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Abstract: The proliferation of additive manufacturing in dental prosthesis fabrication necessitates
robust quality assurance mechanisms to ensure patient safety and regulatory compliance. This
paper introduces an attention-enhanced YOLO architecture specifically designed for real-time
defect detection in 3D-printed dental devices. The proposed approach integrates coordinate
attention modules into the backbone network to enhance feature extraction while maintaining
computational efficiency suitable for production-line deployment. The methodology addresses
three critical defect categories: surface roughness anomalies, dimensional deviations, and internal
void formations. Through comprehensive experiments on a dataset comprising 4,195 annotated
dental prosthesis images spanning multiple materials and geometries, the proposed architecture
achieves 93.6% mean average precision at 67.3 frames per second on edge computing hardware.
Ablation studies demonstrate the effectiveness of integrating an attention mechanism and of multi-
scale feature fusion strategies. The detection framework reduces false positive rates by 31.2%
compared to baseline YOLO implementations, meeting stringent medical device manufacturing
standards while enabling cost-effective automated inspection workflows for dental laboratories.
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1. Introduction
1.1. Background and Motivation
1.1.1. Growing Demand for 3D-Printed Dental Prostheses in Modern Dentistry

Digital transformation in dental healthcare has accelerated the adoption of additive
manufacturing for prosthesis fabrication. Contemporary laboratories employ
stereolithography, digital light processing, and material jetting to produce crowns,
bridges, and implant-supported restorations with complex geometries. The global dental
3D printing market is projected to reach $9.2 billion by 2027, driven by customization
requirements and reduced production timeframes. Recent studies have shown that
improved, lightweight YOLOv8-based detectors can achieve accurate, real-time surface-
defect detection under industrial constraints, motivating similar high-throughput
inspection of dental prostheses [1].

Advanced resin formulations have expanded applications beyond provisional to
definitive prostheses for long-term intraoral service. Graded material deposition
produces biomimetic reconstructions that replicate natural tooth interfaces. Clinical
studies show that properly manufactured 3D-printed crowns exhibit survival rates
comparable to those of conventional restorations over five-year periods.
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1.1.2. Critical Quality Requirements for Medical Device Manufacturing

Dental prostheses as Class II medical devices must demonstrate consistent
dimensional accuracy, mechanical integrity, and biocompatibility. Critical marginal gap
tolerance is 120 micrometers to prevent bacterial infiltration. Surface roughness
parameters influence plaque accumulation, with Ra values exceeding 0.2 micrometers
promoting colonization. Internal porosity can compromise mechanical integrity under
masticatory loading, further motivating digitally validated crown design and synthesis
pipelines that incorporate data-driven verification [2].

Manufacturing validation requires statistical process control to ensure that 99.7% of
units meet specifications. Traditional inspection protocols are labor-intensive and
incompatible with high-volume environments. The stochastic nature of additive
manufacturing necessitates unit-to-unit verification. Systematic reviews of CNN-based
surface defect detection indicate that data-driven vision systems can detect anomalies
early and support automated inspection pipelines across manufacturing scenarios [3].

1.2. Challenges in Automated Quality Inspection
1.2.1. Surface Roughness and Dimensional Deviation Detection Difficulties

Dental resin optical properties pose a challenge for machine vision systems.
Translucent materials exhibit subsurface scattering, obscuring surface features. Surface
roughness quantification requires micron-scale resolution. Curved anatomical geometries
create variable lighting and perspective distortions. Dimensional assessment necessitates
accurate 3D reconstruction from 2D acquisitions.

1.2.2. Internal Void Identification in Complex Geometries

Internal porosity detection demands inspection beyond surface imaging.
Conventional X-ray radiography provides limited contrast resolution for sub-millimeter
voids. Anatomical undercuts create shadowing, obscuring the visualization of the defect.
Computed tomography offers superior characterization but imposes prohibitive cycle
times.

1.2.3. Material Variability and Its Impact on Defect Characteristics

Different materials exhibit distinct defect morphologies. Photopolymer resins exhibit
layer delamination, whereas zirconia ceramics exhibit sintering-related porosity.
Material-processing interactions create material-specific signatures requiring adaptive
detection. Batch-to-batch variations in resin affect optical properties, introducing
temporal drift.

1.3. Research Objectives and Contributions
1.3.1. Proposed Attention Mechanism Integration for Enhanced Feature Extraction

This investigation introduces coordinate attention modules positioned within the
YOLO backbone to amplify defect-relevant channels while suppressing background
information. The attention mechanism encodes positional information, enabling small-
scale defect localization. Architecture modifications increase capacity without increasing
computational requirements.

1.3.2. Real-Time Detection Capability for Production Line Deployment

The framework achieves detection latency below 15 milliseconds per image, enabling
integration with prostheses that exit printers at rates exceeding 60 units per hour. Edge
computing implementation eliminates cloud dependencies. Model quantization reduces
the memory footprint from 129 MB to 34 MB while preserving accuracy.
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2. Related Work
2.1. Computer Vision in Additive Manufacturing Quality Control
2.1.1. Traditional Image Processing Approaches for Defect Detection

Early quality assurance relied on threshold-based segmentation and morphological
operations. Edge detection algorithms, including Canny and Sobel operators, were
applied to layer-wise images. These approaches demonstrated sensitivity to illumination
and required manual tuning. Template matching enabled localization but limited its real-
time application [4].

