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Abstract: Mobile advertising represents a key revenue stream in digital marketing, driven primarily 
by personalized content. Its effectiveness relies heavily on click-through rate (CTR) prediction 
models based on user behavior. With growing privacy concerns and increasingly stringent data 
protection regulations, ensuring user privacy in CTR prediction has become an essential 
requirement. In response, differential-privacy-based approaches have garnered significant attention. 
In this study, we propose differentially private mechanisms specifically designed for advanced 
machine learning models. The approach employs adaptive noise-injection strategies to balance 
prediction accuracy and privacy effectively. It optimizes the allocation of privacy budgets in CTR 
estimation while maintaining user anonymity. Experimental results demonstrate that the proposed 
algorithm achieves prediction accuracy comparable to conventional methods while providing 
strong privacy guarantees. This framework offers practical solutions that enable mobile advertising 
platforms to comply with privacy regulations without sacrificing advertising performance. 

Keywords: differential privacy; click-through rate prediction; mobile advertising; privacy-
preserving machine learning 
 

1. Introduction 
1.1. Background and Motivation of Privacy-Aware Mobile Advertising 

Global mobile advertising spending reached $362 billion in 2023, accounting for 
approximately 69% of total digital advertising expenditure. Mobile advertising systems 
leverage sophisticated Click-Through Rate (CTR) prediction algorithms to optimize ad 
placements. These algorithms process large volumes of user behavior data, including 
browsing patterns, app activity, demographic attributes, and contextual signals, to 
estimate the likelihood that a user will click on a given advertisement. 

The introduction of privacy-centric regulations, such as the General Data Protection 
Regulation (GDPR) and the California Consumer Privacy Act (CCPA), has reshaped the 
digital advertising landscape. These regulations require user consent for data collection 
and processing, granting users control over how their data is used. The widespread 
adoption of differential privacy by federal statistical agencies and major technology 
organizations highlights the growing importance of privacy-preserving data analytics 
technologies [1]. 

Mobile advertising ecosystems are particularly sensitive because mobile devices 
collect highly granular behavioral data through sensors and applications. Traditional 
approaches, which rely on extensive user data to predict CTR, often conflict with 
contemporary privacy expectations and regulatory requirements. Consequently, ad 
platforms must carefully balance prediction accuracy with strong privacy protection. 
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These challenges underscore the need for innovative, privacy-preserving methods, which 
form the foundation of this research. 

1.2. Problem Statement and Technical Challenges 
The central problem is how to develop CTR prediction algorithms that achieve a 

suitable balance between high accuracy and formal privacy guarantees. Traditional 
machine learning methods for CTR prediction typically rely on large feature sets derived 
from detailed user profiles, rendering them inherently incompatible with privacy-
preserving requirements. 

Applying differential privacy mechanisms directly to CTR prediction algorithms 
introduces several technical challenges. Key issues include designing noise injection 
strategies that preserve the statistical utility of user behavioral data while preventing the 
identification of individuals. Given the diversity of mobile advertising data-including 
categorical, continuous, and temporal types-specialized differential privacy techniques 
are needed, tailored to each data category. Privacy budget allocation is another significant 
challenge, as the limited budget must be distributed across various processing stages to 
maximize overall system performance [2]. 

Computational efficiency is critical in mobile advertising systems, where real-time 
predictions are required for auction-based ad placement. Differential privacy mechanisms 
introduce computational overhead, which may conflict with the low-latency requirements 
of mobile applications. Moreover, designing scalable, privacy-preserving algorithms 
capable of handling millions of concurrent users and ad requests demands novel 
algorithmic solutions that address privacy concerns effectively. 

1.3. Research Contributions 
This study offers multiple contributions to the field of privacy-preserving mobile 

advertising. We propose a comprehensive differential privacy framework specifically 
tailored for mobile CTR prediction, addressing the unique challenges of mobile 
advertising systems. Our framework introduces adaptive noise injection methods that 
dynamically adjust privacy parameters based on data sensitivity and prediction 
requirements. 

We present a novel privacy budget allocation optimization algorithm that maximizes 
prediction performance while providing strong privacy guarantees. Additionally, we 
design feature engineering strategies that accommodate variable privacy settings, 
enhancing CTR prediction robustness. Our methods are grounded in privacy-aware user 
behavior modeling, capturing essential behavioral patterns while avoiding individual re-
identification. 

We validate our approach through extensive experiments on real-world datasets, 
analyzing privacy-utility trade-offs in detail and demonstrating the practicality of 
deploying the framework in large-scale mobile advertising systems. This work advances 
understanding of privacy-preserving machine learning applications in commercial 
advertising contexts. 

