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Abstract: The artificial intelligence (AI) sector has become one of the most active areas in financial 

markets, where investor mood and trading activity strongly affect price changes. This study uses a 

multi-factor Principal Component Analysis-Hidden Markov Model (PCA-HMM) to examine how 

sentiment, trading volume, and momentum influence stock returns in the U.S. AI market from 2017 

to 2025. Weekly data from 40 listed companies across cloud computing, semiconductor, and 

autonomous driving industries are analyzed. Principal Component Analysis is used to extract 

common factors from financial and macroeconomic variables, and the Hidden Markov Model is 

used to identify market states and their transitions. The results show that sentiment explains about 

48% of the variation in returns and plays a stronger role than trading volume or momentum. 

Momentum has little effect and turns negative during volatile periods. The PCA-HMM model 

divides the market into stable and turbulent phases lasting between 6 and 12 weeks. The findings 

show that market sentiment is a main source of fluctuation in AI-related stocks and that the state-

based model can be used to track market cycles and assess risk. Future studies should include cross-

country data and higher-frequency observations to test the model's wider use. 

Keywords: artificial intelligence stocks; investor sentiment; trading volume; momentum; principal 

component analysis; Hidden Markov Model; market state 

 

1. Introduction 

The artificial intelligence (AI) industry has experienced rapid expansion across cloud 

computing, semiconductor manufacturing, and autonomous systems, driven by 

innovation, policy shifts, and global investment cycles [1]. This expansion has produced 

large fluctuations in AI-related stock prices, as investor expectations respond dynamically 

to technological releases, regulatory announcements, and macroeconomic signals [2]. 

Previous studies have shown that investor sentiment, often measured from news articles, 

social media, or online search behavior, exerts a significant influence on stock returns, 

volatility, and market momentum over multiple time horizons [3]. Industry analyses also 

point to accelerated capital inflows and AI regulation since 2023, suggesting that shifts in 

sentiment may vary under different market regimes [4]. Consequently, modeling 

sentiment in the AI sector requires approaches that capture these state-dependent 

dynamics, rather than static linear correlations. To analyze such nonlinear behavior, 

researchers have increasingly adopted Hidden Markov Models (HMMs) and Principal 

Component Analysis (PCA) in financial modeling. HMMs are capable of identifying 

hidden states that represent changes in market conditions-such as bullish, bearish, or 
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transitional phases-that cannot be observed directly through price series [5,6]. PCA, on 

the other hand, reduces complex financial datasets into a few interpretable latent factors, 

allowing researchers to summarize sentiment, trading volume, and momentum 

information without multicollinearity [7]. Combining PCA with HMM thus provides a 

robust framework for uncovering structural shifts in investor behavior and market 

responses. This hybrid approach has been applied to general stock and macroeconomic 

data, but its use in AI-sector equities remains limited. A recent study on U.S. technology 

stocks demonstrated that a PCA-HMM model can effectively capture the varying impact 

of momentum, volume, and sentiment across hidden market states, providing a 

methodological foundation for the present work. Despite these advances, several key gaps 

persist [8]. First, most studies on the AI market isolate a single factor-typically sentiment 

or volatility-without examining how multiple drivers interact under different market 

regimes [9]. Second, research often relies on aggregate indices or limited samples, which 

overlook important differences among cloud, semiconductor, and autonomous driving 

sub-sectors [10,11]. Third, while PCA efficiently extracts key market signals, few studies 

link time-varying factor loadings directly to state transitions within an HMM framework 

[12]. This lack of integration restricts our understanding of how the role of sentiment 

evolves with changing market conditions. Moreover, earlier work seldom quantifies the 

marginal effect of sentiment relative to trading volume and momentum once hidden states 

are considered, leaving the comparative influence of these variables unresolved. 

This study develops a multi-factor PCA-HMM framework for the U.S. AI stock 

market using weekly data from 2017 to 2025. The dataset includes leading firms from 

cloud computing, semiconductor, and autonomous driving industries. PCA is applied to 

extract key components from market and macroeconomic variables, while the HMM 

divides the timeline into latent sentiment states. Within each state, a regression model 

estimates the marginal effects of sentiment, trading volume, and momentum on returns. 