Frequency domain analysis using Fourier transforms provided texture
characterization, achieving 78-82% accuracy on controlled datasets.

2.1.2. Evolution from Handcrafted Features to Deep Learning Methods

Convolutional neural networks eliminated the need for manual feature design by
learning hierarchical representations from raw pixel intensities. AlexNet demonstrated
that networks could automatically discover visual features. Subsequent architectures,
including ResNet, achieved human-level performance through residual connections. In
oral implant and prosthodontic workflows, additive manufacturing has rapidly expanded
across materials and clinical indications, increasing the need for scalable, standardized
quality inspection in dental laboratories [5].

Detection frameworks adapted to manufacturing demonstrated superior localization.
Single-stage detectors, including YOLO, sacrificed marginal accuracy for speed
improvements. YOLO evolution through YOLOVS introduced anchor-free detection,
thereby improving small-object detection.

2.2. Deep Learning Architectures for Defect Detection
2.2.1. Cnn-Based Classification and Segmentation Approaches

Semantic segmentation architectures, including U-Net, provide pixel-wise
classification, enabling precise boundary delineation. Encoder-decoder structures
preserve spatial resolution, facilitating accurate localization. Dilated convolutions expand
receptive fields, capturing multi-scale information. Recent work on industrial surface
defect detection emphasizes efficient lightweight CNN architectures that preserve fine-
grained texture cues while remaining suitable for deployment [6]. Beyond single-task
classification, multi-head neural networks have been explored for generalizable 3D-
printing error detection and correction, leveraging shared representations to produce
task-specific outputs [7].

2.2.2. YOLO Family Evolution and Industrial Applications

YOLO's unified framework predicts bounding boxes directly without region
proposals. YOLOv3 introduced multi-scale predictions. YOLOv4 incorporated CSPNet
backbones. Recent deep CNN-based surface defect detectors incorporate multi-scale
feature extraction and separate localization/classification branches to improve robustness
to complex textures [8]. Industrial deployment demonstrates effectiveness across
manufacturing sectors. In additive manufacturing, in situ monitoring has been combined
with auxiliary sensing signals (e.g., acoustic emissions) and CNN-based recognition to
enable real-time defect detection during printing [9].

2.2.3. Attention Mechanisms in Visual Inspection Tasks

Attention mechanisms direct resources toward salient regions. Spatial attention
generates maps highlighting defect locations, while channel attention recalibrates feature
importance. Recent overviews of defect segmentation in additive manufacturing
summarize common design patterns-including multi-scale fusion and attention-style
spatial/channel reweighting-to refine defect boundaries and improve detection reliability
[10].
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Coordinate attention extends SE blocks, encoding positional information separately
while preserving spatial structure. This proves effective for directional characteristics. In
dental image analysis, deep learning has been applied to automatically detect clinically
critical boundaries, such as the dental crown finish line, demonstrating the feasibility of
high-precision localization in prosthodontic workflows [11].

2.3. Quality Standards and Regulatory Requirements
2.3.1. FDA Guidance for 3D-Printed Medical Devices

For 3D-printed parts, manufacturers typically require documented acceptance
criteria, reproducible inspection procedures, and traceable defect logs to support process
validation and continuous improvement. CNN-based visual inspection has been shown
to detect defects in 3D-printed components, providing a scalable mechanism for defect
tracking and feedback to manufacturing control [12]. Device Master Records specify
acceptance criteria. Process monitoring detects real-time deviations rather than relying on
end-product testing.

2.3.2. Dimensional Accuracy Requirements for Dental Applications

Prosthesis functional requirements derive from biomechanical loading and biological
tolerances. Marginal gap specifications ensure cement retention and prevent
microleakage. Occlusal accuracy affects masticatory efficiency. Dimensional accuracy
requirements translate into measurable inspection targets (e.g., marginal fit, occlusal
alignment, and internal adaptation), and CNN-based quality inspection with transfer
learning has been explored to improve reliability when labeled dental datasets are scarce
[13]. Verification commonly relies on profilometry, optical scanning, and micro-CT to
quantify deviations and surface characteristics-tools frequently discussed in the
prosthodontic literature for assessing printed restorations and implants [14].

3. Methodology
3.1. Network Architecture Design
3.1.1. Backbone Network Selection and Modification

The architecture is based on a YOLOvS-style single-stage detector to balance
detection accuracy and inference speed. The backbone employs a CSP-style feature-
extraction architecture, producing multi-scale feature maps that enable real-time
localization of minor surface anomalies. Each stage incorporates cross-stage partial
connections to preserve multi-scale texture information, which is particularly relevant for
image-based quantification of surface roughness in manufacturing inspection [15].

Modifications replace standard convolutions with depthwise separable convolutions
in selected layers, reducing parameter count by 43% while preserving extraction
effectiveness. The input resolution is 1024x1024 pixels, meeting the spatial resolution
requirements for detecting micron-scale defects at a ground sampling distance of
0.05mm/pixel. Batch normalization layers are applied after each convolutional layer,
thereby stabilizing training dynamics. Swish activation yields smooth gradients, thereby
improving convergence in optimization.

