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Abstract: Against the backdrop of rapid changes in the global foreign trade environment, cross-
border commodity demand exhibits complexity and uncertainty influenced by multiple factors 
including seasonality, price indices, promotional rhythms, and exchange rate fluctuations. To 
enhance the accuracy of inventory and transportation capacity planning for foreign trade 
enterprises, this study constructs a deep learning forecasting model integrating multi-source data. 
This model is based on approximately 84,000 time-series data points spanning 3.5 years and 
covering 11 countries from an export enterprise. The model integrates features including historical 
orders, price indices, promotional schedules, international holidays, search trends, exchange rates, 
and shipping cycles, employing TCN combined with attention mechanisms for sequence modeling. 
Experimental results demonstrate that compared to benchmark models such as ARIMA, PROPHET, 
and LSTM, MAPE, SMAPE, and RMSE improvements range from 14% to 21%, with more robust 
performance in forecasting demand peaks. The study demonstrates that multi-source time series 
fusion effectively captures the dynamic characteristics of cross-border demand, providing reliable 
predictive support for digitalized foreign trade operations. Wine export operations serve as the 
validation scenario. 
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1. Introduction 
Against the backdrop of evolving global trade patterns and rapid cross-border e-

commerce expansion, traditional demand forecasting methods relying solely on historical 
data struggle to address the complex and volatile foreign trade environment. Sales 
patterns are increasingly driven by multiple factors including international holidays, 
exchange rate fluctuations, regional promotional strategies, and search behaviors, 
resulting in demand sequences exhibiting high non-stationarity and heterogeneity. To 
address the limitations of existing methods in integrating heterogeneous information and 
responding to short-term peaks, this paper focuses on constructing a cross-border 
demand forecasting model that fuses multi-source time-series data. By incorporating 
Time Convolutional Networks (TCN) and a Channel-Time Attention mechanism, the 
model enhances its ability to capture key variables while maintaining training stability. 
Experiments conducted using real-world multi-country order and logistics data from a 
wine export enterprise aim to achieve high-precision forecasting of cross-border order 
demand under uncertainty, providing data support and methodological references for 
inventory and transportation capacity decisions in foreign trade enterprises. 
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2. Feature Analysis and Preprocessing of Multi-Source Time-Series Data 
2.1. Data Source Structure and Dimension Description 

To ensure stable cross-temporal representation and comprehensive feature coverage 
in model inputs, a unified structured input framework integrating multi-source 
heterogeneous data was designed. Features were aligned and standardized along the time 
axis, with the specific dimensional structure as follows: Order behavior sequence data, 
including order timestamps, SKU codes, destination countries, and currency conversion 
factors, comprising 32,187 records; Price index and discount data covering 10 product 
categories and 7 promotional rhythm variables, sampled daily to form a 96-dimensional 
feature sequence; Search popularity and user intent features sourced from third-party 
platform API calls, encoded by country and keyword granularity, with an original 
dimension of 18×11 countries; Holiday time tags using binary encoding, corresponding to 
national statutory holidays and export embargo periods, covering 94 temporal nodes in 
total; Exchange rate and shipping cycle data sourced from logistics system interfaces, with 
distribution ranges set as floating value curves within 0-14 days [1]. 

2.2. Heterogeneous Data Unification and Time Alignment Method 
To enable collaborative input of heterogeneous data (orders, exchange rates, 

promotions) within a unified temporal framework, a multi-source feature vector mapping 
mechanism is constructed. A sliding window time alignment function is designed for 
cross-section compression and stride control, as follows: ① Let the original time series be 
𝑋𝑋(𝑠𝑠) = �𝑥𝑥1

(𝑠𝑠), 𝑥𝑥2
(𝑠𝑠), … ,𝑥𝑥𝑇𝑇

(𝑠𝑠)�, where 𝑠𝑠  represents the 𝑠𝑠  th data source and 𝑇𝑇  denotes the 
global time step; ② Perform window aggregation on any heterogeneous sequence to 
construct a sliding aggregation function: 

𝑥𝑥�𝑡𝑡
(𝑠𝑠) = 1

Δ𝑡𝑡
∑ 𝑥𝑥𝑖𝑖

(𝑠𝑠)𝑡𝑡
𝑖𝑖=𝑡𝑡−Δ𝑡𝑡+1            (1) 

Where 𝛥𝛥𝛥𝛥 denotes the window width, and 𝑥𝑥�𝑡𝑡
(𝑠𝑠) represents the aggregated value of 

the 𝑠𝑠 th data category at the unified time point 𝑡𝑡; After mapping all 𝑥𝑥�𝑡𝑡
(𝑠𝑠) onto the unified 

timeline 𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛} , a feature tensor 𝐹𝐹 ∈ IR𝑛𝑛×𝑑𝑑  with consistent dimensions is 
formed, where 𝑛𝑛 denotes the unified time step, and 𝑑𝑑 denotes the total dimension after 
multi-source concatenation [2]. 

