

Review

An Integrative Review of Dynamic Pricing Strategies under Inventory and Market-Oriented Constraints

Wei Zhang ¹, Nathaniel J. Hartley ^{1,*} and Lei Qiu ²

¹ Department of Business Administration, University of Central Oklahoma, Edmond, OK, USA

² School of Management, University of Gloucestershire, Cheltenham, UK

* Correspondence: Nathaniel J. Hartley, Department of Business Administration, University of Central Oklahoma, Edmond, OK, USA

Abstract: Dynamic pricing has been extensively studied as an optimization problem under inventory constraints; however, its effectiveness in real-world markets is increasingly challenged by demand uncertainty, product return mechanisms, and complex consumer behavior. Existing research often treats pricing decisions in isolation, overlooking their embeddedness within broader market-oriented strategies and adaptive market systems. This integrative review synthesizes insights from operations management, marketing strategy, data-driven demand analysis, and cross-disciplinary complex system research to advance a holistic understanding of dynamic pricing under inventory and market-oriented constraints. By reviewing optimization-based pricing models, market-oriented development perspectives, and data-driven approaches to demand intelligence, this study highlights the limitations of static demand assumptions and purely analytical pricing solutions. Drawing conceptual inspiration from mechanism-oriented system regulation in other disciplines, the paper reframes dynamic pricing as an indirect intervention that operates through intermediate structures such as demand perception, consumer expectations, and market feedback. An integrative conceptual framework is proposed to bridge optimization rigor with market realism. The review contributes to pricing research by emphasizing system-level stability, strategic integration, and adaptability, and it offers managerial implications for designing resilient pricing strategies in complex and uncertain market environments.

Keywords: dynamic pricing; inventory constraints; market-oriented strategy; demand uncertainty; complex adaptive systems

Received: 02 November 2025

Revised: 19 November 2025

Accepted: 25 December 2025

Published: 02 January 2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

1.1. Background and Research Motivation

Dynamic pricing has become a central decision-making tool in contemporary commercial systems, particularly in environments characterized by limited inventories, product return mechanisms, and significant demand uncertainty. In many industries such as e-commerce, real estate, and service platforms, firms must continuously adjust prices in response to fluctuating inventory levels, consumer behavior, and market feedback. Analytical studies in operations management have provided rigorous optimization-based frameworks to address such challenges, especially under inventory and return constraints, offering valuable insights into revenue maximization and operational efficiency [1].

Despite these advances, the applicability of traditional optimization-oriented pricing models in real-world markets remains constrained. Practical markets are rarely static or fully rational; instead, they are shaped by heterogeneous consumers, evolving preferences, strategic interactions, and institutional factors. As a result, pricing decisions increasingly

extend beyond mathematical optimization toward broader strategic considerations. In this context, market-oriented development models emphasize the integration of pricing with marketing strategies, consumer perception management, and long-term value creation [2]. This shift highlights the necessity of reconceptualizing dynamic pricing not merely as a technical optimization problem, but as a strategic instrument embedded within complex market systems.

1.2. Limitations of Existing Pricing Research

Existing research on dynamic pricing has made substantial theoretical contributions, yet several limitations persist. First, many models rely heavily on assumptions of rational demand functions and relatively stable market structures. Such assumptions simplify analytical tractability but often fail to capture the behavioral and contextual variability observed in real markets [3]. Second, pricing models are frequently developed in isolation from broader market strategies, leading to a disconnect between pricing decisions and marketing activities such as branding, promotion, and customer relationship management.

Moreover, empirical studies in market research and product planning indicate that consumer demand is strongly influenced by perception, sentiment, and information asymmetry, which are insufficiently incorporated into traditional pricing frameworks [4]. This gap suggests that pricing effectiveness cannot be fully understood without considering how market intelligence and consumer behavior mediate the relationship between price adjustments and performance outcomes. More fundamentally, existing studies often overlook the nature of pricing systems as complex adaptive systems, in which indirect interventions and feedback mechanisms play a critical role in shaping long-term system stability.