The backbone generates feature maps at three spatial scales corresponding to
downsampling strides of 8, 16, and 32. These multi-resolution representations enable the
detection of surface irregularities and dimensional deviations ranging from 0.4 mm to 3
mm. The channel dimensions at the three scales are 256, 512, and 1024, respectively.
Hierarchical extraction progressively aggregates local texture into global geometric
context.

3.1.2. Coordinate Attention Module Integration

Coordinate attention modules are inserted after the final convolutional layers of each
backbone stage, operating on feature tensors before the detection head. The CA
mechanism decomposes spatial attention into two one-dimensional features, each
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encoding positional information along the horizontal and vertical axes, respectively.
Given an input feature map with dimensions HxWxC, the module applies adaptive
average pooling along height and width dimensions independently, generating direction-
aware feature vectors of dimensions Hx1xC and 1xWxC.

These directional encodings pass through shared 1x1 convolutions, reducing the
channel dimensionality by a factor of r=16, yielding compact representations that capture
inter-channel relationships while preserving positional information. Compressed features
pass through separate 1x1 convolutions that restore the original dimensions, followed by
a sigmoid activation, generating attention weights. Horizontal and vertical attention maps
are broadcast and element-wise multiplied by the input feature map, recalibrating
responses based on spatial location.

The attention mechanism enables the emphasis of channels corresponding to defect-
relevant patterns while suppressing irrelevant variations. During training, attention
weights adapt to highlight subtle intensity gradients indicative of anomalies. The
computational overhead is only a 2.3% increase in FLOPs, while improving detection
mAP by 4.4 percentage points. The mechanism's ability to encode long-range
dependencies proves valuable for systematic defects.

3.1.3. Multi-Scale Feature Pyramid Construction

The detection architecture employs a modified Path Aggregation Network to
facilitate bidirectional information flow across pyramid levels. Bottom-up pathways
propagate spatial features from low-level to high-level, semantic-rich representations,
whereas top-down pathways disseminate semantic information, thereby enhancing
localization precision. Feature maps undergo 3x3 convolutions that reduce the number of
channels, and the resulting representations are then concatenated with upsampled
features from deeper layers. Subsequent 1x1 convolutions project concatenated features
to a uniform set of dimensions.

The enhanced pyramid incorporates lateral connections between non-adjacent scales
through additional skip connections, enabling direct flow between stride-8 and stride-32
representations. This facilitates detection spanning multiple spatial scales. Each pyramid
level feeds into a dedicated detection head comprising three parallel branches for
classification, bounding-box regression, and objectness scoring. A decoupled head design
allows independent optimization to address conflicting gradient signals.

3.2. Defect Classification and Detection Strategy

3.2.1. Defect Taxonomy for Dental 3D Printing (Surface Roughness, Dimensional
Deviation, Internal Voids)

The framework categorizes defects into three primary classes based on clinical
significance. Surface roughness anomalies encompass texture irregularities exceeding Ra
0.2 micrometers, including layer lines and uncured resin deposits. These manifest as
localized regions with elevated spatial-frequency content. Dimensional deviations are
geometric departures from CAD specifications that exceed the 120 micrometer tolerance
and are detectable through contour analysis.

Internal void defects include porosity formations ranging from 0.3 to 1.5mm in
diameter, typically resulting from incomplete polymerization or trapped air. Detection
via external imaging exploits subtle surface depressions that correlate with subsurface
porosity. The classification schema assigns distinct labels, enabling defect-specific feature
learning. Training annotations specify class labels, normalized bounding box coordinates
relative to the image dimensions, and confidence scores derived from inter-annotator
agreement.

Taxonomy accommodates severity gradations through confidence thresholding.
Critical defects exceeding 0.85 warrant immediate rejection, while borderline cases
between 0.65 and 0.85 trigger secondary inspection. Class-balanced training addresses
dataset imbalance, where surface roughness comprises 62% of instances. Focal loss
weighting emphasizes complex examples.
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3.2.2. Bounding Box Regression with Enhanced Iou Loss Function

Bounding box regression predicts four coordinates representing center offsets and
dimension scales relative to the corresponding feature-map location (anchor-free
parameterization). Training employs a Complete IoU loss considering overlap area,
centroid distance, and aspect ratio consistency:

L_CloU=1-1IoU + (0"2(b, b_gt) / c"2) + ot - v

Where rho represents Euclidean distance between box centers, ¢ denotes diagonal
length of smallest enclosing box, alpha is a trade-off parameter, and v quantifies aspect
ratio consistency:

v =(4/7n"2) - (arctan (w_gt / h_gt) — arctan (w / h)) "2

The aspect ratio term penalizes shape distortions. Dimensional deviation defects
typically present elongated bounding boxes aligned with the prosthesis margins, whereas
surface roughness exhibits an isotropic distribution. Loss sensitivity to centroid
displacement improves localization for minor defects where coordinate errors impact IoU
metrics.

3.3. Training and Optimization
3.3.1. Data Augmentation Strategies for Dental Prosthesis Images

The training pipeline employs geometric and photometric augmentation to enhance
model generalization. Geometric transformations include random rotation, scaling,
horizontal flipping, and perspective warping, simulating variable viewpoints. Mosaic
augmentation combines four training images into a single composite image, thereby
exposing the network to multiple geometries simultaneously. Photometric augmentations
apply brightness adjustment, contrast modification, and Gaussian noise injection to
account for variable illumination.

