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Abstract: The artificial intelligence (AI) sector has become one of the most active areas in financial
markets, where investor mood and trading activity strongly affect price changes. This study uses a
multi-factor Principal Component Analysis-Hidden Markov Model (PCA-HMM) to examine how
sentiment, trading volume, and momentum influence stock returns in the U.S. Al market from 2017
to 2025. Weekly data from 40 listed companies across cloud computing, semiconductor, and
autonomous driving industries are analyzed. Principal Component Analysis is used to extract
common factors from financial and macroeconomic variables, and the Hidden Markov Model is
used to identify market states and their transitions. The results show that sentiment explains about
48% of the variation in returns and plays a stronger role than trading volume or momentum.
Momentum has little effect and turns negative during volatile periods. The PCA-HMM model
divides the market into stable and turbulent phases lasting between 6 and 12 weeks. The findings
show that market sentiment is a main source of fluctuation in Al-related stocks and that the state-
based model can be used to track market cycles and assess risk. Future studies should include cross-
country data and higher-frequency observations to test the model's wider use.
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1. Introduction

The artificial intelligence (Al) industry has experienced rapid expansion across cloud
computing, semiconductor manufacturing, and autonomous systems, driven by
innovation, policy shifts, and global investment cycles [1]. This expansion has produced
large fluctuations in Al-related stock prices, as investor expectations respond dynamically
to technological releases, regulatory announcements, and macroeconomic signals [2].
Previous studies have shown that investor sentiment, often measured from news articles,
social media, or online search behavior, exerts a significant influence on stock returns,
volatility, and market momentum over multiple time horizons [3]. Industry analyses also
point to accelerated capital inflows and Al regulation since 2023, suggesting that shifts in
sentiment may vary under different market regimes [4]. Consequently, modeling
sentiment in the Al sector requires approaches that capture these state-dependent
dynamics, rather than static linear correlations. To analyze such nonlinear behavior,
researchers have increasingly adopted Hidden Markov Models (HMMs) and Principal
Component Analysis (PCA) in financial modeling. HMMs are capable of identifying
hidden states that represent changes in market conditions-such as bullish, bearish, or
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transitional phases-that cannot be observed directly through price series [5,6]. PCA, on
the other hand, reduces complex financial datasets into a few interpretable latent factors,
allowing researchers to summarize sentiment, trading volume, and momentum
information without multicollinearity [7]. Combining PCA with HMM thus provides a
robust framework for uncovering structural shifts in investor behavior and market
responses. This hybrid approach has been applied to general stock and macroeconomic
data, but its use in Al-sector equities remains limited. A recent study on U.S. technology
stocks demonstrated that a PCA-HMM model can effectively capture the varying impact
of momentum, volume, and sentiment across hidden market states, providing a
methodological foundation for the present work. Despite these advances, several key gaps
persist [8]. First, most studies on the Al market isolate a single factor-typically sentiment
or volatility-without examining how multiple drivers interact under different market
regimes [9]. Second, research often relies on aggregate indices or limited samples, which
overlook important differences among cloud, semiconductor, and autonomous driving
sub-sectors [10,11]. Third, while PCA efficiently extracts key market signals, few studies
link time-varying factor loadings directly to state transitions within an HMM framework
[12]. This lack of integration restricts our understanding of how the role of sentiment
evolves with changing market conditions. Moreover, earlier work seldom quantifies the
marginal effect of sentiment relative to trading volume and momentum once hidden states
are considered, leaving the comparative influence of these variables unresolved.

This study develops a multi-factor PCA-HMM framework for the U.S. Al stock
market using weekly data from 2017 to 2025. The dataset includes leading firms from
cloud computing, semiconductor, and autonomous driving industries. PCA is applied to
extract key components from market and macroeconomic variables, while the HMM
divides the timeline into latent sentiment states. Within each state, a regression model
estimates the marginal effects of sentiment, trading volume, and momentum on returns.
The objectives are to (1) determine whether sentiment exerts a stronger influence than
volume and momentum after controlling for regime changes, and (2) evaluate whether
extreme sentiment states correspond to short-term reversals in price behavior. By
integrating factor extraction and regime identification in one model, this work extends
prior findings and provides new evidence on how investor psychology and market
structure jointly shape the dynamics of Al-sector equities. The results offer implications
for behavioral finance theory, risk management, and strategic asset allocation in
technology-driven markets.