1.3. Research Objectives and Contributions

In response to these limitations, this study aims to provide an integrative review of dynamic pricing strategies under inventory and market-oriented constraints. The primary objective is to synthesize insights from optimization-based pricing models, market-oriented development theories, and data-driven demand analysis into a unified conceptual framework. By adopting a mechanism-oriented perspective, this review moves beyond direct price control to examine how pricing decisions influence intermediate structures such as demand perception, market feedback, and consumer expectations.

In addition, this paper draws conceptual inspiration from complex system research in other disciplines, where system-level regulation is achieved through indirect, structure-oriented interventions rather than direct manipulation of outcome variables [5]. Through this interdisciplinary lens, the study seeks to enrich the theoretical foundation of dynamic pricing research and identify promising directions for future inquiry. The remainder of the paper is organized as follows: Section 2 reviews dynamic pricing models under inventory and return constraints; Section 3 examines market-oriented development and strategic pricing perspectives; Section 4 discusses demand uncertainty and data-driven pricing intelligence; Section 5 explores cross-disciplinary insights into complex system regulation; and Section 6 proposes an integrative framework and outlines future research directions.

2. Dynamic Pricing under Inventory and Return Constraints

2.1. Classical Models of Dynamic Pricing with Limited Inventory

Dynamic pricing under limited inventory has long been a central topic in operations management and revenue optimization. Classical models typically characterize the pricing problem as a sequential decision process in which firms adjust prices over time based on remaining inventory and anticipated demand. In such frameworks, prices are dynamically updated to balance the trade-off between selling units early at lower prices and preserving inventory for potentially higher future prices. The core objective is to

maximize expected revenue over a finite selling horizon while respecting inventory constraints.

A representative and influential contribution in this area is provided, who develop a dynamic pricing model that explicitly incorporates both limited inventory and product returns [6]. Their framework formalizes the interaction between pricing decisions, stochastic demand, and inventory evolution using dynamic programming techniques. In this setting, the state of the system is jointly determined by time and inventory level, and the optimal pricing policy is derived as a function of these state variables. This formulation highlights the inherent coupling between temporal dynamics and inventory availability in pricing decisions.

Classical limited-inventory pricing models assume that demand responds monotonically to price and that consumers make purchase decisions based on current price levels. Under these assumptions, the optimal pricing policy often exhibits structural properties such as monotonicity or threshold behavior, which enhance analytical tractability. However, while such models provide valuable theoretical insights, their reliance on stylized demand functions may limit their ability to capture complex market behaviors observed in practice.

2.2. Product Returns and Their Impact on Pricing Decisions

The inclusion of product returns adds an additional layer of complexity to dynamic pricing models. Product returns affect not only realized revenue but also future inventory availability, thereby influencing subsequent pricing decisions. In markets such as e-commerce and fashion retail, return policies have become an integral part of competitive strategy, making it essential to account for their impact on pricing and inventory management.

In the model proposed, it returns are incorporated as stochastic events that replenish inventory after a sale, effectively altering the inventory transition dynamics [7]. This feature distinguishes return-aware pricing models from classical formulations and reveals several important implications. First, the possibility of returns reduces the effective cost of selling inventory early, which may incentivize more aggressive pricing strategies. Second, uncertainty in return rates introduces additional risk into the pricing decision, as future inventory levels become less predictable.

Moreover, consumers may behave strategically in response to return policies, timing their purchases or exploiting flexible return options. Such behavior complicates the relationship between price adjustments and demand realization, challenging the assumption that pricing decisions exert a direct and immediate effect on sales outcomes. As a result, return mechanisms can undermine the stability of optimal pricing policies derived under simplified assumptions.