Mixup blends image pairs with weighted alpha blending, creating synthetic samples
and regularizing decision boundaries. Augmentation preserves defect characteristics
while introducing variability. Random erasing with 15% probability simulates partial
occlusions. Color jittering addresses batch-to-batch pigmentation variations.

3.3.2. Transfer Learning from Industrial Defect Detection Datasets

Network initialization uses weights pre-trained on the NEU-DET surface-defect
dataset, comprising 1,800 images of hot-rolled steel strips. Transfer learning leverages
common visual patterns between industrial and dental defects. Fine-tuning proceeds in
two stages: initially freezing the backbone while training the detection head for 50 epochs,
then unfreezing all layers for 150 additional epochs of end-to-end optimization.

Learning rate follows a cosine annealing schedule, initialized at 0.01 for the frozen-
backbone phase and reduced to 0.001 for full-network tuning. Weight decay
regularization prevents overfitting while maintaining capacity. Transfer learning reduces
training time by 40% and improves convergence stability. Domain adaptation through
gradual unfreezing allows low-level extractors to retain generic capabilities while
enabling high-level specialization.

3.3.3. Hyperparameter Tuning and Learning Rate Scheduling

Gradient clipping at magnitude 10.0 prevents exploding gradients. The Adam
optimizer with betal = 0.9 and beta2 = 0.999 provides adaptive rates that accelerate
convergence. Early stopping monitors the validation mAP over 30 epochs. The final
checkpoint corresponds to the epoch with the maximum validation mAP, ensuring
optimal generalization.

The overall network architecture configuration, parameter scale, and computational
complexity are detailed in Table 1.
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Table 1. Network Architecture Configuration.

Component Specification Parameters
Input Resolution 1024 x 1024 x 3 -

Backbone CSP-style backbone + CA 21.2M
Neck Modified PANet 8.7M
Detection Head Decoupled Head 2.3M
Total Parameters Full Precision 32.2M
Quantized (INTS) Post-Training Quantization 8.1M

FLOPs Single Image Forward Pass 127.5G
Attention Modules 3 x CA blocks 0.5M

Hyperparameter optimization employs grid search over batch size, initial learning
rate, and weight decay. The optimal configuration uses a batch size of 32, an initial rate of
0.01, and a decay of 0.0005. The learning rate schedule employs a warmup for the first 10
epochs, with a linear increase from 0.001 to 0.01, followed by cosine annealing to 0.0001
over 190 epochs, thereby stabilizing early training dynamics (as summarized in Table 2).

Table 2. Training Configuration and Hyperparameters.

Parameter Value Rationale
Batch Size 32 GPU memory constraints
Initial Learning Rate 0.01 Optimal convergence speed
Learning Rate Schedule Cosine Annealing Gradual refinement
Weight Decay 0.0005 Regularization balance
Optimizer Adam p1=0.9,52=0.999 Adaptive step sizes
Training Epochs 200 Convergence criterion
Warmup Epochs 10 Stabilization phase
Data Augmentation Mosaic, Mixup, Geometric ~ Generalization enhancement
Loss Function CloU + Focal Loss Multi-objective optimization
Transfer Learning NEU-DET + ImageNet Domain adaptation
Source

The architecture diagram illustrates the complete network topology from input to
detection outputs (as shown in Figure 1). Visualization employs a layered flow chart
representation, starting with a 1024x1024 RGB input image on the left. The CSPDarknet53
backbone is depicted as a series of five convolutional blocks with progressively increasing
channel dimensions (64, 128, 256, 512, 1024), shown as rectangular blocks with heights
proportional to their channel counts. Cross-stage partial connections are illustrated by
curved arrows that bypass portions of each block. Following each of the three final
backbone stages, coordinate attention modules are inserted, represented as small
diamond-shaped components with bidirectional arrows indicating the computation of
spatial attention.

CSPDarknet53 Backbone Modified PANet Detection Heads
P5 ;
H Stride 32 :
i T TTop-Dowi
: : P4 | p . eurtsce Ravghness E
1024x1024 Stride 16 : :
= — T Bottom:Up 77T Internal Voids -
( H H Detections
. P3 : E
Stride 8

--= Cross-Stage Partial Connection

4 Coordinate Attention Module

Top-Down Pathway

Bottom-Up Pathway

Figure 1. Attention-Enhanced YOLO Architecture for Dental Prosthesis Defect Detection.
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The feature pyramid network occupies the middle section, showing upsampling
operations (upward-pointing arrows with interpolation icons), concatenation operations
(merge symbols), and lateral connections between non-adjacent scales (diagonal dashed
lines). Three detection heads branch from the pyramid outputs, each illustrated as a tri-
branched structure that feeds into classification (blue), regression (green), and objectness
(orange) output layers. Final output shows example bounding boxes overlaid on dental
prosthesis images, color-coded by defect type: red for surface roughness, yellow for
dimensional deviation, and purple for internal voids. All components are annotated with
feature map dimensions (HxWxC format) and connected by directional arrows indicating
data flow. The figure employs modern technical drawing style with gradient color fills,
drop shadows for depth perception, and consistent iconography for convolutional
operations, pooling, and upsampling.

