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Abstract: The protection of Personally Identifiable Information (PII) in clinical text is a critical
challenge in healthcare data management, particularly as medical institutions increasingly adopt
digital health records and data-sharing initiatives. This paper presents a novel natural language
processing framework that leverages optimized attention mechanisms and context-aware
tokenization strategies to achieve high accuracy in detecting and protecting sensitive information
within clinical documents. Our approach integrates transformer-based architectures with domain-
specific enhancements, achieving a 95.3% F1-score on standard benchmarks while satisfying HIPAA
Safe Harbor requirements through a combination of deep learning and rule-based processing. The
proposed method introduces a hierarchical detection system that processes clinical text at multiple
granularity levels, employing specialized attention heads for different PII categories. Experimental
results on three large-scale clinical datasets demonstrate that our framework outperforms existing
state-of-the-art methods by 8.7% in detection accuracy and reduces false positives by 59% compared
to ClinicalBERT (from 12.8% to 5.2%). Furthermore, our intelligent redaction strategy preserves the
semantic integrity of clinical content, enabling secure data sharing while maintaining the utility of

medical information.
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1. Introduction
1.1. Healthcare Data Privacy Challenges

The digitalization of healthcare systems has generated unprecedented volumes of
clinical text data, including electronic health records, physician notes, discharge
summaries, and consultation reports. These documents contain rich medical information
essential for patient care, clinical research, and healthcare analytics. The need for secure
data sharing in multicenter research studies has driven the development of various de-
identification and anonymization strategies. However, they also contain sensitive
Personally Identifiable Information (PII) that must be rigorously protected to maintain
patient privacy and comply with regulatory requirements.

Critical Limitations of Existing Methods

Current state-of-the-art approaches exhibit three main limitations:

1)  Uniform attention heads that fail to specialize by PII type, such as temporal

versus identity information.

2) Single-granularity processing that overlooks multi-scale patterns spanning

tokens, segments, and documents.
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3) Binary redaction methods, like those used in ClinicalBERT, that treat all
attention heads uniformly and fail to preserve contextually important
information.

Flat Processing: Existing approaches process text at a single granularity level, missing

patterns that occur across multiple scales.

Binary Redaction: Traditional methods employ all-or-nothing redaction, which can
destroy clinical utility by removing contextually significant information. While the Health
Insurance Portability and Accountability Act (HIPAA) mandate the removal of 18 specific
identifier categories, automated systems currently achieve only an 85-88% F1-score on
comprehensive evaluations. Manual de-identification costs healthcare institutions
approximately $0.80-$1.20 per document, totaling billions of dollars annually across the
US healthcare system [1]. Previous studies have demonstrated that traditional de-
identification approaches can significantly reduce the informational content and utility of
clinical documents, highlighting the need for intelligent methods that balance privacy
protection with data utility [2].

The de-identification of unstructured clinical data presents unique challenges
compared to structured data, requiring advanced natural language processing techniques
to accurately identify and protect sensitive information while preserving clinical meaning
[3]. Our framework addresses these challenges through three key innovations: specialized
attention heads for PlI-type-specific detection, hierarchical multi-granularity processing,
and context-preserving intelligent redaction.

1.2. Advances in NLP for Medical Text Processing

Recent developments in natural language processing have enabled new possibilities
for automated PII detection in clinical documents. Transformer-based models have shown
remarkable capabilities in understanding contextual relationships within text, offering
potential solutions to the nuanced challenges of medical language processing. However,
applying these models to clinical PII detection requires addressing several domain-
specific issues:

1) Medical terminology often overlaps with personal information.

2)  Clinical narratives contain complex temporal and spatial references.

3) Abbreviated and informal writing styles are prevalent in clinical notes.

The integration of attention mechanisms has shown particular promise for
identifying context-dependent PII instances. By allowing models to dynamically focus on
relevant portions of text, attention-based architectures can distinguish between identical
tokens that may or may not constitute PII depending on their surrounding context. This
capability is critical for clinical text, where terms such as dates, locations, and identifiers
may serve either medical or personal identification purposes, depending on context.

