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Abstract: The protection of Personally Identifiable Information (PII) in clinical text is a critical 

challenge in healthcare data management, particularly as medical institutions increasingly adopt 

digital health records and data-sharing initiatives. This paper presents a novel natural language 

processing framework that leverages optimized attention mechanisms and context-aware 

tokenization strategies to achieve high accuracy in detecting and protecting sensitive information 

within clinical documents. Our approach integrates transformer-based architectures with domain-

specific enhancements, achieving a 95.3% F1-score on standard benchmarks while satisfying HIPAA 

Safe Harbor requirements through a combination of deep learning and rule-based processing. The 

proposed method introduces a hierarchical detection system that processes clinical text at multiple 

granularity levels, employing specialized attention heads for different PII categories. Experimental 

results on three large-scale clinical datasets demonstrate that our framework outperforms existing 

state-of-the-art methods by 8.7% in detection accuracy and reduces false positives by 59% compared 

to ClinicalBERT (from 12.8% to 5.2%). Furthermore, our intelligent redaction strategy preserves the 

semantic integrity of clinical content, enabling secure data sharing while maintaining the utility of 

medical information. 
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1. Introduction 

1.1. Healthcare Data Privacy Challenges 

The digitalization of healthcare systems has generated unprecedented volumes of 

clinical text data, including electronic health records, physician notes, discharge 

summaries, and consultation reports. These documents contain rich medical information 

essential for patient care, clinical research, and healthcare analytics. The need for secure 

data sharing in multicenter research studies has driven the development of various de-

identification and anonymization strategies. However, they also contain sensitive 

Personally Identifiable Information (PII) that must be rigorously protected to maintain 

patient privacy and comply with regulatory requirements. 

Critical Limitations of Existing Methods 

Current state-of-the-art approaches exhibit three main limitations: 

1) Uniform attention heads that fail to specialize by PII type, such as temporal 

versus identity information. 

2) Single-granularity processing that overlooks multi-scale patterns spanning 

tokens, segments, and documents. 
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3) Binary redaction methods, like those used in ClinicalBERT, that treat all 

attention heads uniformly and fail to preserve contextually important 

information. 

Flat Processing: Existing approaches process text at a single granularity level, missing 

patterns that occur across multiple scales. 

Binary Redaction: Traditional methods employ all-or-nothing redaction, which can 

destroy clinical utility by removing contextually significant information. While the Health 

Insurance Portability and Accountability Act (HIPAA) mandate the removal of 18 specific 

identifier categories, automated systems currently achieve only an 85-88% F1-score on 

comprehensive evaluations. Manual de-identification costs healthcare institutions 

approximately $0.80-$1.20 per document, totaling billions of dollars annually across the 

US healthcare system [1]. Previous studies have demonstrated that traditional de-

identification approaches can significantly reduce the informational content and utility of 

clinical documents, highlighting the need for intelligent methods that balance privacy 

protection with data utility [2]. 

The de-identification of unstructured clinical data presents unique challenges 

compared to structured data, requiring advanced natural language processing techniques 

to accurately identify and protect sensitive information while preserving clinical meaning 

[3]. Our framework addresses these challenges through three key innovations: specialized 

attention heads for PII-type-specific detection, hierarchical multi-granularity processing, 

and context-preserving intelligent redaction. 

1.2. Advances in NLP for Medical Text Processing 

Recent developments in natural language processing have enabled new possibilities 

for automated PII detection in clinical documents. Transformer-based models have shown 

remarkable capabilities in understanding contextual relationships within text, offering 

potential solutions to the nuanced challenges of medical language processing. However, 

applying these models to clinical PII detection requires addressing several domain-

specific issues: 

1) Medical terminology often overlaps with personal information. 

2) Clinical narratives contain complex temporal and spatial references. 

3) Abbreviated and informal writing styles are prevalent in clinical notes. 

The integration of attention mechanisms has shown particular promise for 

identifying context-dependent PII instances. By allowing models to dynamically focus on 

relevant portions of text, attention-based architectures can distinguish between identical 

tokens that may or may not constitute PII depending on their surrounding context. This 

capability is critical for clinical text, where terms such as dates, locations, and identifiers 

may serve either medical or personal identification purposes, depending on context. 