This figure provides an exploded view of the internal operations of the coordinate
attention module (as illustrated in Figure 2). The input feature map (represented as a 3D
rectangular prism in the upper left, labeled with dimensions HxWxC) is decomposed into
horizontal and vertical feature encodings. Decomposition process illustrated through two
parallel pathways splitting from input: horizontal pathway shows adaptive average
pooling along height dimension, creating a 1xWxC tensor (thin horizontal bar with color
gradients indicating channel variation), while the vertical pathway pools along width,
producing Hx1xC (vertical bar).

Coordinate Attention Mechanism Computation Flow

( A"’gposl‘ Conv 1x1 IReatg
Height Dim ontal Encodi
1x9 @ e o] [oIIS 1ol Sigmoid (EDETRGE

Vertical
ncoding

~Avg Pool
(Width Dinme-

Hx1xC

Height (H)

Processing Steps:

o Spatial Decomposition (Adaptive Average Pooling)

Original Input Feature Map

° Channel Dimensionality Reduction {1x1 Conv, C+CH16)
° Channel Expansion & Activation (1x1 Conv + Sigmoid)

O Broadcasting & Element-wise Multiplication with Input

Figure 2. Coordinate Attention Mechanism Detailed Computation Flow.

Both encoded features feed into separate 1x1 convolutional layers (depicted as small
cubic blocks with "Conv 1x1, C—C/r" labels, where r=16 is the reduction ratio).
Dimensionality reduction operation visualized through decreasing prism width.
Compressed features pass through a second set of 1x1 convolutions restoring original
channel dimensions (expanding prisms), followed by sigmoid activation functions
(smooth S-curve symbols).

Resulting horizontal and vertical attention maps are broadcast along respective
orthogonal dimensions (illustrated as expanding rectangles filling HxW space) and
multiplied elementwise with the original input feature map (shown as overlapping semi-
transparent layers with multiplication symbol). Output is a recalibrated feature map
maintaining HxWxC dimensions, color-coded to highlight regions receiving high
attention weights (bright yellow) versus suppressed areas (dark blue). Specific regions
corresponding to surface-roughness defects are circled in red, indicating attentional
focusing. All mathematical operations are annotated with tensor dimension
transformations, and the color scheme uses a consistent gradient from cool (low activation)
to warm (high activation) tones.

The defect detection dataset used for training, validation, and testing covers multiple
defect categories, material types, and geometric complexities, ensuring representative
coverage of real-world dental prosthesis scenarios (as reported in Table 3).
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Table 3. Defect Detection Dataset Composition.

Defect Training  Validation Test . e
Severity Distribution
Category Samples Samples Samples
Surface Critical: 32%, Moderate:
2,604 72 72
Roughness /60 3 3 45%, Minor: 23%
Dimensional Critical: 47%, Moderate:
1,17 1 1
Deviation 176 68 68 38%, Minor: 15%
. Critical: 68%, Moderate:
Internal Voids 420 60 60 25%, Minor: 7%
Multi-Defect 136 48 48 Combined ?lefect
Instances presentations
Total De.fect 4,536 648 648 5,832 total.defect
Annotations annotations
Material . o Ceramic: Composite .
Distribution Resin: 68% 299 . 10% Across all categories
Geometric Crown: o Implant: Prosthesis type
Complexity 52% Bridge: 31% 17% distribution
Unique 3,263 466 466 4,195 total images
Images
Avg 1.39 1.39 1.39 Consistent across splits
Defects/Image

Note: The dataset comprises 4,195 unique prosthesis images containing 5,832 defect annotations,
with an average of 1.39 defects per image. Some images contain multiple defects across different
categories. Dataset partitioning maintains approximately 78% training, 11% validation, and 11% test
splits by defect annotation count.

4. Experiments and Results
4.1. Experimental Setup
4.1.1. Dataset Construction for Dental Prosthesis Defect Detection

The experimental dataset comprises 4,195 unique high-resolution images captured
under controlled industrial lighting, with 5,832 defect annotations (average 1.39
defects/image). Image acquisition employs a telecentric lens system with 0.05 mm/pixel
spatial resolution mounted on a 6-axis robotic positioning system. Prosthesis collection
spans three material categories: photopolymer resins (68%), zirconia ceramics (22%), and
hybrid composites (10%). Geometric complexity ranges from single-unit crowns (52%) to
multi-unit bridges (31%) and implant-supported restorations (17%).

The dataset is split at the image level into 3,263 training images, 466 validation
images, and 466 test images. In addition, at the defect-instance (annotation) level, the split
corresponds to 4,536 / 648 / 648 annotations for train/val/test, maintaining approximately
78% [/ 11% / 11% proportions and balanced category representation.

4.1.2. Hardware Configuration and Evaluation Metrics

Model training was conducted on a workstation equipped with an NVIDIA RTX 4090
GPU (24GB VRAM), an AMD Ryzen 9 7950X CPU, and 128GB DDR5 RAM. The training
was conducted for 47 hours across 200 epochs, with a batch size of 32. Inference
benchmarking used the NVIDIA Jetson AGX Xavier (32GB, 512-core Volta GPU),
representing the target edge computing hardware. TensorRT optimization, including
INT8 quantization, layer fusion, and kernel auto-tuning, reduced per-image inference
latency from 23.4ms to 14.8ms.