2. Related Work
2.1. Traditional Approaches to Clinical De-identification

Automatic de-identification in electronic health records has evolved significantly
over the past decades. Early studies provided comprehensive reviews of research in this
domain, identifying key challenges and methodological approaches that continue to
guide current developments. Initial efforts predominantly relied on pattern-matching
techniques and regular expressions to identify common PII formats, such as social security
numbers, phone numbers, and standardized date formats [4]. These rule-based
approaches were extended to detect personal health information in various types of
unstructured documents [5].

The Scrub system pioneered the use of dictionaries and heuristic rules to identify and
remove sensitive information from medical records [6]. While rule-based systems
achieved reasonable performance on structured data, they often struggled with the
variability and complexity of free-text clinical narratives.

Subsequent methods incorporated machine learning techniques, particularly
conditional random fields (CRFs) and support vector machines (SVMs), to enhance
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detection accuracy. More recent approaches explored unsupervised learning techniques
for PII detection in large unstructured text corpora, which are especially useful when
labeled data are limited. The i2b2 de-identification challenges provided benchmark
datasets and evaluation metrics that continue to support progress in this domain. While
statistical models improved generalization over rule-based methods, they still required
extensive feature engineering and often failed to capture rare or context-dependent PII
instances [7,8].

2.2. Deep Learning Revolution in Medical NLP

The advent of deep learning has fundamentally transformed clinical text processing.
Recurrent neural networks, particularly long short-term memory (LSTM) networks,
initially demonstrated the ability to capture sequential dependencies in clinical narratives.
BiLSTM-CREF architectures became standard for named entity recognition in medical text,
showing significant improvements over traditional machine learning techniques [9].
These architectures have been successfully applied to patient data de-identification,
demonstrating the utility of deep learning for PII detection.

More recently, transformer-based models, including BERT and its clinical variants,
have set new performance benchmarks. These models leverage attention mechanisms to
capture long-range dependencies and contextual nuances crucial for accurate PII
identification. Multi-head attention allows models to simultaneously focus on different
aspects of the input, enabling detection of various PII types within a unified framework.
Despite these advances, existing approaches often treat all PII categories uniformly and
do not fully exploit the hierarchical nature of personal information in clinical contexts.

3. Methodology
3.1. Framework Architecture

Core Innovation Summary

Our framework introduces three fundamental innovations that distinguish it from
existing approaches. First, specialized attention heads are designed for different PII
categories-temporal, spatial, and identity-enabling the model to learn distinct patterns for
each type of sensitive information. Second, hierarchical multi-granularity processing
analyzes text at the token, segment, and document levels simultaneously, capturing
patterns that are invisible to single-level approaches. Third, context-preserving redaction
replaces sensitive information while maintaining clinical semantics, preserving the utility
of the document.

These innovations are realized through a pipeline comprising a context-aware
tokenization module, an optimized multi-head attention mechanism, and a cascaded
classification layer. As shown in Figure 1, the complete architecture integrates these
components in a unified workflow.
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Clinical Text Input
"John Smith, 45-year-old, admitted on 03/15/2024..."

!

Medical-Aware Tokenization

+ Medical Vocab (487K terms) « Pll-sensitive sub-tokenization
Temporal Heads Spatial Heads Identity Heads
(h/3 heads) (h/3 heads) (h/3 heads)
+ Date pattems «+ Locations « Names
- Time expressions « Addresses « ID numbers
+ Age references * Geographic IDs « Contact info

1)

Hierarchical Multi-Granularity Processing

Token Level: Segment Level: Document Level:

Fine-grained patterns Multi-token entities Global consistency

!

Intelligent Redaction Output
"[PATIENT], 45-year-old, admitted on [DATE-Spring-202X]..."

F1-Score: 95.3% | HIPAA Compliant

Figure 1. illustrates the complete architecture.

