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Abstract: Against the backdrop of rapid changes in the global foreign trade environment, cross-
border commodity demand exhibits complexity and uncertainty influenced by multiple factors
including seasonality, price indices, promotional rhythms, and exchange rate fluctuations. To
enhance the accuracy of inventory and transportation capacity planning for foreign trade
enterprises, this study constructs a deep learning forecasting model integrating multi-source data.
This model is based on approximately 84,000 time-series data points spanning 3.5 years and
covering 11 countries from an export enterprise. The model integrates features including historical
orders, price indices, promotional schedules, international holidays, search trends, exchange rates,
and shipping cycles, employing TCN combined with attention mechanisms for sequence modeling.
Experimental results demonstrate that compared to benchmark models such as ARIMA, PROPHET,
and LSTM, MAPE, SMAPE, and RMSE improvements range from 14% to 21%, with more robust
performance in forecasting demand peaks. The study demonstrates that multi-source time series
fusion effectively captures the dynamic characteristics of cross-border demand, providing reliable
predictive support for digitalized foreign trade operations. Wine export operations serve as the
validation scenario.
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1. Introduction

Against the backdrop of evolving global trade patterns and rapid cross-border e-
commerce expansion, traditional demand forecasting methods relying solely on historical
data struggle to address the complex and volatile foreign trade environment. Sales
patterns are increasingly driven by multiple factors including international holidays,
exchange rate fluctuations, regional promotional strategies, and search behaviors,
resulting in demand sequences exhibiting high non-stationarity and heterogeneity. To
address the limitations of existing methods in integrating heterogeneous information and
responding to short-term peaks, this paper focuses on constructing a cross-border
demand forecasting model that fuses multi-source time-series data. By incorporating
Time Convolutional Networks (TCN) and a Channel-Time Attention mechanism, the
model enhances its ability to capture key variables while maintaining training stability.
Experiments conducted using real-world multi-country order and logistics data from a
wine export enterprise aim to achieve high-precision forecasting of cross-border order
demand under uncertainty, providing data support and methodological references for
inventory and transportation capacity decisions in foreign trade enterprises.
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2. Feature Analysis and Preprocessing of Multi-Source Time-Series Data
2.1. Data Source Structure and Dimension Description

To ensure stable cross-temporal representation and comprehensive feature coverage
in model inputs, a unified structured input framework integrating multi-source
heterogeneous data was designed. Features were aligned and standardized along the time
axis, with the specific dimensional structure as follows: Order behavior sequence data,
including order timestamps, SKU codes, destination countries, and currency conversion
factors, comprising 32,187 records; Price index and discount data covering 10 product
categories and 7 promotional rhythm variables, sampled daily to form a 96-dimensional
feature sequence; Search popularity and user intent features sourced from third-party
platform API calls, encoded by country and keyword granularity, with an original
dimension of 18x11 countries; Holiday time tags using binary encoding, corresponding to
national statutory holidays and export embargo periods, covering 94 temporal nodes in
total; Exchange rate and shipping cycle data sourced from logistics system interfaces, with
distribution ranges set as floating value curves within 0-14 days [1].

2.2. Heterogeneous Data Unification and Time Alignment Method

To enable collaborative input of heterogeneous data (orders, exchange rates,
promotions) within a unified temporal framework, a multi-source feature vector mapping
mechanism is constructed. A sliding window time alignment function is designed for
cross-section compression and stride control, as follows: (1) Let the original time series be

X® = {xl(s),xés), ...,x%s)}, where s represents the s th data source and T denotes the

global time step; (2) Perform window aggregation on any heterogeneous sequence to
construct a sliding aggregation function:

~(8) _ 1 ot s

Xp " = i di=t-aAc+1 X 1)

Where At denotes the window width, and it(s) represents the aggregated value of
the s th data category at the unified time point t; After mapping all a'c‘t(s) onto the unified
timeline T = {t;,t,, .., t,}, a feature tensor F € IR™*? with consistent dimensions is
formed, where n denotes the unified time step, and d denotes the total dimension after
multi-source concatenation [2].

