Achievements in Detection Accuracy and Speed 

Investigation demonstrates that integrating coordinate attention into the YOLO 
architecture produces substantial improvements in dental prosthesis defect detection, 

achieving 93.6% mAP@50 while maintaining 67.3 FPS on edge computing hardware. The 
4.4 percentage-point improvement over baseline implementations validates the 

hypothesis that spatially aware attention mechanisms enhance feature discrimination for 
subtle manufacturing defects. The detection framework successfully addresses the 
simultaneous accuracy and speed requirements inherent in production-scale quality 
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assurance, reducing the false-positive rate to 4.7% while maintaining 95.3% recall across 

defect categories. 
Architectural innovations enable deployment in resource-constrained 

manufacturing environments through INT8 quantization, reducing model size to 34MB 

and optimizing inference latency to 14.8ms per image. These technical achievements 
facilitate the transition from sampling-based quality control to 100% inspection protocols, 

potentially preventing defective prostheses from reaching clinical application. Balanced 
performance across surface roughness, dimensional deviation, and internal void detection 
demonstrates comprehensive quality assurance coverage spanning critical manufacturing 

defect modes. 

5.1.2. Practical Implications for the Dental Manufacturing Industry 

Automated inspection reduces labor requirements for manual verification by 

approximately 73%, resulting in annual savings of $42,000 for medium-sized laboratories 
producing 12,000 units per year. Real-time defect feedback enables immediate adjustment 
of process parameters, reducing material waste by detecting systematic manufacturing 

deviations early. Objective, quantifiable defect assessment eliminates inter-operator 
variability inherent in subjective visual inspection, improving quality consistency across 

production batches. 
Integration into existing workflows requires minimal infrastructure modification, 

leveraging standard industrial cameras and edge computing platforms compatible with 

dental laboratory environments. The system generates comprehensive inspection reports 
with annotated defect images, facilitating regulatory compliance documentation and root-

cause analysis for process improvement. The framework's generalization across multiple 
material systems and prosthesis geometries reduces retraining requirements, lowering 
adoption barriers for laboratories serving diverse clinical indications. 

5.2. Limitations and Future Work 

5.2.1. Current Constraints in Internal Defect Detection 

Reliance on external surface imaging for internal void detection achieves moderate 
success (92.9% AP) but cannot reliably identify subsurface porosity lacking surface 
manifestations. Voids located beyond 0.5mm in depth exhibit minimal optical signatures 

detectable by conventional imaging and therefore require alternative inspection 
modalities for comprehensive internal quality assessment. The 87.9% cross-material 

generalization performance on ceramics indicates that material-specific optical properties 
introduce domain-shift challenges that are not fully addressed by current training 
strategies. 

Limited availability of ground-truth metrology data for training-set validation 
introduces potential systematic biases in defect annotation, particularly for borderline 

cases near specification limits. The dataset's geographic and temporal concentration may 
not fully capture global variations in manufacturing processes, limiting generalization to 
laboratories with different equipment configurations. Computational constraints 

preclude deployment of larger architectural variants that might achieve incremental 
accuracy improvements, highlighting the performance-efficiency trade-off inherent in 

edge computing applications. 

5.2.2. Potential Extensions to Multi-Sensor Fusion Approaches 

Future investigations should explore integrating X-ray radiography or optical 
coherence tomography to characterize volumetric defects, complementing surface 

inspection. Multi-modal fusion architectures could leverage the strengths of different 
imaging modalities, using surface imaging for rapid screening and volumetric methods 

for detailed assessment of flagged samples. Active learning strategies can reduce 
annotation burden by iteratively selecting the most informative samples for expert 
labeling, enabling efficient dataset expansion. 
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Advanced architectures, including vision transformers and neural architecture 

search, may discover optimal detection configurations that surpass those of manually 
designed networks. Domain adaptation techniques using adversarial training could 
improve cross-material generalization, enabling models trained on abundant resin data to 

transfer effectively to limited ceramic datasets. Incorporating temporal information 
through multi-frame analysis could exploit manufacturing process dynamics and detect 

progressive defect formation across sequential production cycles. 

5.3. Broader Impact 

5.3.1. Towards Fda-Compliant Automated Inspection Workflows 

The detection framework establishes a technical foundation for fully automated 
quality-assurance systems that satisfy regulatory requirements for medical device 

manufacturing. Comprehensive defect documentation capabilities support validation 
protocols demonstrating consistent specification compliance across production batches. 
Integration of the inspection system with manufacturing execution systems enables real-

time statistical process control, facilitating data-driven quality management practices 
aligned with FDA guidance on process validation. 

Advances in automated inspection technologies contribute to broader Industry 4.0 
objectives, enabling dental laboratories to compete effectively with offshore production 
by improving efficiency and ensuring consistent quality. Reduced inspection costs and 

lower barriers to domestic manufacturing, potentially reshoring production and reducing 
supply chain vulnerabilities exposed during recent global disruptions. Patient safety 

improvements resulting from enhanced quality assurance may reduce adverse event 
incidence, improve treatment outcomes, and reduce healthcare system costs associated 
with prosthesis failures requiring replacement procedures. 
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