2.3. Data Visualization Analysis and Variable Correlation Detection 
The high-dimensional time-series matrix constructed after unified mapping of multi-

source features requires visualization to extract dynamic correlation structures among 
variables. Principal Component Analysis (PCA) projection combined with heatmap 
overlay technology is employed to display the synchronized fluctuations of key variables 
within the rhythm impact window [3]. The original tensor (𝐹𝐹 ∈ IR𝑛𝑛×𝑑𝑑  ) undergoes 
standard deviation normalization before input to the PCA module, where the first 
principal component explains 72.4% of total variance-significantly exceeding the random 
embedding benchmark. A heatmap was constructed using the Pearson correlation 
coefficient matrix 𝜌𝜌𝑖𝑖𝑖𝑖 =

Cov(𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗)

𝜎𝜎𝑓𝑓𝑖𝑖 ,𝜎𝜎𝑓𝑓𝑗𝑗
 with significance testing (p < 0.05), identifying high-

frequency, strongly correlated fluctuations among the price index, exchange rate curve, 
and holiday binary variable within a 48-hour cycle. This indicates their strong driving 
capability within the short-term forecasting window, making them suitable as core 
modeling input variables. 

3. Design of a Deep Learning Model for Cross-Border Trade Demand Forecasting 
Driven by Multi-Source Time Series Data 
3.1. Overall Model Architecture Design 

The overall model architecture, as shown in Figure 1, adopts a four-tier structure: 
"multi-source input parallel extraction → temporal convolutional modeling → attention 
feature enhancement → fully connected prediction output." The processed feature tensor 
at the input end has the shape [B, T, D], where B=64 represents the batch size, T = 96 
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denotes the aligned time steps, and D = 43 indicates the total feature dimension after 
concatenation. The backbone incorporates a three-layer TCN architecture, with each layer 
containing 64 convolutional kernels of width 3 and strides of 1, 2, and 4, respectively. 
Residual connections and Dropout are employed to suppress overfitting. A channel 
attention module is embedded before the output layer to map global contextual weights 
back to the temporal dimension, thereby enhancing peak expression features. The Huber 
loss function incorporates a time-weighted decay factor, with AdamW as the optimizer. 
The initial learning rate is set to 0.001, and the weight decay coefficient is 0.01. This 
architecture enables coupled modeling of high-frequency indicators and slow-cycle 
variables, supporting parallel execution of feedforward structures and causal 
convolutions, thereby significantly enhancing cross-border order prediction capabilities 
[4]. 

 
Figure 1. Schematic Diagram of Overall Model Architecture. 

3.2. TCN Time-Series Modeling Mechanism 
As the core module of the backbone architecture, the Temporal Convolutional 

Network (TCN) employs multi-layer dilated convolutions to model long-term 
dependency patterns, constructing an efficient non-recursive temporal processing 
pathway [5]. Each convolutional layer utilizes a gated activation structure with input 
tensor dimensions of 𝑋𝑋 ∈ IR𝐵𝐵×𝑇𝑇×𝐷𝐷 ,where B = 64 denotes the batch size, T = 96 represents 
the time step, and D = 43 indicates the feature dimension. The output of each TCN layer 
is defined by the following formula: 

𝑌𝑌𝑙𝑙=ReLU(Conv1D(𝑋𝑋𝑙𝑙 , 𝑘𝑘𝑙𝑙 ,𝑑𝑑𝑙𝑙) + 𝑏𝑏𝑙𝑙)         (2)
 Where 𝑌𝑌𝑙𝑙  denotes the output feature of layer 𝑙𝑙 ,𝑋𝑋𝑙𝑙 represents the input tensor to this 

layer, Conv1D(⋅) indicates a one-dimensional convolution operation, 𝑘𝑘𝑙𝑙  is the 
convolution kernel size (set to 3 in this design), 𝑑𝑑𝑙𝑙 is the stride rate (set to 1, 2, and 4 
respectively), and 𝑏𝑏𝑙𝑙 is the bias term. The model mitigates gradient vanishing through 
inter-layer residual connections and Dropout mechanisms, effectively preserving 
boundary inputs. After each convolutional layer, outputs are uniformly trimmed and 
aligned along the temporal axis to ensure temporal consistency of causal structures during 
multi-source sequence fusion. This architecture demonstrates robust responsiveness to 
abnormal rhythm shocks, periodic disturbances, and holiday demand fluctuations, 
featuring cross-dimensional modeling and low-latency feature compression capabilities. 