2. Materials and Methods
2.1. Sample and Study Area Description

The dataset includes 40 listed companies related to the artificial intelligence (AI)
industry in the United States. These firms cover cloud computing, semiconductor
production, and autonomous vehicle sectors. Weekly observations were collected from
January 2017 to March 2025 using Yahoo Finance data. Additional indicators, such as the
NASDAQ Technology Index, U.S. Treasury yield, and industrial production growth rate,
were used as macro-level control variables. Firms with incomplete trading records or
extreme price discontinuities were excluded. All prices were adjusted for dividends and
splits. The data period captures both rapid growth and correction phases in the Al stock
market.

2.2. Experimental Design and Control Group

Two analytical paths were adopted to compare model performance. The main
experiment used a multi-factor PCA-HMM framework that allows the relationships
among sentiment, trading volume, and momentum to change across hidden states. The
control analysis applied a static multi-factor regression model without state switching.
The PCA-HMM assumes that the influence of behavioral factors depends on underlying
sentiment states, while the control model assumes a fixed linear relationship. Both models
used identical datasets and factor definitions to ensure consistent evaluation. This setup
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allows direct comparison of the ability of each model to explain return variation under
changing market conditions.

2.3. Measurement Methods and Quality Control

Investor sentiment was estimated using a standardized composite index built from
the volatility index (VIX), trading volume fluctuations, and short-term return deviations.
Momentum was defined as the difference between current and three-week lagged returns.
Before analysis, all series were log-transformed and scaled to unit variance. The
Augmented Dickey-Fuller test was applied to check stationarity. Any variable failing the
test was differenced once to stabilize variance. Outliers beyond three standard deviations
were winsorized. Weekly returns were calculated as [13]:

r=In(Py)-In(Pyy),

where P; is the adjusted closing price at time t. Data verification involved cross-

checking random samples with Bloomberg Terminal records to ensure accuracy.

2.4. Data Processing and Model Formulation

Principal Component Analysis (PCA) was used to reduce multicollinearity among
correlated variables. The selected components were retained until the cumulative variance
exceeded 80%. Each observation X; was transformed as:

Z=X;W,

where W is the eigenvector matrix of covariance L. The resulting principal
component scores (Z;) served as the input to the Hidden Markov Model (HMM). The
HMM models market behavior through a set of hidden states qt € {1, 2, ..., m}, governed
by the transition probability matrix [14]:

m
P(g,51q,.,=i)=a, Zaij -1.
=i
Within each state, expected stock returns were modeled as a linear function of
behavioral factors:
ER¢1q,75)=y oty 1,547 0 Vit 5 M

where S; denotes investor sentiment, V; is trading volume, and M, is momentum.

2.5. Statistical Analysis and Model Validation

All estimations were performed using the Baum-Welch algorithm to maximize
likelihood functions for state transition and emission probabilities. The number of hidden
states was selected based on the Bayesian Information Criterion (BIC) and model stability
across replications. Predictive accuracy was tested using a rolling-window procedure
with a 60-40 train-test split. Model confidence intervals were calculated using the
bootstrap method with 1,000 replications. Statistical significance was evaluated at the 5%
level. The performance of the PCA-HMM was further compared with that of the fixed-
coefficient regression using mean squared error (MSE) and directional accuracy rate (DAR)
[15]:

n
1 _
DAR=; I[sign(Ry)=sign(R;)],
=1
where I[-] is an indicator equal to one when the predicted and actual return signs
match.

