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Abstract: Mobile advertising represents a key revenue stream in digital marketing, driven primarily
by personalized content. Its effectiveness relies heavily on click-through rate (CTR) prediction
models based on user behavior. With growing privacy concerns and increasingly stringent data
protection regulations, ensuring user privacy in CTR prediction has become an essential
requirement. In response, differential-privacy-based approaches have garnered significant attention.
In this study, we propose differentially private mechanisms specifically designed for advanced
machine learning models. The approach employs adaptive noise-injection strategies to balance
prediction accuracy and privacy effectively. It optimizes the allocation of privacy budgets in CTR
estimation while maintaining user anonymity. Experimental results demonstrate that the proposed
algorithm achieves prediction accuracy comparable to conventional methods while providing
strong privacy guarantees. This framework offers practical solutions that enable mobile advertising
platforms to comply with privacy regulations without sacrificing advertising performance.
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1. Introduction
1.1. Background and Motivation of Privacy-Aware Mobile Advertising

Global mobile advertising spending reached $362 billion in 2023, accounting for
approximately 69% of total digital advertising expenditure. Mobile advertising systems
leverage sophisticated Click-Through Rate (CTR) prediction algorithms to optimize ad
placements. These algorithms process large volumes of user behavior data, including
browsing patterns, app activity, demographic attributes, and contextual signals, to
estimate the likelihood that a user will click on a given advertisement.

The introduction of privacy-centric regulations, such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA), has reshaped the
digital advertising landscape. These regulations require user consent for data collection
and processing, granting users control over how their data is used. The widespread
adoption of differential privacy by federal statistical agencies and major technology
organizations highlights the growing importance of privacy-preserving data analytics
technologies [1].

Mobile advertising ecosystems are particularly sensitive because mobile devices
collect highly granular behavioral data through sensors and applications. Traditional
approaches, which rely on extensive user data to predict CTR, often conflict with
contemporary privacy expectations and regulatory requirements. Consequently, ad
platforms must carefully balance prediction accuracy with strong privacy protection.
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These challenges underscore the need for innovative, privacy-preserving methods, which
form the foundation of this research.

1.2. Problem Statement and Technical Challenges

The central problem is how to develop CTR prediction algorithms that achieve a
suitable balance between high accuracy and formal privacy guarantees. Traditional
machine learning methods for CTR prediction typically rely on large feature sets derived
from detailed user profiles, rendering them inherently incompatible with privacy-
preserving requirements.

Applying differential privacy mechanisms directly to CTR prediction algorithms
introduces several technical challenges. Key issues include designing noise injection
strategies that preserve the statistical utility of user behavioral data while preventing the
identification of individuals. Given the diversity of mobile advertising data-including
categorical, continuous, and temporal types-specialized differential privacy techniques
are needed, tailored to each data category. Privacy budget allocation is another significant
challenge, as the limited budget must be distributed across various processing stages to
maximize overall system performance [2].

Computational efficiency is critical in mobile advertising systems, where real-time
predictions are required for auction-based ad placement. Differential privacy mechanisms
introduce computational overhead, which may conflict with the low-latency requirements
of mobile applications. Moreover, designing scalable, privacy-preserving algorithms
capable of handling millions of concurrent users and ad requests demands novel
algorithmic solutions that address privacy concerns effectively.

1.3. Research Contributions

This study offers multiple contributions to the field of privacy-preserving mobile
advertising. We propose a comprehensive differential privacy framework specifically
tailored for mobile CTR prediction, addressing the unique challenges of mobile
advertising systems. Our framework introduces adaptive noise injection methods that
dynamically adjust privacy parameters based on data sensitivity and prediction
requirements.

We present a novel privacy budget allocation optimization algorithm that maximizes
prediction performance while providing strong privacy guarantees. Additionally, we
design feature engineering strategies that accommodate variable privacy settings,
enhancing CTR prediction robustness. Our methods are grounded in privacy-aware user
behavior modeling, capturing essential behavioral patterns while avoiding individual re-
identification.

We validate our approach through extensive experiments on real-world datasets,
analyzing privacy-utility trade-offs in detail and demonstrating the practicality of
deploying the framework in large-scale mobile advertising systems. This work advances
understanding of privacy-preserving machine learning applications in commercial
advertising contexts.

2. Related Work
2.1. Click-Through Rate Prediction Methods in Mobile Advertising

This section reviews literature relevant to our approach in three key areas. CTR
prediction has evolved from simple logistic regression models to complex deep learning
architectures capable of capturing intricate user-advertisement interactions. Early
methods relied on feature engineering and linear models, utilizing demographic
information, click history, and contextual triggers to estimate engagement probability.

Deep learning has transformed CTR prediction by enabling the modeling of high-
order feature interactions and non-linear relationships. Modern CTR prediction systems
employ advanced architectures, including Wide & Deep networks, DeepFM, and
transformer-based models, combining memorization and generalization to achieve
superior performance. These systems use explicit embedding techniques for categorical
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features and apply attention mechanisms to focus on important user-advertisement
interactions. Multi-task learning can further optimize multiple objectives simultaneously,
such as CTR prediction, conversion rate estimation, and bid optimization [3].

Mobile-specific CTR prediction presents unique challenges due to time-bound usage
patterns and rich contextual information. Features such as location, device characteristics,
and app usage provide valuable signals that improve prediction accuracy. In mobile
advertising, real-time personalization requires efficient model serving architectures to
ensure high-throughput predictions with minimal latency. While these approaches are
promising, they often lack mechanisms to provide strong privacy protection.