2. Related Work 

2.1. Traditional Approaches to Clinical De-identification 

Automatic de-identification in electronic health records has evolved significantly 

over the past decades. Early studies provided comprehensive reviews of research in this 

domain, identifying key challenges and methodological approaches that continue to 

guide current developments. Initial efforts predominantly relied on pattern-matching 

techniques and regular expressions to identify common PII formats, such as social security 

numbers, phone numbers, and standardized date formats [4]. These rule-based 

approaches were extended to detect personal health information in various types of 

unstructured documents [5]. 

The Scrub system pioneered the use of dictionaries and heuristic rules to identify and 

remove sensitive information from medical records [6]. While rule-based systems 

achieved reasonable performance on structured data, they often struggled with the 

variability and complexity of free-text clinical narratives. 

Subsequent methods incorporated machine learning techniques, particularly 

conditional random fields (CRFs) and support vector machines (SVMs), to enhance 
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detection accuracy. More recent approaches explored unsupervised learning techniques 

for PII detection in large unstructured text corpora, which are especially useful when 

labeled data are limited. The i2b2 de-identification challenges provided benchmark 

datasets and evaluation metrics that continue to support progress in this domain. While 

statistical models improved generalization over rule-based methods, they still required 

extensive feature engineering and often failed to capture rare or context-dependent PII 

instances [7,8]. 

2.2. Deep Learning Revolution in Medical NLP 

The advent of deep learning has fundamentally transformed clinical text processing. 

Recurrent neural networks, particularly long short-term memory (LSTM) networks, 

initially demonstrated the ability to capture sequential dependencies in clinical narratives. 

BiLSTM-CRF architectures became standard for named entity recognition in medical text, 

showing significant improvements over traditional machine learning techniques [9]. 

These architectures have been successfully applied to patient data de-identification, 

demonstrating the utility of deep learning for PII detection. 

More recently, transformer-based models, including BERT and its clinical variants, 

have set new performance benchmarks. These models leverage attention mechanisms to 

capture long-range dependencies and contextual nuances crucial for accurate PII 

identification. Multi-head attention allows models to simultaneously focus on different 

aspects of the input, enabling detection of various PII types within a unified framework. 

Despite these advances, existing approaches often treat all PII categories uniformly and 

do not fully exploit the hierarchical nature of personal information in clinical contexts. 

3. Methodology 
3.1. Framework Architecture 

Core Innovation Summary 

Our framework introduces three fundamental innovations that distinguish it from 

existing approaches. First, specialized attention heads are designed for different PII 

categories-temporal, spatial, and identity-enabling the model to learn distinct patterns for 

each type of sensitive information. Second, hierarchical multi-granularity processing 

analyzes text at the token, segment, and document levels simultaneously, capturing 

patterns that are invisible to single-level approaches. Third, context-preserving redaction 

replaces sensitive information while maintaining clinical semantics, preserving the utility 

of the document. 

These innovations are realized through a pipeline comprising a context-aware 

tokenization module, an optimized multi-head attention mechanism, and a cascaded 

classification layer. As shown in Figure 1, the complete architecture integrates these 

components in a unified workflow. 
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Figure 1. illustrates the complete architecture. 

Medical-Aware Tokenization Algorithm 

The tokenization module applies a hybrid strategy that preserves medical term 

integrity while maintaining sensitivity to PII patterns. Algorithm 1 summarizes the 

procedure: 

Algorithm 1: Medical-Aware Tokenization 

Input: Clinical text x, medical vocabulary V_med, general vocabulary V 

Output: Token sequence T 

As shown in Figure 2, the medical-aware tokenization module segments clinical text 

into tokens, preserves medical terms, and applies fine-grained tokenization for potential 

PII. 

 

Figure 2. Medical-Aware Tokenization Workflow. 