3.3. Attention Mechanism Fusion Approach 
To enhance the model's responsiveness to key variables during multi-source 

sequence fusion, a channel-weighted attention mechanism module is introduced as an 
intermediate enhancement unit between TCN output and fully connected prediction [6]. 
Let the output tensor from TCN be 𝑋𝑋 ∈ IR𝐵𝐵×𝑇𝑇×𝐷𝐷 , where B = 64 is the batch size, T = 96 is 
the time step, and D = 43 is the channel dimension. First, global average pooling and max 
pooling are applied to extract the channel statistics vector: 
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𝑧𝑧avg = 1
𝑇𝑇
∑ 𝑋𝑋:,t,:
𝑇𝑇
𝑡𝑡=1 , 𝑧𝑧max = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡=1

𝑇𝑇
𝑋𝑋:,t,:         (3) 

The concatenated pooling vectors are fed into a shared multilayer perceptron (MLP) 
structure for learning channel weights: 

a=σ(𝑊𝑊2 ⋅ ReLU�𝑊𝑊1 ⋅ �𝑧𝑧avg;zmax�+b1� + b2)       
 (4)

 where 𝑊𝑊1 ∈ IR𝑑𝑑attn×2𝐷𝐷 and 𝑊𝑊2 ∈ IR𝐷𝐷×𝑑𝑑attn represent the attention network weights, 
𝜎𝜎 denotes the Sigmoid activation function, and 𝑎𝑎 ∈ IR𝐵𝐵×𝐷𝐷  are the attention scores for 
each channel. Subsequently, per-channel reweighting is performed: 

𝑋𝑋�𝑏𝑏,𝑡𝑡,𝑑𝑑=a𝑏𝑏,𝑑𝑑 ⋅ 𝑋𝑋𝑏𝑏,𝑡𝑡,𝑑𝑑,∀𝑏𝑏 ∈ [1,𝐵𝐵], 𝑡𝑡 ∈ [1,𝑇𝑇],𝑑𝑑 ∈ [1,𝐷𝐷]       (5)
 To further enhance the model's ability to focus on abnormal peaks, a temporal 

weighting mechanism is designed. A causal attention function based on relative position 
encoding is introduced to modulate activation values across beat-timed impact windows: 

𝑤𝑤𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜆𝜆�𝑡𝑡−𝑡𝑡𝑝𝑝��
∑ 𝑒𝑒𝑒𝑒𝑒𝑒�−𝜆𝜆�𝑘𝑘−𝑡𝑡𝑝𝑝��𝑇𝑇
𝑘𝑘=1

           (6)
 Where 𝑡𝑡𝑝𝑝  denotes the current reference time point, 𝜆𝜆  represents the decay 

coefficient, and 𝑤𝑤𝑡𝑡  indicates the temporal weight at time 𝑡𝑡 , which adjusts the 
information retention ratio during feature compression. The final fused output tensor 
𝑋𝑋� = 𝑋𝑋�𝛩𝛩𝛩𝛩 serves as input to the fully connected prediction module [7]. This mechanism 
achieves dual attention regulation across channels and time windows while maintaining 
high-dimensional information density, providing stable contextual semantic support for 
subsequent cross-border demand response prediction. 