Medical-Aware Tokenization Algorithm

The tokenization module applies a hybrid strategy that preserves medical term
integrity while maintaining sensitivity to PII patterns. Algorithm 1 summarizes the
procedure:

Algorithm 1: Medical-Aware Tokenization

Input: Clinical text x, medical vocabulary V_med, general vocabulary V

Output: Token sequence T

As shown in Figure 2, the medical-aware tokenization module segments clinical text
into tokens, preserves medical terms, and applies fine-grained tokenization for potential
PII.

Initialize T as empty
Segment x into preliminary tokens using BPE
For each token t in preliminary tokens:
If t is in V_med:
Preserve t as a medical term
Else if IsPotemtialPII(t):
Apply fine-grained sub-tokenization
Else:
Apply standard BPE tokenization
Append token to T
Return T

Figure 2. Medical-Aware Tokenization Workflow.

The medical vocabulary contains 487,000 terms from UMLS, RxNorm, and
SNOMED-CT. Let T = TokenizeMedical (x), where T = {t1, t2, ..., tn} and each ti belongs to
V or V_med. This approach reduces medical term fragmentation by 73% compared to
standard BERT tokenization while maintaining 98.2% PII pattern coverage.

3.2. Optimized Attention Mechanism
3.2.1. Context-Aware Multi-Head Attention

Our attention mechanism differs from standard transformers by partitioning the h
attention heads into three specialized groups, each targeting a distinct PII category:

1) Temporal heads (h/3): date patterns, time expressions, age references

2)  Spatial heads (h/3): locations, addresses, geographic identifiers
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3) Identity heads (h/3): names, ID numbers, contact information
Each specialized head applies a modified attention computation with category-
specific scaling. Formally, the attention computation is:
1) Temporal attention: Attention_temp (Q, K, V) = softmax ((Q * K*T) /
sqrt (d_k * alpha_temp * gamma (context))) * V
2) Spatial attention: Attention_spatial (Q, K, V) = softmax ((Q * K*T) /
sqrt (d_k * alpha_spatial * gamma (context))) * V
3) Identity attention: Attention_identity (Q, K, V) = softmax ((Q * K"T) /
sqrt (d_k * alpha_identity * gamma(context))) * V
Here, alpha_temp, alpha_spatial, and alpha_identity are learnable weights,
and gamma(context) = 1 + beta * log (1 + medical_term_density) adjusts for

clinical context density. The parameter beta is initialized to 0.1. This specialization
improves PII-type-specific detection by 12.3% compared to uniform attention heads.

3.2.2. Hierarchical Processing Strategy

Algorithm 2: Hierarchical Multi-Granularity Processing

Input: Token embeddings E = {el, €2, ..., en}, attention weights A

Output: Hierarchical representation H_final

As shown in Figure 3, the hierarchical multi-granularity processing captures token-
level, segment-level, and document-level representations, which are fused using gated
mechanisms to form the final hierarchical embedding.

Token-level processing:
For each token ei in E:

h_token[i] = LayerMorm{FFN{ei + A _token * ei))

Segment-level processing:

For each segment s of size w with stride s:
h_seg[s] = MaxPool(ConvlD(h_token[s: s+w]})
h_segment[s] = TransformerBlock(h_seg[s])

Document-level processing:
h_doc_query = LearnableQuery(d_model)
h_document = CrossAttention(h_doc_query, h_segment, h_segment)

Gated hierarchical fusion:

g_token = sigmoid(W_gl * [h_token; h_segment; h_document])

g_segment = Sigmoid(W_g2 * [h_token; h_segment; h_document])

g_document = Sigmoid(W g3 * [h_token; h_segment; h_document])

H_final = g_token * h_token + g_segment * h_segment + g_document * h_document

Return H_final
Figure 3. Hierarchical Multi-Granularity Processing and Gated Fusion Mechanism.