2.3. Key Insights and Model Assumptions

Optimization-based dynamic pricing models offer several clear advantages. They provide rigorous, mathematically grounded solutions and enable firms to quantify the revenue implications of different pricing strategies under well-defined conditions. The analytical clarity of these models, as demonstrated, makes them valuable benchmarks for understanding the fundamental trade-offs inherent in pricing under inventory and return constraints [8].

However, the applicability of such models depends critically on their underlying assumptions. Many formulations assume rational consumer behavior, stable demand responses, and limited interaction between pricing and broader market strategies. In practice, pricing decisions are embedded in complex market environments shaped by consumer perception, marketing activities, and competitive dynamics. Consequently, the mathematically optimal price path may diverge from strategies that are effective or sustainable in real markets.

This tension between analytical optimality and market realism underscores the need for integrative perspectives that extend beyond pure optimization. While classical models

establish a solid theoretical foundation, they must be complemented by market-oriented and data-driven approaches that account for behavioral variability and system-level feedback. These considerations motivate the broader framework developed in the subsequent sections of this review.

3. Market-Oriented Development and Strategic Pricing Perspectives

3.1. Market-Oriented Development Models

Market-oriented development represents a strategic paradigm that emphasizes responsiveness to market demand, consumer preferences, and competitive dynamics. Rather than focusing solely on internal efficiency or short-term revenue optimization, market-oriented models prioritize long-term value creation through the alignment of organizational decisions with market signals. Within this framework, pricing is not treated as an isolated operational variable but as a strategic instrument embedded in broader development and marketing objectives.

It was highlighted that market-oriented development requires the integration of pricing decisions with marketing strategies, customer relationship management, and brand positioning [9]. From this perspective, price functions as a communicative signal that conveys product value, quality expectations, and strategic intent to the market. Consequently, pricing decisions influence not only immediate sales outcomes but also consumer perceptions and long-term market positioning. This view challenges the traditional separation between pricing optimization and marketing strategy, suggesting that effective pricing must be coordinated with other market-facing activities.

3.2. Integration of Marketing Strategies and Pricing Decisions

The integration of pricing and marketing strategies is particularly critical in environments characterized by inventory constraints and demand uncertainty. Pricing interacts with branding, distribution channels, and promotional activities to shape consumer decision-making processes. For instance, promotional pricing may stimulate short-term demand but can also affect brand perception and price sensitivity in the long run. Similarly, channel-specific pricing strategies influence market reach and consumer accessibility.

Market-oriented research emphasizes the role of consumer perception and psychological expectations in determining price acceptance. Consumers do not respond solely to absolute price levels; rather, their purchasing decisions are influenced by perceived fairness, reference prices, and contextual cues. Strategic pricing must therefore account for how consumers interpret price changes within a broader marketing context [10]. This insight underscores the limitations of pricing models that assume homogeneous and fully rational demand, reinforcing the need to incorporate behavioral and perceptual factors into pricing decisions.

3.3. Managerial Implications for Pricing under Constraints

From a managerial perspective, adopting a market-oriented approach enhances pricing flexibility under inventory and return constraints. Instead of adhering rigidly to mathematically optimal price paths, firms can adjust pricing strategies in response to evolving market conditions, consumer feedback, and competitive pressures. This flexibility is especially valuable in dynamic markets where demand patterns are volatile and inventory positions change rapidly.

More importantly, the market-oriented perspective shifts the role of pricing from direct price control to demand guidance. Pricing decisions can be designed to influence consumer expectations, smooth demand fluctuations, and mitigate the risks associated with inventory shortages or excess returns. By coordinating pricing with marketing communication and customer engagement strategies, firms can achieve more stable and sustainable performance outcomes.

In this sense, market-oriented development models complement optimization-based pricing frameworks by addressing their practical limitations. While analytical models

provide valuable benchmarks, strategic pricing guided by market orientation enables firms to navigate the complexity of real-world markets more effectively. This perspective lays the groundwork for incorporating demand intelligence and data-driven insights into dynamic pricing design, which is explored in the following section.