2.3. Data Visualization Analysis and Variable Correlation Detection

The high-dimensional time-series matrix constructed after unified mapping of multi-
source features requires visualization to extract dynamic correlation structures among
variables. Principal Component Analysis (PCA) projection combined with heatmap
overlay technology is employed to display the synchronized fluctuations of key variables
within the rhythm impact window [3]. The original tensor (F € IR*™*? ) undergoes
standard deviation normalization before input to the PCA module, where the first
principal component explains 72.4% of total variance-significantly exceeding the random
embedding benchmark. A heatmap was constructed using the Pearson correlation
Cov(fif})

O'fi,Uf].
frequency, strongly correlated fluctuations among the price index, exchange rate curve,
and holiday binary variable within a 48-hour cycle. This indicates their strong driving
capability within the short-term forecasting window, making them suitable as core
modeling input variables.

coefficient matrix p;; = with significance testing (p < 0.05), identifying high-

3. Design of a Deep Learning Model for Cross-Border Trade Demand Forecasting
Driven by Multi-Source Time Series Data

3.1. Overall Model Architecture Design

The overall model architecture, as shown in Figure 1, adopts a four-tier structure:
"multi-source input parallel extraction — temporal convolutional modeling — attention
feature enhancement — fully connected prediction output.” The processed feature tensor
at the input end has the shape [B, T, D], where B=64 represents the batch size, T = 96
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denotes the aligned time steps, and D = 43 indicates the total feature dimension after
concatenation. The backbone incorporates a three-layer TCN architecture, with each layer
containing 64 convolutional kernels of width 3 and strides of 1, 2, and 4, respectively.
Residual connections and Dropout are employed to suppress overfitting. A channel
attention module is embedded before the output layer to map global contextual weights
back to the temporal dimension, thereby enhancing peak expression features. The Huber
loss function incorporates a time-weighted decay factor, with AdamW as the optimizer.
The initial learning rate is set to 0.001, and the weight decay coefficient is 0.01. This
architecture enables coupled modeling of high-frequency indicators and slow-cycle
variables, supporting parallel execution of feedforward structures and causal
convolutions, thereby significantly enhancing cross-border order prediction capabilities

[4].
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Figure 1. Schematic Diagram of Overall Model Architecture.

3.2. TCN Time-Series Modeling Mechanism

As the core module of the backbone architecture, the Temporal Convolutional
Network (TCN) employs multi-layer dilated convolutions to model long-term
dependency patterns, constructing an efficient non-recursive temporal processing
pathway [5]. Each convolutional layer utilizes a gated activation structure with input
tensor dimensions of X € IRE*™*?  where B = 64 denotes the batch size, T =96 represents
the time step, and D = 43 indicates the feature dimension. The output of each TCN layer
is defined by the following formula:

Y;=ReLU(Conv1D(X,, k;, d;) + b;) (2)

Where Y; denotes the output feature of layer [ ,X; represents the input tensor to this
layer, ConvlD(-) indicates a one-dimensional convolution operation, k; is the
convolution kernel size (set to 3 in this design), d, is the stride rate (set to 1, 2, and 4
respectively), and b; is the bias term. The model mitigates gradient vanishing through
inter-layer residual connections and Dropout mechanisms, effectively preserving
boundary inputs. After each convolutional layer, outputs are uniformly trimmed and
aligned along the temporal axis to ensure temporal consistency of causal structures during
multi-source sequence fusion. This architecture demonstrates robust responsiveness to
abnormal rhythm shocks, periodic disturbances, and holiday demand fluctuations,
featuring cross-dimensional modeling and low-latency feature compression capabilities.

3.3. Attention Mechanism Fusion Approach

To enhance the model's responsiveness to key variables during multi-source
sequence fusion, a channel-weighted attention mechanism module is introduced as an
intermediate enhancement unit between TCN output and fully connected prediction [6].
Let the output tensor from TCN be X € IRB*T*Pwhere B = 64 is the batch size, T = 96 is
the time step, and D = 43 is the channel dimension. First, global average pooling and max
pooling are applied to extract the channel statistics vector:
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Zavg = %ZZ:lX:,t,: ) Zmax = TEIIxX:,t,: (3)

The concatenated pooling vectors are fed into a shared multilayer perceptron (MLP)
structure for learning channel weights:

a=0(W, - ReLU(W; - [ZaygiZmax |*D1) +b5)

(4)

where W; € IR%"*22 and W, € IR”*%tn represent the attention network weights,
o denotes the Sigmoid activation function, and a € IRE*P are the attention scores for
each channel. Subsequently, per-channel reweighting is performed:

Xpta=apa - Xpea Vb € [1,B],t € [1,T],d € [1,D] 5)

To further enhance the model's ability to focus on abnormal peaks, a temporal
weighting mechanism is designed. A causal attention function based on relative position
encoding is introduced to modulate activation values across beat-timed impact windows:
_ __ean(Alt-tp))
= X, ew(Alkty) (©)
Where t, denotes the current reference time point, 4 represents the decay

Wi

coefficient, and w, indicates the temporal weight at time t, which adjusts the
information retention ratio during feature compression. The final fused output tensor
X = XOw serves as input to the fully connected prediction module [7]. This mechanism
achieves dual attention regulation across channels and time windows while maintaining
high-dimensional information density, providing stable contextual semantic support for
subsequent cross-border demand response prediction.