This multi-granularity representation captures:

1) Token-level: fine-grained PII patterns (e.g., "SSN: XXX-XX-XXXX")

2) Segment-level: multi-token entities (e.g., "John Smith, MD")

3) Document-level: global consistency (e.g., recurring patient references)

This hierarchical approach improves the detection of complex PII patterns by 15.7%
compared to flat processing.

3.3. Training Methodology
3.3.1. Data Augmentation Strategies

Robust PII detection requires diverse examples of clinical text. We apply data
augmentation techniques that maintain clinical validity while introducing realistic
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variations. Synthetic PII injection replaces existing sensitive information with
demographically and contextually appropriate alternatives, e.g., patient names and dates
shifted while preserving temporal relationships:

D_augmented = {(xi, yi') | yi' = AugmentPII(yi, context(xi))}

3.3.2. Multi-Task Learning Framework

We optimize a three-head multi-task objective: token-level PII tagging, utility
preservation, and HIPAA compliance. The total loss is:
L_total = A1(t) * L_PII + A2(t) * L_preservation + A3 (t) * L_compliance + A4 *
L_consistency
1)  PII Detection Loss (L_PII): handles class imbalance; focal loss variant is used for
difficult examples.
2) Clinical Preservation Loss (L_preservation): measures divergence between
original and redacted documents using semantic similarity.
3) Compliance Loss (L_compliance): penalizes missing any of the 18 HIPAA
categories.
4) Consistency Loss (L_consistency): ensures predictions are stable across
augmented versions.
Dynamic weights Ai(t) follow cosine annealing with task-specific adaptation:
Ai (t) = Ai_init * (1 + cos (pi * t/ T)) / 2 * adaptation_factor

3.4. Intelligent Redaction Strategy

Algorithm 3: Intelligent PII Redaction

Input: PII instance p, type t, context ¢, clinical knowledge base KB

Output: Redacted text preserving clinical utility

As shown in Figure 4, the IntelligentRedact algorithm applies context-aware rules
to redact sensitive information according to the type of PII and the clinical role.

function IntelligentRedact(p, t, c, KB):
clinical_role = ExtractClinicalRole(p, c, KB)

temporal_relevance = AssessTemporalImportance(p, c)

switch t:
case NAME:
if clinical role == 'patient’:
return '[PATIENT]'
else if clinical_role == "physician’:
return '[' + ExtractSpecialty(c) + ' PHYSICIAN]'
else:
return '[' + clinical role.upper() + ']°
case DATE:

if temporal_relevance > threshold:
offset = CalculateDateOffset(p, anchor_date)
return '[DATE+' + offset + ° days]’
else:
season = GetSeason(p)
year = GetyYear(p)

return '[DATE-' + season + "-" + (year mod 18) + "X]'

case LOCATION:

geo_level = DetermineGeolevel(c)

if geo_level == 'specific’:

return '[LOCATION-' + GetState(p) + ']°
else:

return '[LOCATION-' + GetRegion(p) + ']

case ID_MUMBER:
id type = ClassifyIDType(p, c)
return '[" + id type + '-REDACTED]
end function )

Figure 4. Intelligent PII Redaction Decision Flow.
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Redaction examples demonstrate clinical utility preservation:

1)  Original: "John Smith, 45-year-old male, admitted on 03/15/2024"

2) Redacted: "[PATIENT], 45-year-old male, admitted on [DATE-Spring-202X]"

3) Original: "Consulted Dr. Sarah Johnson from Mass General Cardiology"

4) Redacted: "Consulted [CARDIOLOGY PHYSICIAN] from [LOCATION-
Massachusetts]"

Clinical utility preservation rate is 94.3% as evaluated by physicians.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets and Preprocessing

We evaluate our framework on three comprehensive clinical datasets representing
diverse medical specialties and documentation styles. The primary dataset consists of the
i2b2 2014 de-identification challenge corpus, including 1,304 clinical notes annotated for
18 HIPAA-defined PII categories, augmented with 50,000 synthetic training examples
derived from MIMIC-III [10]. Following established protocols, synthetic PII was injected
into originally de-identified MIMIC-III notes to generate realistic training data while
maintaining data use agreement compliance.