4. Demand Uncertainty and Data-Driven Pricing Intelligence

4.1. Sources of Demand Uncertainty in Contemporary Markets

Demand uncertainty is a defining characteristic of contemporary markets, particularly in environments shaped by rapid technological change, intensified competition, and increasingly heterogeneous consumer populations. Unlike classical pricing models that assume stable and well-defined demand functions, real-world markets exhibit significant variability in consumer preferences, purchasing power, and decision-making processes. Consumer heterogeneity manifests in differences in income, risk tolerance, brand loyalty, and sensitivity to price changes, all of which contribute to unpredictable demand patterns.

In addition to intrinsic heterogeneity, demand is highly sensitive to contextual factors such as timing, location, information availability, and social influence. Consumers may respond differently to identical price levels depending on situational cues, promotional framing, or recent market experiences. These contextual variations complicate the task of demand estimation and undermine the effectiveness of static pricing strategies.

Information asymmetry further amplifies demand uncertainty. Firms often lack complete and timely information about consumer preferences, while consumers may possess imperfect knowledge about product quality, pricing rationale, or future price movements. Moreover, market feedback mechanisms are typically subject to delays. Sales data, customer reviews, and return information are observed only after pricing decisions have been implemented, creating a temporal gap between action and feedback. This delay introduces additional uncertainty into pricing decisions and limits the responsiveness of traditional optimization-based approaches.

4.2. Data-Driven Approaches to Demand Understanding

To address the limitations of assumption-driven demand modeling, recent research has increasingly emphasized data-driven approaches to demand understanding. Market research plays a foundational role in this process by systematically collecting and analyzing information about consumer needs, preferences, and purchasing behavior. Through surveys, focus groups, and behavioral data analysis, firms can gain insights into demand drivers that are not directly observable through sales data alone.

The importance of market research in product planning and pricing decisions, arguing that effective pricing strategies depend on accurate and context-sensitive demand information [11]. Market research enables firms to segment consumers, identify latent needs, and anticipate shifts in demand, thereby reducing uncertainty at the decision-making stage. From a pricing perspective, such insights can inform the calibration of demand functions, price elasticity estimates, and inventory allocation strategies.

Beyond traditional market research, advances in data analytics and artificial intelligence have enabled more sophisticated demand modeling techniques. Context-aware and personalized recommendation systems exemplify this trend by capturing individual-level preferences and situational factors in real time. It was proposed a personalized recommendation framework that integrates user clustering with BERT-based sentiment analysis to infer consumer intent and emotional responses from textual data [12]. This approach moves beyond aggregate demand estimation by recognizing that demand is dynamic, personalized, and influenced by contextual sentiment.

By incorporating sentiment analysis and user segmentation, data-driven models can identify subtle shifts in consumer perception that precede observable changes in purchasing behavior. Such insights are particularly valuable in dynamic pricing contexts, where early detection of demand changes can improve pricing responsiveness and mitigate the risks associated with inventory constraints and product returns.

4.3. Implications for Dynamic Pricing Design

The integration of data-driven demand intelligence has significant implications for dynamic pricing design. First, enriched demand understanding enables more accurate parameterization of optimization models. Instead of relying on static or historically averaged demand functions, firms can update price elasticity estimates and demand forecasts based on real-time market intelligence. This adaptive parameterization enhances the robustness of pricing decisions under uncertainty.

Second, data-driven approaches support a conceptual shift from static demand functions to dynamic demand structures. Demand should be viewed not as a fixed relationship between price and quantity, but as an evolving system shaped by consumer learning, perception, and feedback. In this sense, pricing decisions influence demand not only directly through price levels but also indirectly through consumer expectations and sentiment.

This perspective challenges the traditional optimization paradigm exemplified by inventory-based pricing models such as those developed [13]. While such models provide valuable benchmarks, their effectiveness depends on the accuracy of demand assumptions. Data-driven demand intelligence can complement these models by continuously refining demand inputs and capturing behavioral dynamics that are otherwise omitted [14].