The medical vocabulary contains 487,000 terms from UMLS, RxNorm, and 

SNOMED-CT. Let T = TokenizeMedical (x), where T = {t1, t2, ..., tn} and each ti belongs to 

V or V_med. This approach reduces medical term fragmentation by 73% compared to 

standard BERT tokenization while maintaining 98.2% PII pattern coverage. 

3.2. Optimized Attention Mechanism 

3.2.1. Context-Aware Multi-Head Attention 

Our attention mechanism differs from standard transformers by partitioning the h 

attention heads into three specialized groups, each targeting a distinct PII category: 

1) Temporal heads (h/3): date patterns, time expressions, age references 

2) Spatial heads (h/3): locations, addresses, geographic identifiers 
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3) Identity heads (h/3): names, ID numbers, contact information 

Each specialized head applies a modified attention computation with category-

specific scaling. Formally, the attention computation is: 

1) Temporal attention: Attention_temp (Q, K, V) = softmax ((Q * K^T) / 

sqrt (d_k * alpha_temp * gamma (context))) * V 

2) Spatial attention: Attention_spatial (Q, K, V) = softmax ((Q * K^T) / 

sqrt (d_k * alpha_spatial * gamma (context))) * V 

3) Identity attention: Attention_identity (Q, K, V) = softmax ((Q * K^T) / 

sqrt (d_k * alpha_identity * gamma(context))) * V 

Here, alpha_temp, alpha_spatial, and alpha_identity are learnable weights, 

and gamma(context) = 1 + beta * log (1 + medical_term_density) adjusts for 

clinical context density. The parameter beta is initialized to 0.1. This specialization 

improves PII-type-specific detection by 12.3% compared to uniform attention heads. 

3.2.2. Hierarchical Processing Strategy 

Algorithm 2: Hierarchical Multi-Granularity Processing 

Input: Token embeddings E = {e1, e2, ..., en}, attention weights A 

Output: Hierarchical representation H_final 

As shown in Figure 3, the hierarchical multi-granularity processing captures token-

level, segment-level, and document-level representations, which are fused using gated 

mechanisms to form the final hierarchical embedding. 

. 

Figure 3. Hierarchical Multi-Granularity Processing and Gated Fusion Mechanism. 

This multi-granularity representation captures: 

1) Token-level: fine-grained PII patterns (e.g., "SSN: XXX-XX-XXXX") 

2) Segment-level: multi-token entities (e.g., "John Smith, MD") 

3) Document-level: global consistency (e.g., recurring patient references) 

This hierarchical approach improves the detection of complex PII patterns by 15.7% 

compared to flat processing. 

3.3. Training Methodology 

3.3.1. Data Augmentation Strategies 

Robust PII detection requires diverse examples of clinical text. We apply data 

augmentation techniques that maintain clinical validity while introducing realistic 
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variations. Synthetic PII injection replaces existing sensitive information with 

demographically and contextually appropriate alternatives, e.g., patient names and dates 

shifted while preserving temporal relationships: 

D_augmented = {(xi, yi') | yi' = AugmentPII(yi, context(xi))} 

3.3.2. Multi-Task Learning Framework 

We optimize a three-head multi-task objective: token-level PII tagging, utility 

preservation, and HIPAA compliance. The total loss is: 

L_total = λ1(t) * L_PII + λ2(t) * L_preservation + λ3 (t) * L_compliance + λ4 * 

L_consistency 

1) PII Detection Loss (L_PII): handles class imbalance; focal loss variant is used for 

difficult examples. 

2) Clinical Preservation Loss (L_preservation): measures divergence between 

original and redacted documents using semantic similarity. 

3) Compliance Loss (L_compliance): penalizes missing any of the 18 HIPAA 

categories. 

4) Consistency Loss (L_consistency): ensures predictions are stable across 

augmented versions. 

Dynamic weights λi(t) follow cosine annealing with task-specific adaptation: 

Λi (t) = λi_init * (1 + cos (pi * t / T)) / 2 * adaptation_factor 

3.4. Intelligent Redaction Strategy 

Algorithm 3: Intelligent PII Redaction 

Input: PII instance p, type t, context c, clinical knowledge base KB 

Output: Redacted text preserving clinical utility 

As shown in Figure 4, the IntelligentRedact algorithm applies context-aware rules 

to redact sensitive information according to the type of PII and the clinical role. 