3. Results and Discussion
3.1. Regime Segmentation and State Persistence

The multi-factor PCA-HMM partitions the Al equity sample into three latent states
with distinct return dispersion and trading activity. State A shows low volatility and
narrow bid-ask spreads; State B exhibits moderate volatility with rising turnover; State C
displays wide dispersion and frequent price gaps. The average uninterrupted durations
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are 11.3, 8.7, and 6.1 weeks for States A-C, indicating persistent but unequal regimes.
Transition probabilities are highest on the diagonal (=0.84), and switches from A to C are
rare compared with A<~B moves, suggesting that stress builds through an intermediate
phase rather than jumping directly from calm to turmoil [16]. These patterns support a
state-dependent view of behavior in Al-related shares. A reference workflow for feature
extraction prior to state estimation is shown in Figure 1 (schematic example; see caption).
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Figure 1. PCA-based feature selection and data simplification before model fitting.

3.2. Relative Contributions of Sentiment, Volume, and Momentum

State-specific regressions show that the sentiment factor has the largest marginal
effect on weekly returns in States B and C, while volume dominates only during brief
volume surges within State C. Momentum is weak in all states and turns negative in C,
consistent with short-horizon reversals after information shocks. When the model is re-
estimated with alternative sentiment proxies (volatility-based or text-based indices), the
ordering of effects remains unchanged. The contribution of sentiment is strongest around
policy news and large product announcements; outside these windows, coefficients
shrink toward zero. Compared with the single-state control model, the state-dependent
specification reduces residual variance by 14-19%, indicating that allowing coefficients to
vary with regimes captures time variation that a fixed-coefficient model misses [17,18].

3.3. Out-of-Sample Performance and Directional Accuracy

Rolling forecasts over a 60-40 train-test split show higher predictive stability for the
PCA-HMM than for the control regression. Mean squared error declines by 11-15% across
test windows, and the directional accuracy rate (DAR) averages 58.4% overall, rising to
63.1% in State C and falling to 54.7% in State A. These results imply that prediction gains
are concentrated in volatile phases where sentiment shifts are most pronounced. A
robustness check using different numbers of principal components (from 3 to 6) changes
levels but not rankings of state-wise coefficients [19,20]. An additional check that
randomly perturbs the transition matrix within £5% of the estimated entries leaves DAR
within a #1.2% band, suggesting that small errors in regime assignment do not overturn
the main findings. A representative regime-decoding example comparable to our
procedure is shown in Figure 2 (see caption).
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Figure 2. Hidden market states identified by the HMM with state transitions.

3.4. Cross-Sectional Heterogeneity and Economic Interpretation

Sorting firms by market capitalization reveals that the sentiment effect is strongest in
large-cap Al leaders during high-volatility states, while mid- and small-cap groups show
larger volume elasticities but lower persistence. Beta-volume interactions are significant
only in State C, indicating that liquidity pressure amplifies broad market exposure during
stress. Event-time analysis around major regulatory and earnings dates shows faster
reversion of sentiment coefficients back toward neutral in State B than in C, consistent
with partial information absorption before full resolution of uncertainty. Taken together,
the evidence points to a two-step mechanism: sentiment rises and spreads under elevated
attention (State B), then overshoots and unwinds with short-term reversals under stress
(State C) [21,22]. This view aligns with behavior observed in technology subsectors with
rapid news cycles, while highlighting that regime duration and transition asymmetry are
key for modeling Al equities.

4. Conclusion

This study builds a multi-factor PCA-HMM model to examine the changing
relationship among investor sentiment, trading volume, and momentum in the U.S.
artificial intelligence stock market. The results show that sentiment is the main factor
affecting stock returns, while trading volume reflects short-term liquidity changes and
momentum has only a minor influence. The PCA-HMM model divides the market into
different states with clear differences in volatility and investor behavior. It helps explain
how shifts in sentiment lead to changes in price movement in technology-based industries.
The method can be used to track sentiment cycles and detect early signs of market risk in
Al-related investments. The findings also suggest that sentiment-driven volatility
increases during periods of policy change or innovation, which is useful for portfolio
adjustment and risk management. The main limitation of this study is that it uses weekly
data and focuses only on U.S.-listed firms. Future studies should include higher-
frequency data and cross-market samples to test the broader applicability of this model.
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