Ultimately, the incorporation of data-driven demand understanding aligns dynamic pricing with market-oriented development principles. Pricing becomes a learning-driven and feedback-sensitive process rather than a one-time optimization exercise. By leveraging market research and personalized demand modeling, firms can design pricing strategies that are more resilient to uncertainty and better suited to complex market environments [15]. These insights pave the way for a broader, system-level understanding of pricing as a mechanism for regulating demand dynamics, which is further explored through cross-disciplinary perspectives in the following chapter.

5. Cross-Disciplinary Insights: Complex System Regulation and Mechanism-Oriented Intervention

5.1. Pricing Systems as Complex Adaptive Systems

Dynamic pricing systems operate as complex adaptive systems characterized by multiple interacting components, nonlinear feedback, and evolving behavioral responses. Unlike static pricing environments, dynamic pricing involves continuous interactions among inventory levels, pricing decisions, demand realization, and consumer behavior. Changes in one component often generate cascading effects throughout the system, leading to outcomes that are difficult to predict using linear or reductionist models.

Inventory constraints introduce state dependence into pricing decisions, while consumer responses to price changes generate feedback loops that influence future demand and pricing strategies [16]. Moreover, consumer behavior is not passive; consumers learn from past prices, anticipate future adjustments, and may strategically time purchases or returns. These interactions create nonlinear coupling between price, demand, and inventory, reinforcing the view that pricing systems cannot be fully understood through isolated variable analysis.

From this perspective, pricing effectiveness depends not only on immediate price adjustments but also on how pricing policies shape the dynamic structure of the market. This system-level view aligns with recent calls to move beyond purely optimization-driven pricing models and to adopt frameworks capable of capturing adaptation, feedback, and long-term stability.

5.2. Mechanism-Oriented Regulation in Other Disciplines

Research in other disciplines offers valuable insights into how complex systems can be regulated under uncertainty and constraint. A recurring principle across engineering and biological systems is that effective intervention often targets intermediate regulatory

structures rather than directly manipulating outcome variables. By reshaping these mediating mechanisms, systems can be guided toward more stable and desirable states.

In biological systems, this mechanism-oriented approach investigated tumor suppression in metabolically stressed organisms. Rather than directly targeting tumor growth, their study demonstrates that modifying the gut microbiota—an intermediate regulatory system—can significantly reduce tumor development. This intervention alters the internal system environment, thereby influencing downstream outcomes in a more robust and sustainable manner.

The relevance of this insight lies not in the biological details, but in the generalizable logic of system regulation. The study exemplifies how indirect, structure-oriented interventions can outperform direct control strategies when dealing with complex, adaptive systems. Such an approach acknowledges the limitations of direct manipulation and leverages system-level dynamics to achieve desired outcomes.

5.3. *Conceptual Implications for Market-Oriented Pricing*

Applying a mechanism-oriented perspective to dynamic pricing suggests a fundamental shift in how pricing interventions are conceptualized. Pricing should not be viewed solely as a direct control variable aimed at immediate revenue outcomes. Instead, pricing policies can be designed to influence intermediate market structures such as demand composition, consumer expectations, and perceived value.

From a market-oriented standpoint, price adjustments serve as signals that shape consumer behavior over time. By influencing reference prices, purchase timing, and return behavior, pricing strategies can stabilize demand and mitigate the risks associated with inventory constraints. This indirect mode of regulation aligns with the broader concept of demand guidance rather than demand control.

In this sense, dynamic pricing functions as a mechanism-oriented intervention within a complex commercial system. Just as biological systems can be regulated by modifying intermediate structures, market systems can be guided by shaping the behavioral and perceptual mechanisms that mediate between pricing decisions and performance outcomes. This perspective provides a conceptual bridge between optimization-based pricing models and market-oriented strategic approaches, reinforcing the integrative framework developed in this review.