The second dataset comprises 25,000 discharge summaries from multiple healthcare
institutions, all approved under IRB protocols. The third dataset includes 15,000
consultation reports and physician notes characterized by informal language and
extensive use of medical abbreviations [11].

Preprocessing steps include normalizing special characters, expanding common
medical abbreviations, and segmenting the documents into processable chunks while
preserving structure. Sentence boundaries and paragraph divisions are maintained to
retain contextual relationships crucial for accurate PII detection. The preprocessing
pipeline ensures:

1) Consistent encoding of special medical symbols and units.

2)  Preservation of temporal expressions in various formats.

3) Retention of structural elements, such as headers and sections.

Datasets are split following a 70-15-15 ratio for training, validation, and testing, with
stratification to ensure balanced representation of different PII types across splits.
Challenge sets containing edge cases and ambiguous instances are also created to
rigorously test model robustness.

4.1.2. Baseline Methods and Evaluation Metrics

We compare our approach with several state-of-the-art baselines representing
diverse methodological paradigms. The rule-based baseline employs comprehensive
regular expressions and dictionary lookups optimized for clinical text. The CRF baseline
uses extensive handcrafted features, including part-of-speech tags, syntactic patterns, and
semantic categories. Deep learning baselines include BiLSTM-CREF, standard BERT, and
ClinicalBERT models fine-tuned for token classification.

Evaluation metrics encompass both detection performance and practical utility
measures:

1) Precision=TP /(TP + FP)

2)  Recall=TP /(TP + FN)

3) Fl-score =2 x (Precision x Recall) / (Precision + Recall)

Beyond standard metrics, we introduce the Clinical Utility Score (CUS) to quantify
the preservation of medical information after de-identification:

CUS = (1 — Information_Loss) x Detection_Accuracy

where Information_Loss ranges from 0 to 1 and is measured using BERT embedding
cosine similarity between original and redacted documents. Detection_Accuracy
corresponds to the F1-score. CUS ranges from 0 to 1, with higher values indicating a better
balance between privacy protection and clinical utility.
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4.2. Results and Analysis
4.2.1. Overall Performance Comparison

Our framework demonstrates superior performance across all evaluation metrics,
especially in handling context-dependent PII instances. As shown in Table 1, the
comprehensive results indicate substantial improvements.

Table 1. Overall Performance on MIMIC-III Dataset.

P :
Method Precision Recall F1-Score FPR rocessing
Speed
Rule-based 78.3 82.1 80.1 21.7 1'250.
docs/min
CRF 83.6 85.2 84.4 16.4 892 .
docs/min
BiLSTM - 423
CRF 85.9 87.3 86.6 14.1 docs/min
BERT 86.8 88.1 874 13.2 387 .
docs/min
ClinicalBER 87.2 88.0 87.6 12.8 375
T docs/min
Ours 94.8 95.8 95.3 52 487 .
docs/min
I
mprz:’eme +7.6% +7.8% +8.7% 7.6% +29.9%

As shown in Table 2, performance by PII category demonstrates consistent
improvement:

Table 2. Performance by PII Category (F1-Scores).

Rule- BiLSTM - ClinicalB
PII Type based CRF CRF ERT Ours A
Names 76.4 823 85.7 86.9 948 179
Dates 812 85.6 88.3 89.1 96.2 7.1
Locations 73.8 79.4 842 853 93.7 +8.4
Phone 92.1 93.8 94.2 94.5 98.3 +3.8
Numbers
SSN 953 96.1 96.8 97.0 99.1 121
Medical 88.7 90.2 915 92.1 976 455
Record
Email/ UR 79.3 83.1 86.4 87.8 91.2 134
Age >89 68.2 745 79.8 813 9.4 +11.1
Vel}gde 714 76.8 82.1 84.2 893 +5.1

As shown in Table 3, cross-dataset evaluation highlights the generalization capability
of our framework.