. 

Figure 4. Intelligent PII Redaction Decision Flow. 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 2 (2025) 
 

 47  

Redaction examples demonstrate clinical utility preservation: 

1) Original: "John Smith, 45-year-old male, admitted on 03/15/2024" 

2) Redacted: "[PATIENT], 45-year-old male, admitted on [DATE-Spring-202X]" 

3) Original: "Consulted Dr. Sarah Johnson from Mass General Cardiology" 

4) Redacted: "Consulted [CARDIOLOGY PHYSICIAN] from [LOCATION-

Massachusetts]" 

Clinical utility preservation rate is 94.3% as evaluated by physicians. 

4. Experiments 

4.1. Experimental Setup 

4.1.1. Datasets and Preprocessing 

We evaluate our framework on three comprehensive clinical datasets representing 

diverse medical specialties and documentation styles. The primary dataset consists of the 

i2b2 2014 de-identification challenge corpus, including 1,304 clinical notes annotated for 

18 HIPAA-defined PII categories, augmented with 50,000 synthetic training examples 

derived from MIMIC-III [10]. Following established protocols, synthetic PII was injected 

into originally de-identified MIMIC-III notes to generate realistic training data while 

maintaining data use agreement compliance. 

The second dataset comprises 25,000 discharge summaries from multiple healthcare 

institutions, all approved under IRB protocols. The third dataset includes 15,000 

consultation reports and physician notes characterized by informal language and 

extensive use of medical abbreviations [11]. 

Preprocessing steps include normalizing special characters, expanding common 

medical abbreviations, and segmenting the documents into processable chunks while 

preserving structure. Sentence boundaries and paragraph divisions are maintained to 

retain contextual relationships crucial for accurate PII detection. The preprocessing 

pipeline ensures: 

1) Consistent encoding of special medical symbols and units. 

2) Preservation of temporal expressions in various formats. 

3) Retention of structural elements, such as headers and sections. 

Datasets are split following a 70-15-15 ratio for training, validation, and testing, with 

stratification to ensure balanced representation of different PII types across splits. 

Challenge sets containing edge cases and ambiguous instances are also created to 

rigorously test model robustness. 

4.1.2. Baseline Methods and Evaluation Metrics 

We compare our approach with several state-of-the-art baselines representing 

diverse methodological paradigms. The rule-based baseline employs comprehensive 

regular expressions and dictionary lookups optimized for clinical text. The CRF baseline 

uses extensive handcrafted features, including part-of-speech tags, syntactic patterns, and 

semantic categories. Deep learning baselines include BiLSTM-CRF, standard BERT, and 

ClinicalBERT models fine-tuned for token classification. 

Evaluation metrics encompass both detection performance and practical utility 

measures: 

1) Precision = TP / (TP + FP) 

2) Recall = TP / (TP + FN) 

3) F1-score = 2 × (Precision × Recall) / (Precision + Recall) 

Beyond standard metrics, we introduce the Clinical Utility Score (CUS) to quantify 

the preservation of medical information after de-identification: 

CUS = (1 − Information_Loss) × Detection_Accuracy 

where Information_Loss ranges from 0 to 1 and is measured using BERT embedding 

cosine similarity between original and redacted documents. Detection_Accuracy 

corresponds to the F1-score. CUS ranges from 0 to 1, with higher values indicating a better 

balance between privacy protection and clinical utility. 
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4.2. Results and Analysis 

4.2.1. Overall Performance Comparison 

Our framework demonstrates superior performance across all evaluation metrics, 

especially in handling context-dependent PII instances. As shown in Table 1, the 

comprehensive results indicate substantial improvements. 

Table 1. Overall Performance on MIMIC-III Dataset. 