6. An Integrative Framework and Future Research Directions

6.1. *An Integrative Conceptual Framework*

Building on the preceding analysis, this study proposes an integrative conceptual framework for understanding dynamic pricing under inventory and market-oriented constraints. The framework synthesizes four complementary dimensions: optimization-based pricing models, market-oriented development and marketing strategies, data-driven demand intelligence, and mechanism-oriented system regulation.

First, optimization-based models provide the analytical foundation for dynamic pricing decisions under inventory and return constraints. Classical formulations in the dynamic pricing literature elucidate the fundamental trade-offs among pricing decisions, inventory dynamics, and revenue outcomes. These models establish important benchmarks for rational decision-making, particularly under clearly specified assumptions and well-structured demand environments.

Second, market-oriented development perspectives emphasize that pricing decisions are embedded within broader strategic and marketing contexts. From this viewpoint, pricing functions not only as a revenue lever but also as a strategic signal that interacts with branding, promotion, and customer relationship management. This dimension extends the scope of pricing analysis beyond short-term optimization toward long-term market positioning, value creation, and competitive differentiation.

Third, data-driven demand intelligence enriches pricing decisions by reducing uncertainty and capturing behavioral dynamics. Market research and product planning practices provide structured insights into consumer preferences and demand drivers,

while context-aware and personalized modeling techniques enable real-time, fine-grained demand understanding. Together, these approaches transform demand from a static input into a dynamic, learnable structure that evolves with market conditions and consumer behavior.

Finally, the mechanism-oriented system regulation perspective introduces a system-level lens for pricing design. Drawing inspiration from complex system studies in engineering and biological regulation, pricing is reconceptualized as an indirect regulatory mechanism that operates through intermediate structures such as consumer expectations, demand composition, and feedback loops. This perspective complements optimization and market-oriented approaches by emphasizing system stability, adaptability, and long-term performance rather than isolated short-term outcomes.

6.2. Research Gaps and Future Directions

Despite significant progress in the study of dynamic pricing under inventory constraints, several research gaps remain. One key opportunity lies in the deeper integration of pricing optimization models with market-oriented strategic frameworks. While existing research often treats pricing either as a mathematical optimization problem or as a managerial decision tool, future studies could develop hybrid models that explicitly incorporate marketing variables, consumer perception, and strategic signaling into pricing design.

Another promising direction involves the investigation of long-term pricing stability from a complex systems perspective. Most dynamic pricing research prioritizes short-term revenue maximization, frequently overlooking system-level effects such as demand volatility, consumer trust formation, and behavioral adaptation. Adopting a complex adaptive systems framework could enable researchers to examine how pricing strategies influence market resilience, stability, and evolutionary dynamics over extended time horizons.

Finally, cross-disciplinary methodologies offer substantial potential for advancing pricing research. Insights from engineering system optimization and biological regulation suggest that indirect, structure-oriented interventions can achieve robust system performance in uncertain and dynamic environments. Translating these ideas into economic and managerial contexts may inspire novel pricing paradigms that shift the focus from direct price control toward system guidance and adaptive market regulation.

6.3. Conclusions

This study provides an integrative review of dynamic pricing strategies under inventory and market-oriented constraints. By synthesizing optimization-based models, market-oriented development theories, data-driven demand intelligence, and mechanism-oriented system regulation perspectives, the paper advances a holistic understanding of pricing in complex commercial environments.

The main theoretical contribution lies in reframing dynamic pricing as a system-level intervention rather than a purely technical optimization task. This integrative perspective highlights the importance of intermediate demand structures, consumer behavior, and market feedback in shaping pricing effectiveness. From a practical standpoint, the framework offers managers guidance on designing pricing strategies that are flexible, data-informed, and aligned with long-term market objectives.

Overall, this review underscores the value of interdisciplinary thinking in pricing research and points toward future studies that bridge analytical rigor with market realism. By embracing complexity and integration, dynamic pricing research can better address the challenges of contemporary markets.