The objectives are to (1) determine whether sentiment exerts a stronger influence than 

volume and momentum after controlling for regime changes, and (2) evaluate whether 

extreme sentiment states correspond to short-term reversals in price behavior. By 

integrating factor extraction and regime identification in one model, this work extends 

prior findings and provides new evidence on how investor psychology and market 

structure jointly shape the dynamics of AI-sector equities. The results offer implications 

for behavioral finance theory, risk management, and strategic asset allocation in 

technology-driven markets. 

2. Materials and Methods 

2.1. Sample and Study Area Description 

The dataset includes 40 listed companies related to the artificial intelligence (AI) 

industry in the United States. These firms cover cloud computing, semiconductor 

production, and autonomous vehicle sectors. Weekly observations were collected from 

January 2017 to March 2025 using Yahoo Finance data. Additional indicators, such as the 

NASDAQ Technology Index, U.S. Treasury yield, and industrial production growth rate, 

were used as macro-level control variables. Firms with incomplete trading records or 

extreme price discontinuities were excluded. All prices were adjusted for dividends and 

splits. The data period captures both rapid growth and correction phases in the AI stock 

market. 

2.2. Experimental Design and Control Group 

Two analytical paths were adopted to compare model performance. The main 

experiment used a multi-factor PCA-HMM framework that allows the relationships 

among sentiment, trading volume, and momentum to change across hidden states. The 

control analysis applied a static multi-factor regression model without state switching. 

The PCA-HMM assumes that the influence of behavioral factors depends on underlying 

sentiment states, while the control model assumes a fixed linear relationship. Both models 

used identical datasets and factor definitions to ensure consistent evaluation. This setup 
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allows direct comparison of the ability of each model to explain return variation under 

changing market conditions. 

2.3. Measurement Methods and Quality Control 

Investor sentiment was estimated using a standardized composite index built from 

the volatility index (VIX), trading volume fluctuations, and short-term return deviations. 

Momentum was defined as the difference between current and three-week lagged returns. 

Before analysis, all series were log-transformed and scaled to unit variance. The 

Augmented Dickey-Fuller test was applied to check stationarity. Any variable failing the 

test was differenced once to stabilize variance. Outliers beyond three standard deviations 

were winsorized. Weekly returns were calculated as [13]: 
rt= ln ( Pt)- ln ( Pt-1), 

where Pt is the adjusted closing price at time t. Data verification involved cross-

checking random samples with Bloomberg Terminal records to ensure accuracy. 

2.4. Data Processing and Model Formulation 

Principal Component Analysis (PCA) was used to reduce multicollinearity among 

correlated variables. The selected components were retained until the cumulative variance 

exceeded 80%. Each observation Xt was transformed as: 
Zt=XtW, 

where W  is the eigenvector matrix of covariance Σ . The resulting principal 

component scores (Zt) served as the input to the Hidden Markov Model (HMM). The 

HMM models market behavior through a set of hidden states qt ∈ {1, 2, ..., m}, governed 

by the transition probability matrix [14]: 

P(q
t
=j|q

t-1
=i)=aij, ∑ aij

m

j=1

=1. 

Within each state, expected stock returns were modeled as a linear function of 

behavioral factors: 
E(Rt|q

t
=k)=γ

0k
+γ

1k
St+γ

2k
Vt+γ

3k
Mt, 

where St denotes investor sentiment, Vt is trading volume, and Mt is momentum. 

2.5. Statistical Analysis and Model Validation 

All estimations were performed using the Baum-Welch algorithm to maximize 

likelihood functions for state transition and emission probabilities. The number of hidden 

states was selected based on the Bayesian Information Criterion (BIC) and model stability 

across replications. Predictive accuracy was tested using a rolling-window procedure 

with a 60-40 train-test split. Model confidence intervals were calculated using the 

bootstrap method with 1,000 replications. Statistical significance was evaluated at the 5% 

level. The performance of the PCA-HMM was further compared with that of the fixed-

coefficient regression using mean squared error (MSE) and directional accuracy rate (DAR) 

[15]: 

DAR=
1

n
∑ I

n

t=1

[sign(R̂t)=sign(Rt)], 

where I [⋅] is an indicator equal to one when the predicted and actual return signs 

match. 