3.4. Model Loss Function and Optimization Strategy 
During training, the model must simultaneously address multidimensional 

challenges in demand sequences-including cyclical fluctuations, sudden peaks, and 
prediction errors. Therefore, a composite loss function is designed to balance penalties for 
local anomalies with overall fitting performance: [8]. The core loss form employs a 
weighted Huber function, defined as: 

𝐿𝐿(𝑦𝑦,𝑦𝑦�) = 1
𝑁𝑁
∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1 ⋅ �

1
2

(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖)2 if|𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖| ≤ 𝛿𝛿

𝛿𝛿 ⋅ �|𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖| −
1
2
𝛿𝛿� otherwise

      (7) 

Where 𝑦𝑦𝑖𝑖  represents the 𝑖𝑖 th actual value, 𝑦𝑦�𝑖𝑖 denotes the corresponding predicted 
value, 𝛿𝛿 is the error threshold (set to 1.2 in this experiment), and 𝑤𝑤𝑖𝑖  is the time-sensitive 
weight dynamically adjusted based on the position within the demand cycle window. To 
enhance the model's response to peaks during critical periods (e.g., pre-holiday), a time 
decay function is introduced defined as 𝑤𝑤𝑖𝑖=exp(−𝛽𝛽 ⋅ 𝑑𝑑𝑖𝑖) , where 𝑑𝑑𝑖𝑖 is the distance from 
the prediction target position, and 𝛽𝛽controls the decay rate. Additionally, the AdamW 
optimizer is selected and combined with a periodic learning rate scheduler (cosine 
annealing). The initial learning rate is set to 0.001, weight decay to 0.01, batch size to 64, 
and step cycle T to 8. This strategy enables rapid early convergence while avoiding local 
optima, ensuring training stability and robustness under multi-source high-dimensional 
inputs [9,10]. As shown in Figure 2, the model using weighted Huber loss more accurately 
captures rhythm disturbances and abnormal fluctuations during peak demand periods, 
while demonstrating superior stability throughout the training process. 
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Figure 2. Comparison of prediction residuals under different loss functions. 

4. Experimental Results and Analysis 
4.1. Experimental Design 

The experiment utilizes real-world data from a wine exporter's proprietary cross-
border platform, encompassing 84,239 time-series records from January 2019 to June 2022. 
These records cover 11 major destination countries (including Germany, the United States, 
and South Korea) with daily granularity, and the prediction target is order demand within 
a T+7 rolling window. The dataset was divided into training, validation, and test sets in 
an 8:1:1 ratio based on chronological order. Input features comprised 43 standardized 
variables including historical orders, SKU codes, price indices, promotional schedules, 
binary-coded international holidays, keyword search popularity, shipping cycle curves, 
and real-time exchange rates. All models employ a sliding window approach to generate 
input sequences of length 96, outputting demand sequences for the next 7 days. 
Benchmark models include ARIMA, Prophet, and standard LSTM architectures for 
comparison. Evaluation metrics encompass MAPE, SMAPE, and RMSE. Experiments are 
repeated under consistent hardware and random seed settings to ensure result stability. 

4.2. Comparative Analysis of Prediction Accuracy 
To comprehensively validate the cross-border order forecasting capability of this 

paper's model driven by multi-source time series data, three benchmark models (ARIMA, 
Prophet, and LSTM) were selected for comparative experiments. All experiments 
uniformly utilized 84,239 daily-level order records from a wine export enterprise as the 
experimental data source. The output prediction horizon was set to T+7 days, with input 
features comprising 43-dimensional variables including historical orders, price indices, 
promotional rhythms, holidays, and exchange rates. Experiments were conducted under 
uniform hardware environments and sliding window parameter configurations. Core 
evaluation metrics for prediction results included MAPE, SMAPE, and RMSE. Detailed 
comparison results are presented in Table 1. 

Table 1. Comparison of Prediction Accuracy Across Models on the Test Set. 

Model Name MAPE (%) SMAPE (%) RMSE 
ARIMA 21.3 18.7 346.2 
Prophet 19.6 17.5 312.4 
LSTM 18.2 16.1 297.6 

Model in this paper 15.1 13.4 254.1 
As shown in Table 1, the deep learning model developed in this paper, which 

integrates TCN with attention mechanisms, outperforms traditional methods across three 
primary metrics. Specifically, MAPE decreased from 21.3% in ARIMA to 15.1%, 
representing a relative improvement of approximately 29.1%. SMAPE decreased by about 
16.8% compared to LSTM, while RMSE also significantly decreased to 254.1. As 
summarized earlier, this model demonstrates exceptional prediction stability during peak 
demand periods. This stems primarily from the attention mechanism's ability to focus on 
rhythm disturbance windows and the TCN architecture's advantage in modeling long-
short term coupling relationships. In contrast, ARIMA and Prophet fail to effectively 
capture nonlinear interactions among multi-source variables, while LSTM suffers from 
information degradation during feature fusion, leading to cumulative prediction bias. 