Table 3. Cross-Dataset Generalization.

Training — Test MIMIC — MIMIC MI MIC — MIMIC — Consult
Discharge
ClinicalBERT 87.6 73.8 (84.3%) 71.2 (81.3%)
Ours 95.3 87.7 (92.1%) 85.4 (89.6%)

As shown in Table 4, ablation studies indicate the contributions of individual
components to overall performance.
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Table 4. Ablation Study Results.

Configuration F1-Score A from Full
Full Model 95.3

Specialized Attention 91.0 -4.3
Hierarchical Processing 92.1 -3.2
Context Scaling 92.5 -2.8
Medical Tokenization 93.7 -1.6
Data Augmentation 93.1 -2.2

As shown in Table 5, statistical significance tests confirm that all improvements are

meaningful (p <0.001).

Table 5. Statistical Significance Tests.

Comparison McNemar's x2 p-value Cohen's k¥
Ours vs
ClinicalBERT 187.3 <0.001 0.82
Ours vs BiLSTM -
CRF 234.6 <0.001 0.79
Ours vs CRF 312.8 <0.001 0.75

All improvements are statistically significant (p < 0.001) using McNemar's test with
Bonferroni correction.

4.2.2. Attention Mechanism Analysis

Our specialized attention mechanism provides clear advantages over uniform
attention. As shown in Figure 5, attention patterns vary across different PII types. Detailed
ablation reveals component-specific contributions:

1) Temporal attention heads: +3.1% F1 for date/time detection

2)  Spatial attention heads: +2.8% F1 for location detection

3) Identity attention heads: +3.4% F1 for name/ID detection

4)  Context scaling factor y: +2.8% precision, -18% false positives

(A) Temporal Attention Pattern (B) Spatial Attention Pattern

Query Tokens - Query Tokens -

admitted on 03/15/2024 with fever from Boston Medical to Icu

Key Tokens ¥

Attention Entropy: 2.31 bits Attention Entropy: 2.67 bits
Status: Highly focused Status: Moderately focused
F1 Improvement: +31% F1 Improvement: +2.8%
(C) Identity Attention Pattern (D) Standard BERT (Baseline)
Query Tokens > Query Tokens =
Patient John Smith age 45 Patient John admitted on date

Attention Entropy: 2.89 bits Attention Entropy: 3.42 bits
Status: Broader attention Status: Diffuse attention
F1Improvement: +3.4% Baseline (no specialization)
Attention Weight: [l High Medium Low Lower entropy = More focused attention on PIl

Figure 5. visualizes attention patterns for different PII types.

Analysis of attention distributions across 10,000 test examples shows the following
average entropy (in bits):
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1) Temporal: 2.31 (focused)

2)  Spatial: 2.67 (moderate)

3) Identity: 2.89 (broader)

4) Standard BERT: 3.42 (diffuse)

Lower entropy indicates more focused attention patterns. Temporal heads show the

most focused patterns, effectively identifying date-related context clues.

Error analysis of 500 instances shows:

1) False Negatives (Missed PII): ambiguous abbreviations 32%, rare name variants
28%, complex date formats 21%, nested PII 19%

2)  False Positives (Over-detection): medical measurements resembling dates 41%,
clinical location terms 35%, role descriptors mistaken for names 24%

4.2.3. Robustness and Generalization

Cross-dataset evaluation confirms strong generalization. Training on MIMIC-III and
testing on discharge summaries retains 92.1% of performance, compared to 84.3% for
ClinicalBERT. Hierarchical modeling of PII at multiple levels contributes to this
robustness. Stress testing with highly abbreviated text yields 78.4% F1 on extremely
condensed notes, still outperforming baselines.

4.3. Efficiency and Scalability
4.3.1. Computational Performance

As shown in Figure 6, processing speed versus accuracy trade-off demonstrates
favorable performance. Table 6 presents detailed metrics on an NVIDIA V100 GPU.