3.4. Model Loss Function and Optimization Strategy

During training, the model must simultaneously address multidimensional
challenges in demand sequences-including cyclical fluctuations, sudden peaks, and
prediction errors. Therefore, a composite loss function is designed to balance penalties for
local anomalies with overall fitting performance: [8]. The core loss form employs a
weighted Huber function, defined as:

~Ou9)? ifly 3l <6
6 - (lyi,}?il - %6) otherwise

Where y; represents the i th actual value, ; denotes the corresponding predicted
value, ¢ is the error threshold (set to 1.2 in this experiment), and w; is the time-sensitive
weight dynamically adjusted based on the position within the demand cycle window. To
enhance the model's response to peaks during critical periods (e.g., pre-holiday), a time
decay function is introduced defined as w;=exp(—p - d;) , where d; is the distance from
the prediction target position, and fcontrols the decay rate. Additionally, the AdamW
optimizer is selected and combined with a periodic learning rate scheduler (cosine
annealing). The initial learning rate is set to 0.001, weight decay to 0.01, batch size to 64,
and step cycle T to 8. This strategy enables rapid early convergence while avoiding local
optima, ensuring training stability and robustness under multi-source high-dimensional
inputs [9,10]. As shown in Figure 2, the model using weighted Huber loss more accurately
captures rhythm disturbances and abnormal fluctuations during peak demand periods,
while demonstrating superior stability throughout the training process.
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Figure 2. Comparison of prediction residuals under different loss functions.

4. Experimental Results and Analysis
4.1. Experimental Design

The experiment utilizes real-world data from a wine exporter's proprietary cross-
border platform, encompassing 84,239 time-series records from January 2019 to June 2022.
These records cover 11 major destination countries (including Germany, the United States,
and South Korea) with daily granularity, and the prediction target is order demand within
a T+7 rolling window. The dataset was divided into training, validation, and test sets in
an 8:1:1 ratio based on chronological order. Input features comprised 43 standardized
variables including historical orders, SKU codes, price indices, promotional schedules,
binary-coded international holidays, keyword search popularity, shipping cycle curves,
and real-time exchange rates. All models employ a sliding window approach to generate
input sequences of length 96, outputting demand sequences for the next 7 days.
Benchmark models include ARIMA, Prophet, and standard LSTM architectures for
comparison. Evaluation metrics encompass MAPE, SMAPE, and RMSE. Experiments are
repeated under consistent hardware and random seed settings to ensure result stability.

4.2. Comparative Analysis of Prediction Accuracy

To comprehensively validate the cross-border order forecasting capability of this
paper's model driven by multi-source time series data, three benchmark models (ARIMA,
Prophet, and LSTM) were selected for comparative experiments. All experiments
uniformly utilized 84,239 daily-level order records from a wine export enterprise as the
experimental data source. The output prediction horizon was set to T+7 days, with input
features comprising 43-dimensional variables including historical orders, price indices,
promotional rhythms, holidays, and exchange rates. Experiments were conducted under
uniform hardware environments and sliding window parameter configurations. Core
evaluation metrics for prediction results included MAPE, SMAPE, and RMSE. Detailed
comparison results are presented in Table 1.

Table 1. Comparison of Prediction Accuracy Across Models on the Test Set.