References

1. X. Li and Z. Zheng, "Dynamic pricing with external information and inventory constraint," *Manage. Sci.*, vol. 70, no. 9, pp. 5985–6001, Sep. 2024.

2. G. Wang, "Performance evaluation and optimization of photovoltaic systems in urban environments," *Int. J. New Dev. Eng. Soc.*, vol. 9, pp. 42–49, 2025, doi: 10.25236/IJNDES.2025.090106.
3. J. Zhao, "'To IPO or Not to IPO' - Recent 2025 IPOs and AI Valuation Framework", *Financial Economics Insights*, vol. 2, no. 1, pp. 131–143, Dec. 2025, doi: 10.70088/hhczb769.
4. N. Chen and G. Gallego, "A primal-dual learning algorithm for personalized dynamic pricing with an inventory constraint," *Math. Oper. Res.*, vol. 47, no. 4, pp. 2585–2613, Nov. 2022.
5. X. Zhang, "The Enabling Path of Private Equity Funds in the Growth Process of Emerging Market Enterprises", *Econ. Manag. Innov.*, vol. 2, no. 5, pp. 94–102, Oct. 2025, doi: 10.71222/511cxp26.
6. B. Chen, D. Simchi-Levi, Y. Wang, and Y. Zhou, "Dynamic pricing and inventory control with fixed ordering cost and incomplete demand information," *Manage. Sci.*, vol. 68, no. 8, pp. 5684–5703, Aug. 2022.
7. S. Yuan, "Data Flow Mechanisms and Model Applications in Intelligent Business Operation Platforms", *Financial Economics Insights*, vol. 2, no. 1, pp. 144–151, 2025, doi: 10.70088/m66tbm53.
8. H. Matsumoto, T. Gu, S. Yo, M. Sasahira, S. Monden, T. Ninomiya, M. Osawa, O. Handa, E. Umegaki, and A. Shiotani, "Fecal microbiota transplantation using donor stool obtained from exercised mice suppresses colonic tumor development induced by azoxymethane in high-fat diet-induced obese mice," *Microorganisms*, vol. 13, no. 5, p. 1009, 2025.
9. N. B. Keskin, Y. Li, and J. S. Song, "Data-driven dynamic pricing and ordering with perishable inventory in a changing environment," *Manage. Sci.*, vol. 68, no. 3, pp. 1938–1958, Mar. 2022.
10. X. Hu, Z. Wan, and N. N. Murthy, "Dynamic pricing of limited inventories with product returns," *Manufacturing & Service Operations Management*, vol. 21, no. 3, pp. 501–518, 2019, doi: 10.1287/msom.2017.0702.
11. B. Chen, Y. Wang, and Y. Zhou, "Optimal policies for dynamic pricing and inventory control with nonparametric censored demands," *Manage. Sci.*, vol. 70, no. 5, pp. 3362–3380, May 2024.
12. W. Sun, "Integration of Market-Oriented Development Models and Marketing Strategies in Real Estate," *European Journal of Business, Economics & Management*, vol. 1, no. 3, pp. 45–52, 2025
13. S. Li, K. Liu, and X. Chen, "A context-aware personalized recommendation framework integrating user clustering and BERT-based sentiment analysis," 2025.
14. H. Wang, K. Talluri, and X. Li, "On dynamic pricing with covariates," *Oper. Res.*, 2025.
15. M. Lei, S. Liu, S. Jasin, and A. Vakhutinsky, "Joint inventory and pricing for a one-warehouse multistore problem: Spiraling phenomena, near optimal policies, and the value of dynamic pricing," *Oper. Res.*, vol. 72, no. 2, pp. 738–762, Mar.-Apr. 2024.
16. B. Wu, "Market research and product planning in e-commerce projects: A systematic analysis of strategies and methods," *Academic Journal of Business & Management*, vol. 7, no. 3, pp. 45–53, 2025, doi: 10.25236/AJBM.2025.070307.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.