100 Performance Metrics
. Our Method
Pareto Frontier @ ClinicalBERT
95 - @ BERT
Ours © BILSTM-CRF
k (487,95.3%) @ Traditional ML
~ +8,7% F1
0 +20.9% Speed
g :
@ ClinicalBERT
= 375, 87.6%) ’
L EERT Y .
85 (387, 87.4%) .O BiLSTM-CRF
(423, 86.6%)
CRF
. (892, 84.4%)
80
Rule-based
(1250, 80.1%)
75
0 250 500 750 1000 1250
_— Pr in ments/min
Key Findings: ocessing Speed (documents/ )

* Our method achieves optimal speed-accuracy balance
* 95.3% F1-score with 487 docs/min processing speed
« Outperforms ClinicalBERT by +8.7% F1 while being 29.9% faster

Figure 6. Processing Speed vs. Accuracy Trade-off.

Specialized attention heads add minimal overhead: 112% of baseline time, yielding
0.73% F1 gain per 1% slowdown. Memory efficiency is achieved through dynamic
batching and gradient checkpointing. Sparse attention patterns maintain linear scaling for
sequences up to 4096 tokens.
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Table 6. Detailed performance metrics on NVIDIA V100 GPU.

Metric Value vs. Clinical BERT
Documents/minute 487 +30%
Tokens/second 18,420 +28%
Memory usage (GB) 6.2 -15%
Inference latency (ms) 123 -22%
Energy consumption (W) 187 -8%

4.3.2. Scalability Analysis

Scalability tests show near-linear performance up to 8 GPUs, processing over 1
million documents per hour in batch mode. Real-time streaming inference achieves sub-
second latency. The modular design allows adjusting accuracy-speed balance by tuning
attention heads and hierarchical levels. A lightweight configuration achieves 91.2%

5. Conclusion

This paper presents a comprehensive framework for intelligent detection and
protection of Personally Identifiable Information in clinical text, addressing critical
challenges in healthcare data privacy while maintaining clinical utility. Our approach,
leveraging optimized attention mechanisms and hierarchical processing strategies,
achieves state-of-the-art performance with 95.3% F1-score on standard benchmarks while
ensuring full HIPAA compliance. The integration of context-aware tokenization and
specialized attention heads enables nuanced understanding of clinical language,
distinguishing between medically relevant information and personal identifiers with
unprecedented accuracy.

The experimental results demonstrate significant improvements over existing
methods, particularly in handling context-dependent PII instances that have traditionally
challenged automated systems. Our framework reduces false positives by 59% compared
to Clinical BERT (from 12.8% to 5.2% false positive rate), minimizing over-redaction that
could compromise clinical document utility. The intelligent redaction strategy preserves
narrative coherence and medical information integrity, as validated by clinical experts
who rated de-identified documents highly suitable for research and quality improvement
purposes.

Future research directions include extending the framework to handle multi-modal
clinical data, incorporating images and structured data alongside text. We also plan to
investigate federated learning approaches that enable model improvement across
institutions without sharing sensitive data. The development of language-specific
adaptations for non-English clinical text represents another important avenue, as
healthcare globalization demands multilingual privacy protection solutions. Additionally,
exploring the integration of emerging privacy-preserving technologies such as
homomorphic encryption and secure multi-party computation could further enhance the
framework's privacy guarantees while maintaining processing efficiency. Recent work
has begun to combine NLP approaches with fully homomorphic encryption techniques
for medical PII data protection, representing a promising direction for future research.

The practical deployment of our framework offers healthcare organizations a robust
solution for balancing data utility with privacy protection. By automating the de-
identification process with high accuracy and efficiency, our system enables secure
sharing of clinical data for research, public health surveillance, and healthcare analytics.
This capability is increasingly critical as healthcare systems worldwide embrace data-
driven approaches to improve patient outcomes while navigating complex regulatory
landscapes. Our contribution represents a significant step toward realizing the full
potential of clinical data while steadfastly protecting patient privacy, ultimately
advancing both medical research and patient care delivery.
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