2. Related Work 
2.1. Click-Through Rate Prediction Methods in Mobile Advertising 

This section reviews literature relevant to our approach in three key areas. CTR 
prediction has evolved from simple logistic regression models to complex deep learning 
architectures capable of capturing intricate user-advertisement interactions. Early 
methods relied on feature engineering and linear models, utilizing demographic 
information, click history, and contextual triggers to estimate engagement probability. 

Deep learning has transformed CTR prediction by enabling the modeling of high-
order feature interactions and non-linear relationships. Modern CTR prediction systems 
employ advanced architectures, including Wide & Deep networks, DeepFM, and 
transformer-based models, combining memorization and generalization to achieve 
superior performance. These systems use explicit embedding techniques for categorical 
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features and apply attention mechanisms to focus on important user-advertisement 
interactions. Multi-task learning can further optimize multiple objectives simultaneously, 
such as CTR prediction, conversion rate estimation, and bid optimization [3]. 

Mobile-specific CTR prediction presents unique challenges due to time-bound usage 
patterns and rich contextual information. Features such as location, device characteristics, 
and app usage provide valuable signals that improve prediction accuracy. In mobile 
advertising, real-time personalization requires efficient model serving architectures to 
ensure high-throughput predictions with minimal latency. While these approaches are 
promising, they often lack mechanisms to provide strong privacy protection. 

2.2. Differential Privacy Mechanisms in Machine Learning 
Differential privacy provides a formal mathematical framework for quantifying and 

controlling privacy risks in data analysis and machine learning. It establishes guarantees 
that the inclusion or exclusion of an individual's data does not significantly affect the 
results of analysis. Several mechanisms, including Laplace, Gaussian, and exponential 
methods, provide practical means to maintain privacy. 

Applications of differential privacy in machine learning include differentially private 
stochastic gradient descent (DP-SGD) and the private aggregation of teacher ensembles 
(PATE). These techniques enable models to be trained on sensitive data while providing 
formal privacy guarantees. Recent advancements include adaptive privacy mechanisms, 
improved composition theorems, and specialized methods tailored to specific machine 
learning tasks [4]. 

Privacy accounting techniques facilitate the tracking of privacy budget consumption 
across multiple data accesses and algorithmic operations. Relaxed privacy definitions, 
such as Rényi differential privacy, provide additional flexibility for designing privacy-
preserving algorithms while maintaining rigorous guarantees. Sophisticated sampling 
methods and gradient clipping further support the adaptation of differential privacy to 
large-scale machine learning systems. However, implementing these mechanisms in 
mobile advertising introduces new computational and design challenges. 

2.3. Privacy-Preserving Personalisation and Recommendation Systems 
The tension between personalization and privacy has driven research on privacy-

preserving recommendation systems and personalized advertising platforms. Initial 
approaches based on data anonymization and k-anonymity were insufficient against 
advanced re-identification attacks. The introduction of formal privacy definitions, 
including differential privacy, has enabled the development of recommendation systems 
with provable privacy guarantees [5]. 

Federated learning has emerged as a promising paradigm for privacy-preserving 
personalization, allowing collaborative model training without centralizing sensitive user 
data. Combining differential privacy with federated learning provides additional 
protection against malicious participants and untrusted servers. Local differential privacy 
allows users to add noise before sharing data, offering privacy even when the service 
provider is not trusted [6]. 

Collaborative filtering methods incorporating privacy have been applied to build 
recommendation systems that respect user preferences securely. Techniques such as 
homomorphic encryption and secure multi-party computation provide additional privacy 
protection but incur significant computational overhead. Privacy-preserving matrix 
factorization and embedding methods enable recommendation systems to balance utility 
and privacy effectively in practical scenarios. Our work extends these foundations to 
address the diverse requirements of mobile advertising systems. 

3. Methodology 
3.1. Differential Privacy Framework for Mobile CTR Prediction 

Based on the literature review, this section presents a comprehensive framework for 
differential privacy in mobile CTR prediction. Our framework provides an end-to-end 
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architecture for mobile prediction, integrating privacy protection throughout the data 
processing pipeline. It adopts a three-stage structure for privacy protection: input 
perturbation, algorithmic modification, and output sanitization. The core components 
include the privacy budget management system, the adaptive noise injection module, and 
the utility optimization engine. 

The privacy budget management system tracks privacy expenditure across multiple 
data processing operations. A hierarchical privacy budget is defined, allocating privacy 
parameters by feature type and time window. Sensitive demographic features receive a 
larger share of the privacy budget, while contextual features are managed with efficient 
privacy mechanisms. The system dynamically adjusts allocations based on real-time 
performance metrics and observed privacy consumption patterns. 