3. Results and Discussion 

3.1. Regime Segmentation and State Persistence 

The multi-factor PCA-HMM partitions the AI equity sample into three latent states 

with distinct return dispersion and trading activity. State A shows low volatility and 

narrow bid-ask spreads; State B exhibits moderate volatility with rising turnover; State C 

displays wide dispersion and frequent price gaps. The average uninterrupted durations 
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are 11.3, 8.7, and 6.1 weeks for States A-C, indicating persistent but unequal regimes. 

Transition probabilities are highest on the diagonal (≥0.84), and switches from A to C are 

rare compared with A↔B moves, suggesting that stress builds through an intermediate 

phase rather than jumping directly from calm to turmoil [16]. These patterns support a 

state-dependent view of behavior in AI-related shares. A reference workflow for feature 

extraction prior to state estimation is shown in Figure 1 (schematic example; see caption). 

 

Figure 1. PCA-based feature selection and data simplification before model fitting. 

3.2. Relative Contributions of Sentiment, Volume, and Momentum 

State-specific regressions show that the sentiment factor has the largest marginal 

effect on weekly returns in States B and C, while volume dominates only during brief 

volume surges within State C. Momentum is weak in all states and turns negative in C, 

consistent with short-horizon reversals after information shocks. When the model is re-

estimated with alternative sentiment proxies (volatility-based or text-based indices), the 

ordering of effects remains unchanged. The contribution of sentiment is strongest around 

policy news and large product announcements; outside these windows, coefficients 

shrink toward zero. Compared with the single-state control model, the state-dependent 

specification reduces residual variance by 14-19%, indicating that allowing coefficients to 

vary with regimes captures time variation that a fixed-coefficient model misses [17,18]. 

3.3. Out-of-Sample Performance and Directional Accuracy 

Rolling forecasts over a 60-40 train-test split show higher predictive stability for the 

PCA-HMM than for the control regression. Mean squared error declines by 11-15% across 

test windows, and the directional accuracy rate (DAR) averages 58.4% overall, rising to 

63.1% in State C and falling to 54.7% in State A. These results imply that prediction gains 

are concentrated in volatile phases where sentiment shifts are most pronounced. A 

robustness check using different numbers of principal components (from 3 to 6) changes 

levels but not rankings of state-wise coefficients [19,20]. An additional check that 

randomly perturbs the transition matrix within ±5% of the estimated entries leaves DAR 

within a ±1.2% band, suggesting that small errors in regime assignment do not overturn 

the main findings. A representative regime-decoding example comparable to our 

procedure is shown in Figure 2 (see caption). 
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Figure 2. Hidden market states identified by the HMM with state transitions. 

3.4. Cross-Sectional Heterogeneity and Economic Interpretation 

Sorting firms by market capitalization reveals that the sentiment effect is strongest in 

large-cap AI leaders during high-volatility states, while mid- and small-cap groups show 

larger volume elasticities but lower persistence. Beta-volume interactions are significant 

only in State C, indicating that liquidity pressure amplifies broad market exposure during 

stress. Event-time analysis around major regulatory and earnings dates shows faster 

reversion of sentiment coefficients back toward neutral in State B than in C, consistent 

with partial information absorption before full resolution of uncertainty. Taken together, 

the evidence points to a two-step mechanism: sentiment rises and spreads under elevated 

attention (State B), then overshoots and unwinds with short-term reversals under stress 

(State C) [21,22]. This view aligns with behavior observed in technology subsectors with 

rapid news cycles, while highlighting that regime duration and transition asymmetry are 

key for modeling AI equities. 

4. Conclusion 

This study builds a multi-factor PCA-HMM model to examine the changing 

relationship among investor sentiment, trading volume, and momentum in the U.S. 

artificial intelligence stock market. The results show that sentiment is the main factor 

affecting stock returns, while trading volume reflects short-term liquidity changes and 

momentum has only a minor influence. The PCA-HMM model divides the market into 

different states with clear differences in volatility and investor behavior. It helps explain 

how shifts in sentiment lead to changes in price movement in technology-based industries. 

The method can be used to track sentiment cycles and detect early signs of market risk in 

AI-related investments. The findings also suggest that sentiment-driven volatility 

increases during periods of policy change or innovation, which is useful for portfolio 

adjustment and risk management. The main limitation of this study is that it uses weekly 

data and focuses only on U.S.-listed firms. Future studies should include higher-

frequency data and cross-market samples to test the broader applicability of this model. 
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