4.3. Model Fusion Mechanism Ablation Study 
To further validate the contribution of each fusion mechanism in cross-border 

demand forecasting, ablation experiments were designed using the baseline model as a 
control. These experiments sequentially removed the attention enhancement unit, the 
Stacking module, and the soft voting structure. While maintaining the core TCN 
architecture consistent, different fusion strategies were progressively replaced or deleted 
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to compare their impact on output metric stability and response timeliness. The 
experiments employed identical sliding window configurations and training 
hyperparameters while maintaining consistent input data sources to eliminate external 
variable interference. The fusion process reveals that the channel attention mechanism 
and Stacking layer serve as bridges for weight adaptation across multi-source 
heterogeneous variables. They notably reduce the model's response latency to abnormal 
demand, particularly under rhythm perturbations or sudden price changes. Comparison 
results in Figure 3 demonstrate that after removing fusion components, overall error 
metrics exhibit varying degrees of fluctuation, validating the critical role of fusion 
strategies in enhancing model robustness. 

 
Figure 3. Structural and Performance Changes of Model Fusion Mechanism. 

As shown in Figure 3, removing the attention mechanism increases RMSE by 8.3% 
and SMAPE by 5.7%. Removing the Stacking module raises MAPE by 6.9% and RMSE by 
6.1%. In contrast, the Soft Voting mechanism has a relatively minor impact on accuracy 
improvement, yielding only approximately 3.2% MAPE reduction. Overall, attention and 
stacking fusion most significantly optimized model performance in high-volatility 
intervals, demonstrating enhanced stability and responsiveness-particularly during 
sudden promotional periods and statutory holiday order surge windows. Performance 
changes are annotated with red and green arrows indicating deterioration and 
improvement trends. 

4.4. Evaluation of Prediction Generalization Across Countries and Categories 
To systematically evaluate the model's transfer learning capabilities across countries 

and product categories, a heterogeneous flow structure diagram centered on training 
origin and target regions was constructed. This Sankey diagram illustrates the prediction 
adaptation pathways of multi-source models across different countries and product 
subcategories. All trained models were migrated to test sets from unseen 
countries/categories under uniform parameter configurations. By comparing the 
distribution of prediction performance metrics across different migration paths, we 
identified patterns in how models respond to regional variations in demand structures 
and heterogeneous product consumption cycles. Path widths are normalized and encoded 
using average prediction accuracy to distinguish migration effectiveness tiers. Combined 
with node context attribute analysis, this identifies adaptation bottlenecks in high-
volatility markets and small-sample categories, providing structural guidance for cross-
regional deployment and model fine-tuning strategies. 

Analysis of the accuracy distribution across paths in Figure 4 reveals that the average 
prediction accuracy for migration from USA_Wine to Germany_Wine is 91.7%, 
demonstrating superior performance under high-consumption homogeneous structures. 
Conversely, the Germany_Spirits to Japan_Spirits path achieves only 68.4%, reflecting 
significant accuracy degradation in scenarios with mismatched seasonal rhythms and 
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asynchronous promotional cycles. Among all migration paths, 42.6% achieved an average 
prediction accuracy above 85%, while 18.3% fell below 70%, primarily concentrated in 
target markets with small samples and high volatility. These results indicate that the 
model's generalization performance is closely tied to the target country's market 
characteristics and the alignment with the training set structure. 

 
Figure 4. Sankey Diagram of Model Cross-Country Category Transfer Capability. 

5. Conclusion 
In summary, constructing a multi-source time-series deep learning forecasting model 

tailored for cross-border scenarios effectively enhances modeling capabilities and 
prediction accuracy for complex demand dynamics. It demonstrates particular stability 
and responsiveness in handling rhythm disturbances and consumption peaks. By 
integrating the TCN architecture with a dual-channel-time attention mechanism, the 
model demonstrates significant advantages in modeling nonlinear interactions and 
focusing on key variables. Transfer generalization experiments reveal differences in the 
model's adaptability across countries and product categories, highlighting the challenges 
posed by high-volatility markets and small-sample targets. Although the current model 
has made progress in feature dimension fusion and prediction stability, issues such as 
insufficient sensitivity to extreme events and limited long-term structural memory 
capabilities remain. Future work could introduce cross-cycle nesting mechanisms and 
causal adaptive attention frameworks to enhance the model's robustness and 
generalization capabilities in predicting unknown regions and sudden promotional 
environments. 
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