The adaptive noise injection module addresses the heterogeneity of mobile 
advertising data using feature-specific perturbation methods. Categorical features are 
perturbed via an exponential mechanism, continuous features via calibrated Gaussian 
noise, and temporal sequence data through differentially private sequence processing 
algorithms that preserve temporal correlations while safeguarding individual events [7]. 
The utility optimization engine continuously assesses predictor performance and adjusts 
privacy settings to maintain a balance between accuracy and privacy. 

As shown in Table 1, the framework allocates privacy budgets across feature 
categories, using advanced sampling strategies and smart feature selection algorithms to 
maximize information capture without compromising privacy. Demographic features are 
protected using the exponential mechanism, behavioral (continuous) features by 
Gaussian noise, contextual features by Laplace noise, and temporal sequence data by 
differentially private sequence models (e.g., DP-SGD). 

Table 1. Privacy Budget Allocation Strategy Across Feature Categories. 

Feature Category Base Budget (ε) Sensitivity Score Allocation Ratio 

Demographic 0.8 0.95 35% 

Behavioral 1.2 0.85 30% 

Contextual 1.5 0.60 20% 

Temporal 1.0 0.75 15% 

The framework employs advanced composition techniques to optimize cumulative 
privacy usage. Both basic and advanced composition theorems are applied to track 
privacy expenditure, while Rényi differential privacy enables precise privacy accounting 
in complex workflows. 

3.2. Privacy-Aware Feature Engineering and User Behaviour Modelling 
Privacy-aware feature engineering is central to our approach. Traditional feature 

extraction must be redesigned to incorporate differential privacy mechanisms, ensuring 
that individual contributions remain private while maintaining statistical utility for 
accurate CTR prediction. 

The feature engineering pipeline handles various types of mobile advertising data. 
We introduce a multi-granularity behaviour modeling framework, capturing patterns 
from individual actions to aggregate profiles. Private histogram and clustering methods 
are employed to analyze interaction patterns and identify behavioral segments [8]. 

Privacy-preserving embedding methods are applied to generate low-dimensional 
representations of user behavior and ad characteristics while maintaining differential 
privacy. Private matrix factorization techniques inject calibrated noise during 
factorization to prevent reconstruction of individual users. 
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As shown in Figure 1, the feature engineering pipeline demonstrates data flow from 
raw input through privacy mechanisms (exponential, Gaussian, and Laplace noise 
injection) to processed output. Budget allocation and feedback loops dynamically adjust 
privacy parameters. 

 
Figure 1. Privacy-Aware Feature Engineering Pipeline Architecture. 

Architecture of the privacy-aware feature engineering pipeline, showing data flow 
from raw input through privacy mechanisms to processed output. 

As shown in Table 2, privacy-preserving feature extraction maintains high utility 
with minimal loss, while preserving privacy and computational efficiency. 

Table 2. Privacy-Preserving Feature Extraction Performance Metrics. 

Feature 
Type 

Original 
Utility 

DP Utility (ε = 
1.0) 

Privacy 
Loss 

Processing Time 
(ms) 

Click 
History 0.892 0.834 6.5% 12.3 

App Usage 0.867 0.798 8.0% 15.7 

Location 
Data 

0.823 0.751 8.7% 18.2 

Device Info 0.756 0.719 4.9% 8.4 

Time 
Patterns 0.789 0.728 7.7% 11.6 

Differentially private sequence mining algorithms extract temporal behavioral 
patterns while protecting user trajectories. Private Markov chain models capture state 
changes in user behavior with formal privacy guarantees. Feature selection under 
differential privacy considers both information gain and privacy cost, employing 
differentially private mutual information estimation to rank and select optimal features 
[9]. 

3.3. Algorithm Optimization Under Privacy Budget Constraints 
Optimizing algorithms under privacy constraints involves balancing prediction 

accuracy, privacy protection, and computational efficiency. Our multi-objective 
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optimization framework addresses these challenges for privacy-preserving machine 
learning. 

The optimization process evaluates the entire pipeline, selecting parameters that 
maximize utility while satisfying privacy goals. Adaptive gradient descent methods 
integrated with DP-SGD, advanced gradient clipping, and noise injection techniques are 
applied to CTR prediction. Dynamic learning rates and smart batching strategies balance 
computational efficiency and privacy protection. 

As shown in Figure 2, the three-dimensional optimization landscape illustrates 
privacy-utility trade-offs, with axes representing privacy budget (ε), computational 
complexity (FLOPS), and prediction accuracy (AUC). Pareto frontiers indicate optimal 
configurations. 