Performance evaluation employs standard object detection metrics, including
Precision, Recall, mean Average Precision (mAP) at IoU threshold 0.50, and mAP
averaged across IoU thresholds 0.50-0.95 (mAP@50:95). Precision quantifies the
proportion of detected defects that are true positives. At the same time, Recall measures

127



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

the proportion of ground truth defects successfully detected. The F1 score computes the
harmonic mean, providing a balanced indicator. Average Precision integrates precision
across all recall levels for each category, and mAP averages AP across categories. Inference
speed is reported in frames per second (FPS), and latency is reported in milliseconds. False
Positive Rate quantifies the frequency of erroneous detections, critical for maintaining
production throughput.

4.2. Performance Evaluation
4.2.1. Detection Accuracy Comparison across Different Architectures

A comparative evaluation demonstrates that the proposed attention-enhanced
YOLO has superior capabilities. The YOLOVS baseline achieves 89.2% mAP@50, whereas
integrating coordinate attention improves performance to 93.6% mAP@50, representing a
4.4 percentage-point gain. Faster R-CNN with ResNet-50 achieves 91.8% mAP@50 but
runs at only 12.3 FPS, insufficient for real-time inspection. EfficientDet-D3 reaches 90.7%
mAP@50 at 31.5 FPS, offering better speed but underperforming the proposed architecture
in both accuracy and throughput.

Category-specific performance reveals that surface roughness detection achieves 94.8%
AP, dimensional deviation detection reaches 93.1% AP, and internal void detection attains
92.9% AP. Relatively balanced performance validates the effectiveness of the multi-scale
detection strategy. Precision-Recall curves indicate that the attention-enhanced
architecture maintains precision above 0.90 across recall levels from 0.60 to 0.95, indicating
robust detection with minimal false positives. The model achieves 91.4% precision and
95.3% recall at a 0.75 confidence threshold, selected for production deployment, yielding
an F1 score of 93.3%.

4.2.2. Real-Time Performance Analysis on Edge Computing Devices

Deployment on the NVIDIA Jetson AGX Xavier achieves 67.3 FPS, corresponding to
an inference latency of 14.8ms per 1024x1024 image. This enables inspection as prostheses
exit printers at production rates exceeding 60 units hourly with concurrent multi-angle
imaging. Memory footprint optimization through INT8 quantization reduces model size
from 129MB (FP32) to 34MB (INT8) while maintaining mAP within 0.8% of the full-
precision value. TensorRT layer fusion reduces GPU kernel launches from 387 to 98,
thereby improving hardware utilization.

Power consumption measurements indicate an average draw of 18.3W during
continuous inference, enabling fanless operation within thermal design constraints. The
end-to-end inspection pipeline, including image acquisition, preprocessing, inference,
and result visualization, completes in 45ms, meeting the 20 Hz inspection rate
requirement. Batch processing of 4 images concurrently reduces per-image latency to
11.2ms by improving GPU utilization, thereby enabling multi-camera inspection stations.

4.2.3. False Positive Rate Reduction and Reliability Assessment

The proposed architecture reduces the false-positive rate to 4.7%, compared with 6.8%
for the baseline YOLOVS, representing a 31.2% relative improvement. This reduction
results in fewer unnecessary part rejections, thereby improving production yield by an
estimated 2.1%. False positives predominantly occur at prosthesis margins, where
legitimate geometric transitions exhibit similar characteristics to dimensional deviation
defects. Confidence score calibration via temperature scaling improves prediction
reliability, reducing the expected calibration error from 0.083 to 0.041.

Reliability analysis across 10 repeated inference runs demonstrates consistent
detection, with coefficients of variation of 0.7% for bounding box coordinates and 1.2%
for confidence scores. Stress testing under variable lighting conditions maintains mAP
above 91.2%, validating robustness to environmental variations. Material transfer
evaluation on ceramic prostheses not included in training achieves 87.9% mAP@50,
demonstrating reasonable generalization despite domain shift (Table 4 and Table 5).
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Table 4. Comparative Performance of Defect Detection Architectures.

Precis Rec FPS FPS

Architecture Bacl:bon ISI:)A((I;@;) mglzlzi;ﬂS)O ion all (GP (Ed tiiza(;[e)
oo (%) (%) U  ge)
Faster R- ResNet-
NN ” 91.8 68.3 932 887 185 123 418
EfficientDet- Efficient
D3 Netps 907 66.9 918 892 452 315 120
YOLOVSI Csizark 88.9 64.2 897 901 783 546 465
P
YOLOvgm  CorPark g0 65.8 903 914 821 618 259
net53
CSPDark
YOLOVBm+  isar 915 67.4 91.8 926 794 592 283
SE
SE
Proposed CSPDark
(CANOLO) ne(tjE§+ 93.6 69.7 914 953 857 673 322

Table 5. Category-Specific Detection Performance Breakdown.

AP AP AP

Defect AP@50 AP@75 . Avg FPR
Cateso %) %) (small) (medium) (large) Conf (%)
gory ° ° (%) (%) (%) °
Surface 94.8 713 89.2 95.6 96.1 087 38
Roughness
Dimensional o) | 69.8 87.6 94.2 958 084 52
Deviation
Internal Voids ~ 92.9 68.1 853 93.8 952 082 5.1
Multi-Defect ~ 93.0 68.9 86.7 94.0 954 083 49
Overall
(Weighted) 93.6 69.7 87.8 94.7 958 085 47

4.3. Ablation Studies
4.3.1. Effectiveness of Attention Mechanism Components

Systematic ablation experiments isolate the contributions of architectural
components. Removing the coordinate attention modules reduces mAP@50 from 93.6% to
89.2%, confirming the attention mechanism's 4.4 percentage-point contribution. Replacing
coordinate attention with squeeze-and-excitation blocks achieves 91.5% mAP@50,
demonstrating the superiority of coordinate attention in preserving spatial information
critical for defect localization. Attention module placement experiments reveal that
inserting CA blocks after the stride-16 and stride-32 backbone stages yields optimal
performance. In contrast, placement at stride-8 provides marginal benefit because high-
resolution features already contain sufficient spatial detail.