Method Precision Recall F1-Score FPR 
Processing 

Speed 

Rule-based 78.3 82.1 80.1 21.7 
1,250 

docs/min 

CRF 83.6 85.2 84.4 16.4 
892 

docs/min 

BiLSTM - 

CRF 
85.9 87.3 86.6 14.1 

423 

docs/min 

BERT 86.8 88.1 87.4 13.2 
387 

docs/min 

ClinicalBER

T 
87.2 88.0 87.6 12.8 

375 

docs/min 

Ours 94.8 95.8 95.3 5.2 
487 

docs/min 

Improveme

nt 
+7.6% +7.8% +8.7% -7.6% +29.9% 

As shown in Table 2, performance by PII category demonstrates consistent 

improvement: 

Table 2. Performance by PII Category (F1-Scores). 

PII Type 
Rule-

based 
CRF 

BiLSTM - 

CRF 

ClinicalB

ERT 
Ours Δ 

Names 76.4 82.3 85.7 86.9 94.8 +7.9 

Dates 81.2 85.6 88.3 89.1 96.2 +7.1 

Locations 73.8 79.4 84.2 85.3 93.7 +8.4 

Phone 

Numbers 
92.1 93.8 94.2 94.5 98.3 +3.8 

SSN 95.3 96.1 96.8 97.0 99.1 +2.1 

Medical 

Record 
88.7 90.2 91.5 92.1 97.6 +5.5 

Email/UR

L 
79.3 83.1 86.4 87.8 91.2 +3.4 

Age >89 68.2 74.5 79.8 81.3 92.4 +11.1 

Vehicle 

ID 
71.4 76.8 82.1 84.2 89.3 +5.1 

As shown in Table 3, cross-dataset evaluation highlights the generalization capability 

of our framework. 

Table 3. Cross-Dataset Generalization. 

Training → Test MIMIC → MIMIC 
MIMIC → 

Discharge 
MIMIC → Consult 

ClinicalBERT 87.6 73.8 (84.3%) 71.2 (81.3%) 

Ours 95.3 87.7 (92.1%) 85.4 (89.6%) 

As shown in Table 4, ablation studies indicate the contributions of individual 

components to overall performance. 
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Table 4. Ablation Study Results. 

Configuration F1-Score Δ from Full 

Full Model 95.3  

Specialized Attention 91.0 -4.3 

Hierarchical Processing 92.1 -3.2 

Context Scaling 92.5 -2.8 

Medical Tokenization 93.7 -1.6 

Data Augmentation 93.1 -2.2 

As shown in Table 5, statistical significance tests confirm that all improvements are 

meaningful (p < 0.001). 

Table 5. Statistical Significance Tests. 

Comparison McNemar's χ² p-value Cohen's κ 

Ours vs 

ClinicalBERT 
187.3 <0.001 0.82 

Ours vs BiLSTM - 

CRF 
234.6 <0.001 0.79 

Ours vs CRF 312.8 <0.001 0.75 

All improvements are statistically significant (p < 0.001) using McNemar's test with 

Bonferroni correction. 

4.2.2. Attention Mechanism Analysis 

Our specialized attention mechanism provides clear advantages over uniform 

attention. As shown in Figure 5, attention patterns vary across different PII types. Detailed 

ablation reveals component-specific contributions: 

1) Temporal attention heads: +3.1% F1 for date/time detection 

2) Spatial attention heads: +2.8% F1 for location detection 

3) Identity attention heads: +3.4% F1 for name/ID detection 

4) Context scaling factor γ: +2.8% precision, -18% false positives 

 

Figure 5. visualizes attention patterns for different PII types. 

Analysis of attention distributions across 10,000 test examples shows the following 

average entropy (in bits): 
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1) Temporal: 2.31 (focused) 

2) Spatial: 2.67 (moderate) 

3) Identity: 2.89 (broader) 

4) Standard BERT: 3.42 (diffuse) 

Lower entropy indicates more focused attention patterns. Temporal heads show the 

most focused patterns, effectively identifying date-related context clues. 