Model Name MAPE (%) SMAPE (%) RMSE
ARIMA 21.3 18.7 346.2
Prophet 19.6 17.5 312.4

LSTM 18.2 16.1 297.6
Model in this paper 15.1 13.4 254.1

As shown in Table 1, the deep learning model developed in this paper, which
integrates TCN with attention mechanisms, outperforms traditional methods across three
primary metrics. Specifically, MAPE decreased from 21.3% in ARIMA to 15.1%,
representing a relative improvement of approximately 29.1%. SMAPE decreased by about
16.8% compared to LSTM, while RMSE also significantly decreased to 254.1. As
summarized earlier, this model demonstrates exceptional prediction stability during peak
demand periods. This stems primarily from the attention mechanism's ability to focus on
rhythm disturbance windows and the TCN architecture's advantage in modeling long-
short term coupling relationships. In contrast, ARIMA and Prophet fail to effectively
capture nonlinear interactions among multi-source variables, while LSTM suffers from
information degradation during feature fusion, leading to cumulative prediction bias.

4.3. Model Fusion Mechanism Ablation Study

To further validate the contribution of each fusion mechanism in cross-border
demand forecasting, ablation experiments were designed using the baseline model as a
control. These experiments sequentially removed the attention enhancement unit, the
Stacking module, and the soft voting structure. While maintaining the core TCN
architecture consistent, different fusion strategies were progressively replaced or deleted
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to compare their impact on output metric stability and response timeliness. The
experiments employed identical sliding window configurations and training
hyperparameters while maintaining consistent input data sources to eliminate external
variable interference. The fusion process reveals that the channel attention mechanism
and Stacking layer serve as bridges for weight adaptation across multi-source
heterogeneous variables. They notably reduce the model's response latency to abnormal
demand, particularly under rhythm perturbations or sudden price changes. Comparison
results in Figure 3 demonstrate that after removing fusion components, overall error
metrics exhibit varying degrees of fluctuation, validating the critical role of fusion
strategies in enhancing model robustness.

Model Fusion Mechanisms
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Figure 3. Structural and Performance Changes of Model Fusion Mechanism.

As shown in Figure 3, removing the attention mechanism increases RMSE by 8.3%
and SMAPE by 5.7%. Removing the Stacking module raises MAPE by 6.9% and RMSE by
6.1%. In contrast, the Soft Voting mechanism has a relatively minor impact on accuracy
improvement, yielding only approximately 3.2% MAPE reduction. Overall, attention and
stacking fusion most significantly optimized model performance in high-volatility
intervals, demonstrating enhanced stability and responsiveness-particularly during
sudden promotional periods and statutory holiday order surge windows. Performance
changes are annotated with red and green arrows indicating deterioration and
improvement trends.

4.4. Evaluation of Prediction Generalization Across Countries and Categories

To systematically evaluate the model's transfer learning capabilities across countries
and product categories, a heterogeneous flow structure diagram centered on training
origin and target regions was constructed. This Sankey diagram illustrates the prediction
adaptation pathways of multi-source models across different countries and product
subcategories. All trained models were migrated to test sets from unseen
countries/categories under uniform parameter configurations. By comparing the
distribution of prediction performance metrics across different migration paths, we
identified patterns in how models respond to regional variations in demand structures
and heterogeneous product consumption cycles. Path widths are normalized and encoded
using average prediction accuracy to distinguish migration effectiveness tiers. Combined
with node context attribute analysis, this identifies adaptation bottlenecks in high-
volatility markets and small-sample categories, providing structural guidance for cross-
regional deployment and model fine-tuning strategies.

Analysis of the accuracy distribution across paths in Figure 4 reveals that the average
prediction accuracy for migration from USA_Wine to Germany_Wine is 91.7%,
demonstrating superior performance under high-consumption homogeneous structures.
Conversely, the Germany_Spirits to Japan_Spirits path achieves only 68.4%, reflecting
significant accuracy degradation in scenarios with mismatched seasonal rhythms and
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asynchronous promotional cycles. Among all migration paths, 42.6% achieved an average
prediction accuracy above 85%, while 18.3% fell below 70%, primarily concentrated in
target markets with small samples and high volatility. These results indicate that the
model's generalization performance is closely tied to the target country's market
characteristics and the alignment with the training set structure.

USA_ Wine I I USA_ Wine
Usa _spirits|J] <o e USA Spirits
UsA Beer [J] ~ ol USA Becr
GennanleneI \‘ o L Ge'rmany
4 5 Wine
Germany Beel \ g i Spirits
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Figure 4. Sankey Diagram of Model Cross-Country Category Transfer Capability.