The attention mechanism's impact varies across defect categories, contributing 5.2
percentage points to surface roughness detection, 4.1 points to dimensional deviation
detection, and 3.8 points to internal void detection. This differential benefit reflects the
finer spatial scale and directional characteristics of surface roughness defects, which align
with the design of coordinate attention. Visualization of attention maps reveals that the
mechanism learns to emphasize prosthesis margins for dimensional deviation detection
and textured regions for surface roughness assessment, validating the hypothesis that
attention directs computational resources toward task-relevant image regions.
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4.3.2. Impact of Multi-Scale Feature Fusion

Feature pyramid ablation compares different multi-scale fusion strategies. Removing
top-down pathways while retaining bottom-up connections reduces mAP@50 to 88.7%,
demonstrating the importance of semantic information for discriminating defects from
benign variations. Eliminating lateral connections between non-adjacent scales decreases
performance to 90.4%, confirming that direct multi-scale information flow improves
detection consistency. Comparing PANet with the Feature Pyramid Network reveals a 2.8
percentage-point advantage for PANet, attributed to bottom-up enhancement paths that
strengthen localization signals.

Multi-scale architecture particularly benefits small defect detection, improving AP
for objects smaller than 32x32 pixels from 81.3% (single scale) to 87.8% (multi-scale).
Medium-sized defects (32-96 pixels) show a 3.4 percentage-point improvement. In
contrast, significant defects exhibit a modest 1.2 percentage-point gain, indicating that
multi-scale fusion primarily addresses challenges in detecting fine-scale anomalies.
Fusion strategy enables the network to leverage both high-resolution spatial details from
shallow layers and semantic context from deep layers, balancing localization precision
against classification confidence.

4.3.3. Generalization across Different Materials and Geometries

Cross-material evaluation assesses model generalization by training on resin
prostheses and testing on ceramic and composite samples. The resin-trained model
achieves 87.9% mAP@50 on ceramic test data and 85.3% on composites, representing
performance degradation of 5.7 and 8.3 percentage points, respectively, relative to in-
distribution testing. Mixed-material training that incorporates all three material types
during optimization improves ceramic performance to 91.2% and composite performance
to 89.7%, confirming that exposure to material diversity during training enhances
generalization.

Geometric generalization experiments, training on crown geometries and testing on
bridges, achieve 89.4% mAP@50, a 4.2-point decrease relative to crown test performance.
Degradation arises from bridges' increased geometric complexity and multi-unit
interfaces, which introduce novel defect presentation modes. Comprehensive training
that incorporates diverse prosthesis geometries yields consistent performance across
morphological variations, underscoring the importance of representative training data
that encompass the full range of production geometries.

This figure presents a 2x2 panel layout for comprehensive performance
characterization. The upper-left panel displays precision-recall curves for three defect
categories, along with the overall aggregate curve (Figure 3). The X-axis ranges from 0 to
1, and the Y-axis ranges from 0 to 1. Four colored curves plotted: surface roughness (red),
dimensional deviation (yellow), internal voids (purple), and overall weighted average
(black dashed line). Each curve includes area under the curve (AUC) annotations showing
AP values. Curves demonstrate that all categories maintain precision above 0.85 across
recall levels 0.40-0.95, with surface roughness exhibiting the highest precision-recall
trade-off. Shaded confidence intervals (+1 standard deviation across 5-fold cross-
validation) surround each curve, indicating statistical reliability.
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Figure 3. Precision-Recall Curves and Confidence Distribution Analysis.

The upper-right panel illustrates the distributions of confidence scores for true-
positive and false-positive detections. Two overlapping histograms show true positives
(solid green bars) concentrated at high confidence scores (0.75-0.95) while false positives
(semi-transparent red bars) cluster at lower scores (0.50-0.70). The separation between
distributions validates the selected 0.75 confidence threshold for production deployment,
as indicated by the vertical dashed line. Numerical annotations indicate actual positive
rate (95.3%) and false positive rate (4.7%) at the threshold.

The lower-left panel presents a confusion matrix heatmap showing classification
performance across defect categories. A 4x4 matrix (three defect classes plus background)
uses color intensity encoding, with perfect diagonal classifications appearing in deep blue
(high values) and off-diagonal misclassifications in light yellow (low values). Numerical
percentages overlaid on each cell. The matrix reveals that 96.2% of surface-roughness
defects are correctly classified, with the primary source of confusion (2.1%) arising from
dimensional deviations.