Error analysis of 500 instances shows: 

1) False Negatives (Missed PII): ambiguous abbreviations 32%, rare name variants 

28%, complex date formats 21%, nested PII 19% 

2) False Positives (Over-detection): medical measurements resembling dates 41%, 

clinical location terms 35%, role descriptors mistaken for names 24% 

4.2.3. Robustness and Generalization 

Cross-dataset evaluation confirms strong generalization. Training on MIMIC-III and 

testing on discharge summaries retains 92.1% of performance, compared to 84.3% for 

ClinicalBERT. Hierarchical modeling of PII at multiple levels contributes to this 

robustness. Stress testing with highly abbreviated text yields 78.4% F1 on extremely 

condensed notes, still outperforming baselines. 

4.3. Efficiency and Scalability 

4.3.1. Computational Performance 

As shown in Figure 6, processing speed versus accuracy trade-off demonstrates 

favorable performance. Table 6 presents detailed metrics on an NVIDIA V100 GPU. 

 

Figure 6. Processing Speed vs. Accuracy Trade-off. 

Specialized attention heads add minimal overhead: 112% of baseline time, yielding 

0.73% F1 gain per 1% slowdown. Memory efficiency is achieved through dynamic 

batching and gradient checkpointing. Sparse attention patterns maintain linear scaling for 

sequences up to 4096 tokens. 
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Table 6. Detailed performance metrics on NVIDIA V100 GPU. 

Metric Value vs. ClinicalBERT 

Documents/minute 487 +30% 

Tokens/second 18,420 +28% 

Memory usage (GB) 6.2 -15% 

Inference latency (ms) 123 -22% 

Energy consumption (W) 187 -8% 

4.3.2. Scalability Analysis 

Scalability tests show near-linear performance up to 8 GPUs, processing over 1 

million documents per hour in batch mode. Real-time streaming inference achieves sub-

second latency. The modular design allows adjusting accuracy-speed balance by tuning 

attention heads and hierarchical levels. A lightweight configuration achieves 91.2%  

5. Conclusion 

This paper presents a comprehensive framework for intelligent detection and 

protection of Personally Identifiable Information in clinical text, addressing critical 

challenges in healthcare data privacy while maintaining clinical utility. Our approach, 

leveraging optimized attention mechanisms and hierarchical processing strategies, 

achieves state-of-the-art performance with 95.3% F1-score on standard benchmarks while 

ensuring full HIPAA compliance. The integration of context-aware tokenization and 

specialized attention heads enables nuanced understanding of clinical language, 

distinguishing between medically relevant information and personal identifiers with 

unprecedented accuracy. 

The experimental results demonstrate significant improvements over existing 

methods, particularly in handling context-dependent PII instances that have traditionally 

challenged automated systems. Our framework reduces false positives by 59% compared 

to ClinicalBERT (from 12.8% to 5.2% false positive rate), minimizing over-redaction that 

could compromise clinical document utility. The intelligent redaction strategy preserves 

narrative coherence and medical information integrity, as validated by clinical experts 

who rated de-identified documents highly suitable for research and quality improvement 

purposes. 

Future research directions include extending the framework to handle multi-modal 

clinical data, incorporating images and structured data alongside text. We also plan to 

investigate federated learning approaches that enable model improvement across 

institutions without sharing sensitive data. The development of language-specific 

adaptations for non-English clinical text represents another important avenue, as 

healthcare globalization demands multilingual privacy protection solutions. Additionally, 

exploring the integration of emerging privacy-preserving technologies such as 

homomorphic encryption and secure multi-party computation could further enhance the 

framework's privacy guarantees while maintaining processing efficiency. Recent work 

has begun to combine NLP approaches with fully homomorphic encryption techniques 

for medical PII data protection, representing a promising direction for future research. 

The practical deployment of our framework offers healthcare organizations a robust 

solution for balancing data utility with privacy protection. By automating the de-

identification process with high accuracy and efficiency, our system enables secure 

sharing of clinical data for research, public health surveillance, and healthcare analytics. 

This capability is increasingly critical as healthcare systems worldwide embrace data-

driven approaches to improve patient outcomes while navigating complex regulatory 

landscapes. Our contribution represents a significant step toward realizing the full 

potential of clinical data while steadfastly protecting patient privacy, ultimately 

advancing both medical research and patient care delivery. 
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