5. Conclusion

In summary, constructing a multi-source time-series deep learning forecasting model
tailored for cross-border scenarios effectively enhances modeling capabilities and
prediction accuracy for complex demand dynamics. It demonstrates particular stability
and responsiveness in handling rhythm disturbances and consumption peaks. By
integrating the TCN architecture with a dual-channel-time attention mechanism, the
model demonstrates significant advantages in modeling nonlinear interactions and
focusing on key variables. Transfer generalization experiments reveal differences in the
model's adaptability across countries and product categories, highlighting the challenges
posed by high-volatility markets and small-sample targets. Although the current model
has made progress in feature dimension fusion and prediction stability, issues such as
insufficient sensitivity to extreme events and limited long-term structural memory
capabilities remain. Future work could introduce cross-cycle nesting mechanisms and
causal adaptive attention frameworks to enhance the model's robustness and
generalization capabilities in predicting unknown regions and sudden promotional
environments.

References

1. Y.Zhao, B. Gong, and B. Huang, "Research on cross-border e-commerce supply chain prediction and optimization model based
on convolutional neural network algorithm," Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 29, no.
1, pp. 215-223, 2025. doi: 10.20965/jaciii.2025.p0215

2. H. Zhu, "Oil demand forecasting in importing and exporting countries: Al-based analysis of endogenous and exogenous
factors," Sustainability, vol. 15, no. 18, p. 13592, 2023. doi: 10.3390/su151813592

3. Y.M.Tang, K. Y. Chau, and Y. Lau, "Data-intensive inventory forecasting with artificial intelligence models for cross-border e-
commerce service automation," Applied Sciences, vol. 13, no. 5, p. 3051, 2023. doi: 10.3390/app13053051

4. D. Zhang, P. Wu, and C. Wu, "Forecasting duty-free shopping demand with multisource data: A deep learning approach,”
Annals of Operations Research, vol. 339, no. 1, pp. 861-887, 2024.

5. L. Xie, J. Liu, and W. Wang, "Predicting sales and cross-border e-commerce supply chain management using artificial neural
networks and the Capuchin search algorithm," Scientific Reports, vol. 14, no. 1, p. 13297, 2024. doi: 10.1038/s41598-024-62368-6

6. J. Chen, "Prediction of global trade network evolution with uncertain multi-step time series forecasting method," Fuzzy
Optimization and Decision Making, vol. 23, no. 3, pp. 387-414, 2024. doi: 10.1007/s10700-024-09426-w

7. A. R. Chowdhury, R. Paul, and F. Z. Rozony, "A systematic review of demand forecasting models for retail e-commerce
enhancing accuracy in inventory and delivery planning," International Journal of Scientific Interdisciplinary Research, vol. 6, no. 1,
pp- 01-27, 2025.

69



Journal of Science, Innovation & Social Impact Vol. 1 No. 2 (2025)

8. D. Yuan, "Intelligent cross-border payment compliance risk detection using multi-modal deep learning: A framework for
automated transaction monitoring," Artificial Intelligence and Machine Learning Review, vol. 5, no. 2, pp. 25-35, 2024.

9. X.Zheng, V. M. Dwyer, L. A. Barrett, M. Derakhshani, and S. Hu, "Rapid vital sign extraction for real-time opto-physiological
monitoring at varying physical activity intensity levels," IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 7, pp. 3107-
3118, 2023. doi: 10.1109/jbhi.2023.3268240

10. A.Kang,J.Xin, and X. Ma, "Anomalous cross-border capital flow patterns and their implications for national economic security:
An empirical analysis," Journal of Advanced Computing Systems, vol. 4, no. 5, pp. 42-54, 2024. doi: 10.69987/jacs.2024.40504

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s)
disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or
products mentioned in the content.

70



	1. Introduction
	2. Feature Analysis and Preprocessing of Multi-Source Time-Series Data
	2.1. Data Source Structure and Dimension Description
	2.2. Heterogeneous Data Unification and Time Alignment Method
	2.3. Data Visualization Analysis and Variable Correlation Detection

	3. Design of a Deep Learning Model for Cross-Border Trade Demand Forecasting Driven by Multi-Source Time Series Data
	3.1. Overall Model Architecture Design
	3.2. TCN Time-Series Modeling Mechanism
	3.3. Attention Mechanism Fusion Approach
	3.4. Model Loss Function and Optimization Strategy

	4. Experimental Results and Analysis
	4.1. Experimental Design
	4.2. Comparative Analysis of Prediction Accuracy
	4.3. Model Fusion Mechanism Ablation Study
	4.4. Evaluation of Prediction Generalization Across Countries and Categories

	5. Conclusion
	References