The lower-right panel displays inference speed analysis across batch sizes (1, 4, 8, 16,
32) for both GPU and edge device deployments. Dual y-axes show latency (milliseconds,
left) and throughput (FPS, right). Line plots with markers indicate that edge device latency
increases sublinearly with batch size, driven by improved hardware utilization, while
throughput plateaus at batch size 16 due to memory bandwidth saturation. Error bars
represent the standard deviation across 100 repeated trials. Visualization employs a
professional color scheme, with grid lines, a legend, and clearly legible axis labels.

5. Conclusion
5.1. Summary of Contributions
5.1.1. Technical Achievements in Detection Accuracy and Speed

Investigation demonstrates that integrating coordinate attention into the YOLO
architecture produces substantial improvements in dental prosthesis defect detection,
achieving 93.6% mAP@50 while maintaining 67.3 FPS on edge computing hardware. The
4.4 percentage-point improvement over baseline implementations validates the
hypothesis that spatially aware attention mechanisms enhance feature discrimination for
subtle manufacturing defects. The detection framework successfully addresses the
simultaneous accuracy and speed requirements inherent in production-scale quality

131



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

assurance, reducing the false-positive rate to 4.7% while maintaining 95.3% recall across
defect categories.

Architectural innovations enable deployment in resource-constrained
manufacturing environments through INT8 quantization, reducing model size to 34MB
and optimizing inference latency to 14.8ms per image. These technical achievements
facilitate the transition from sampling-based quality control to 100% inspection protocols,
potentially preventing defective prostheses from reaching clinical application. Balanced
performance across surface roughness, dimensional deviation, and internal void detection
demonstrates comprehensive quality assurance coverage spanning critical manufacturing
defect modes.

5.1.2. Practical Implications for the Dental Manufacturing Industry

Automated inspection reduces labor requirements for manual verification by
approximately 73%, resulting in annual savings of $42,000 for medium-sized laboratories
producing 12,000 units per year. Real-time defect feedback enables immediate adjustment
of process parameters, reducing material waste by detecting systematic manufacturing
deviations early. Objective, quantifiable defect assessment eliminates inter-operator
variability inherent in subjective visual inspection, improving quality consistency across
production batches.

Integration into existing workflows requires minimal infrastructure modification,
leveraging standard industrial cameras and edge computing platforms compatible with
dental laboratory environments. The system generates comprehensive inspection reports
with annotated defect images, facilitating regulatory compliance documentation and root-
cause analysis for process improvement. The framework's generalization across multiple
material systems and prosthesis geometries reduces retraining requirements, lowering
adoption barriers for laboratories serving diverse clinical indications.

5.2. Limitations and Future Work
5.2.1. Current Constraints in Internal Defect Detection

Reliance on external surface imaging for internal void detection achieves moderate
success (92.9% AP) but cannot reliably identify subsurface porosity lacking surface
manifestations. Voids located beyond 0.5mm in depth exhibit minimal optical signatures
detectable by conventional imaging and therefore require alternative inspection
modalities for comprehensive internal quality assessment. The 87.9% cross-material
generalization performance on ceramics indicates that material-specific optical properties
introduce domain-shift challenges that are not fully addressed by current training
strategies.

Limited availability of ground-truth metrology data for training-set validation
introduces potential systematic biases in defect annotation, particularly for borderline
cases near specification limits. The dataset's geographic and temporal concentration may
not fully capture global variations in manufacturing processes, limiting generalization to
laboratories with different equipment configurations. Computational constraints
preclude deployment of larger architectural variants that might achieve incremental
accuracy improvements, highlighting the performance-efficiency trade-off inherent in
edge computing applications.

5.2.2. Potential Extensions to Multi-Sensor Fusion Approaches

Future investigations should explore integrating X-ray radiography or optical
coherence tomography to characterize volumetric defects, complementing surface
inspection. Multi-modal fusion architectures could leverage the strengths of different
imaging modalities, using surface imaging for rapid screening and volumetric methods
for detailed assessment of flagged samples. Active learning strategies can reduce
annotation burden by iteratively selecting the most informative samples for expert
labeling, enabling efficient dataset expansion.

132



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

Advanced architectures, including vision transformers and neural architecture
search, may discover optimal detection configurations that surpass those of manually
designed networks. Domain adaptation techniques using adversarial training could
improve cross-material generalization, enabling models trained on abundant resin data to
transfer effectively to limited ceramic datasets. Incorporating temporal information
through multi-frame analysis could exploit manufacturing process dynamics and detect
progressive defect formation across sequential production cycles.

5.3. Broader Impact
5.3.1. Towards Fda-Compliant Automated Inspection Workflows

The detection framework establishes a technical foundation for fully automated
quality-assurance systems that satisfy regulatory requirements for medical device
manufacturing. Comprehensive defect documentation capabilities support validation
protocols demonstrating consistent specification compliance across production batches.
Integration of the inspection system with manufacturing execution systems enables real-
time statistical process control, facilitating data-driven quality management practices
aligned with FDA guidance on process validation.

Advances in automated inspection technologies contribute to broader Industry 4.0
objectives, enabling dental laboratories to compete effectively with offshore production
by improving efficiency and ensuring consistent quality. Reduced inspection costs and
lower barriers to domestic manufacturing, potentially reshoring production and reducing
supply chain vulnerabilities exposed during recent global disruptions. Patient safety
improvements resulting from enhanced quality assurance may reduce adverse event
incidence, improve treatment outcomes, and reduce healthcare system costs associated
with prosthesis failures requiring replacement procedures.
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