 
Figure 2. Multi-Objective Optimisation Landscape for Privacy-Utility Trade-offs. 

Three-dimensional optimization landscape showing trade-offs between privacy, 
computational complexity, and prediction accuracy. 

As shown in Table 3, algorithm performance under varying privacy constraints 
demonstrates that neural network optimization remains effective across multiple privacy 
levels. Moment accountant techniques and Rényi differential privacy enable tighter 
privacy accounting. Privacy amplification through sampling reduces effective privacy 
costs while maintaining accuracy. 

Table 3. Algorithm Performance Under Different Privacy Constraints. 

Privacy Level 
(ε) 

AUC 
Score 

Training Time 
(min) 

Memory Usage 
(GB) 

Convergence 
Epochs 

∞ (No 
Privacy) 0.924 45.2 8.3 85 

2.0 0.908 52.7 9.1 92 

1.0 0.889 61.3 9.8 108 

0.5 0.864 74.8 10.7 127 

0.1 0.812 95.4 12.2 156 

Hyperparameter optimization under privacy constraints employs privacy-
preserving Bayesian optimization with Gaussian process models and privacy-aware 
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acquisition functions, achieving optimal configurations while respecting differential 
privacy conditions [10]. Adaptive regularization ensures a balance between model 
complexity and privacy requirements. 

4. Experimental Evaluation 
4.1. Dataset Description and Experimental Setup 

We evaluate our approach using three datasets representing diverse mobile 
advertising scenarios. The primary dataset contains 10 million mobile advertisement 
interaction records collected over six months, spanning users in 50 countries and 15 
language regions to accurately reflect global mobile advertising patterns. The second 
dataset includes 5.2 million app installation and usage records, capturing temporal usage, 
session duration, and cross-application behavior correlations. The third dataset consists 
of 8.7 million location-based advertising interactions, incorporating geographical context 
and mobility patterns to enhance prediction accuracy. 

This experimental setup adopts a holistic evaluation approach to assess privacy-
preserving CTR prediction performance. Stratified sampling techniques were applied to 
create representative test sets across customer segments and advertisement types. Cross-
validation methods are tailored to differential privacy evaluation, accounting for privacy 
budget consumption in model selection and performance measurement [11]. 

The experimental infrastructure comprises distributed computing clusters with GPU 
acceleration for efficient neural network training. The privacy computation module 
implements optimized differential privacy libraries with hardware-accelerated noise 
generation and gradient clipping. Detailed monitoring tracks privacy budget usage, 
computational performance, and memory utilization throughout experiments. 

As shown in Table 4, the datasets' characteristics are summarized, highlighting 
feature count, user coverage, time span, and click rates. 

Table 4. Dataset Characteristics and Statistical Overview. 

Dataset 
Component 

Records 
(Millions) 

Feature
s 

Users 
(K) 

Time 
Span 

Click Rate 
(%) 

Mobile Ads 10.0 127 2,340 6 months 3.2 

App Usage 5.2 89 1,870 4 months N/A 

Location Context 8.7 64 2,100 5 months 2.8 

Combined 
Dataset 23.9 280 3,200 6 months 3.0 

4.2. Privacy-Utility Trade-off Analysis and Performance Metrics 
Privacy-utility trade-off analysis is central to this evaluation, examining the impact 

of privacy mechanisms on prediction accuracy. Performance metrics include area under 
the ROC curve (AUC), log-loss, calibration metrics, and statistical tests for significance. 

The privacy assessment framework performs rigorous auditing to verify differential 
privacy guarantees. Membership inference attacks and reconstruction attacks are 
employed to evaluate privacy protection empirically. The analysis also explores privacy 
budget composition across multiple operations and tests for privacy amplification effects 
through subsampling [12]. 

As shown in Figure 3, the analysis dashboard provides multi-panel visualization of 
privacy-utility trade-offs. The primary panel presents a scatter plot comparing Laplace, 
Gaussian, and Exponential mechanisms at varying epsilon values, with bubble sizes 
indicating computational cost. Additional panels include: time-series plots of privacy 
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budget consumption, heatmaps of privacy-utility correlations, violin plots of accuracy 
distributions under different privacy levels, and parallel coordinates linking privacy 
settings with performance metrics. Bootstrap sampling and confidence interval estimation 
techniques are employed to quantify performance uncertainty under privacy constraints. 

 
Figure 3. Comprehensive Privacy-Utility Analysis Dashboard. 

Robustness is evaluated across different random seeds and initialization strategies, 
ensuring stability of results. Utility analysis extends beyond accuracy to include 
prediction latency, memory consumption, and scalability under varying privacy 
configurations. Model interpretability and feature importance under privacy constraints 
are also examined. 

Advanced multi-panel dashboard illustrating privacy-utility trade-offs, 
computational cost, and performance trends under different privacy mechanisms. 

4.3. Comparative Study with State-of-the-Art Baseline Methods 
We compare our method with state-of-the-art privacy-preserving CTR prediction 

approaches and traditional non-private baselines, including logistic regression, gradient 
boosting machines, deep neural networks, and differential privacy adaptations. Federated 
learning and local differential privacy approaches are also evaluated [13]. 

All methods share identical feature sets, training procedures, and evaluation metrics 
for fair comparison. Statistical significance tests and effect size analyses quantify 
performance improvements. Computational efficiency is assessed in terms of training 
time, inference latency, memory usage, scalability, convergence, and optimization 
stability under various privacy configurations. 

Comparative analysis shows our approach achieves higher accuracy retention (96.2% 
vs. 87.3%), reduced computational overhead (23% faster training), and improved 
scalability across user segments. With ε = 1.0 differential privacy guarantees, our method 
retains 96.2% of non-private baseline accuracy. Privacy robustness is validated through 
empirical tests, including membership inference, property inference, and reconstruction 
attacks, confirming that theoretical privacy guarantees hold in practice [14]. 

Our approach demonstrates consistent performance across sparse features, cold-start 
scenarios, and diverse geographic regions, validating its broad applicability for global 
mobile advertising platforms [15]. 
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5. Conclusion and Future Work 
5.1. Summary of Key Research Findings 

This research advances privacy-preserving mobile advertising by proposing a 
differential privacy framework that maintains 96.2% of baseline accuracy while ensuring 
ε = 1.0 privacy protection. The key contributions include: (1) adaptive noise injection 
strategies, (2) optimized privacy budget allocation, and (3) privacy-aware feature 
engineering techniques tailored for mobile environments. 

The privacy budget optimization algorithm introduces novel methods for efficient 
allocation of privacy resources across heterogeneous mobile advertising data. The 
adaptive noise injection strategies provide superior utility preservation compared to static 
privacy mechanisms, yielding a 10% improvement in prediction accuracy at equivalent 
privacy levels. The framework's modular architecture enables seamless deployment 
across various mobile advertising platforms and supports scalability for millions of 
concurrent users. 

Privacy-aware feature engineering techniques developed in this study offer practical 
solutions for handling diverse mobile advertising data types while maintaining 
differential privacy guarantees. Specialized approaches for categorical, continuous, and 
temporal features significantly enhance utility compared to generic differential privacy 
mechanisms. This detailed privacy-utility analysis provides actionable guidelines for 
selecting privacy parameters in real-world mobile advertising deployments. 

5.2. Practical Applications and Industry Implications 
The practical implications of this research for the mobile advertising industry are 

substantial. First, the framework supports rapid compliance with privacy regulations 
such as GDPR and CCPA while maintaining competitive performance. Second, the 10% 
accuracy improvement over existing privacy-preserving methods can translate into 
meaningful revenue retention for advertising platforms. Third, the modular architecture 
facilitates straightforward integration into existing advertising systems. 

Widespread industry adoption could transform user-advertiser relationships by 
providing transparent privacy guarantees without compromising personalization 
effectiveness. This aligns with growing demand for privacy-conscious digital services and 
supports the economic viability of free, ad-supported mobile applications. 

5.3. Future Research Directions and Limitations 
Future research can extend this methodology to multimodal advertising data, 

including video and audio content, enabling richer user engagement models. New 
privacy mechanisms, such as shuffle models and secure aggregation, present 
opportunities to enhance privacy while maintaining functionality. Integrating advanced 
privacy tools, including homomorphic encryption and secure multi-party computation, 
can further strengthen privacy protection for sensitive advertising applications. 

The current framework primarily emphasizes individual privacy and could be 
expanded to address group privacy and fairness considerations. Future work may explore 
privacy-preserving cross-device tracking and attribution methods. Privacy amplification 
and advanced composition techniques offer potential to improve the efficiency of privacy 
budget usage in ad delivery pipelines. 

Current limitations include the computational overhead of differential privacy 
mechanisms and the complexities of tuning privacy parameters within diverse 
advertising frameworks. Achieving low-latency predictions remains a priority, and 
hardware acceleration may provide additional performance benefits. Further validation 
across different cultural and regulatory contexts will enhance the generalizability of the 
results and encourage broader adoption of privacy-preserving advertising technologies. 
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