2.2. Differential Privacy Mechanisms in Machine Learning

Differential privacy provides a formal mathematical framework for quantifying and
controlling privacy risks in data analysis and machine learning. It establishes guarantees
that the inclusion or exclusion of an individual's data does not significantly affect the
results of analysis. Several mechanisms, including Laplace, Gaussian, and exponential
methods, provide practical means to maintain privacy.

Applications of differential privacy in machine learning include differentially private
stochastic gradient descent (DP-SGD) and the private aggregation of teacher ensembles
(PATE). These techniques enable models to be trained on sensitive data while providing
formal privacy guarantees. Recent advancements include adaptive privacy mechanisms,
improved composition theorems, and specialized methods tailored to specific machine
learning tasks [4].

Privacy accounting techniques facilitate the tracking of privacy budget consumption
across multiple data accesses and algorithmic operations. Relaxed privacy definitions,
such as Rényi differential privacy, provide additional flexibility for designing privacy-
preserving algorithms while maintaining rigorous guarantees. Sophisticated sampling
methods and gradient clipping further support the adaptation of differential privacy to
large-scale machine learning systems. However, implementing these mechanisms in
mobile advertising introduces new computational and design challenges.

2.3. Privacy-Preserving Personalisation and Recommendation Systems

The tension between personalization and privacy has driven research on privacy-
preserving recommendation systems and personalized advertising platforms. Initial
approaches based on data anonymization and k-anonymity were insufficient against
advanced re-identification attacks. The introduction of formal privacy definitions,
including differential privacy, has enabled the development of recommendation systems
with provable privacy guarantees [5].

Federated learning has emerged as a promising paradigm for privacy-preserving
personalization, allowing collaborative model training without centralizing sensitive user
data. Combining differential privacy with federated learning provides additional
protection against malicious participants and untrusted servers. Local differential privacy
allows users to add noise before sharing data, offering privacy even when the service
provider is not trusted [6].

Collaborative filtering methods incorporating privacy have been applied to build
recommendation systems that respect user preferences securely. Techniques such as
homomorphic encryption and secure multi-party computation provide additional privacy
protection but incur significant computational overhead. Privacy-preserving matrix
factorization and embedding methods enable recommendation systems to balance utility
and privacy effectively in practical scenarios. Our work extends these foundations to
address the diverse requirements of mobile advertising systems.

3. Methodology
3.1. Differential Privacy Framework for Mobile CTR Prediction

Based on the literature review, this section presents a comprehensive framework for
differential privacy in mobile CTR prediction. Our framework provides an end-to-end
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architecture for mobile prediction, integrating privacy protection throughout the data
processing pipeline. It adopts a three-stage structure for privacy protection: input
perturbation, algorithmic modification, and output sanitization. The core components
include the privacy budget management system, the adaptive noise injection module, and
the utility optimization engine.

The privacy budget management system tracks privacy expenditure across multiple
data processing operations. A hierarchical privacy budget is defined, allocating privacy
parameters by feature type and time window. Sensitive demographic features receive a
larger share of the privacy budget, while contextual features are managed with efficient
privacy mechanisms. The system dynamically adjusts allocations based on real-time
performance metrics and observed privacy consumption patterns.

The adaptive noise injection module addresses the heterogeneity of mobile
advertising data using feature-specific perturbation methods. Categorical features are
perturbed via an exponential mechanism, continuous features via calibrated Gaussian
noise, and temporal sequence data through differentially private sequence processing
algorithms that preserve temporal correlations while safeguarding individual events [7].
The utility optimization engine continuously assesses predictor performance and adjusts
privacy settings to maintain a balance between accuracy and privacy.

As shown in Table 1, the framework allocates privacy budgets across feature
categories, using advanced sampling strategies and smart feature selection algorithms to
maximize information capture without compromising privacy. Demographic features are
protected using the exponential mechanism, behavioral (continuous) features by
Gaussian noise, contextual features by Laplace noise, and temporal sequence data by
differentially private sequence models (e.g., DP-SGD).

Table 1. Privacy Budget Allocation Strategy Across Feature Categories.

Feature Category Base Budget (¢) Sensitivity Score Allocation Ratio

Demographic 0.8 0.95 35%
Behavioral 1.2 0.85 30%
Contextual 1.5 0.60 20%
Temporal 1.0 0.75 15%

The framework employs advanced composition techniques to optimize cumulative
privacy usage. Both basic and advanced composition theorems are applied to track
privacy expenditure, while Rényi differential privacy enables precise privacy accounting
in complex workflows.

3.2. Privacy-Aware Feature Engineering and User Behaviour Modelling

Privacy-aware feature engineering is central to our approach. Traditional feature
extraction must be redesigned to incorporate differential privacy mechanisms, ensuring
that individual contributions remain private while maintaining statistical utility for
accurate CTR prediction.

The feature engineering pipeline handles various types of mobile advertising data.
We introduce a multi-granularity behaviour modeling framework, capturing patterns
from individual actions to aggregate profiles. Private histogram and clustering methods
are employed to analyze interaction patterns and identify behavioral segments [8].

Privacy-preserving embedding methods are applied to generate low-dimensional
representations of user behavior and ad characteristics while maintaining differential
privacy. Private matrix factorization techniques inject calibrated noise during
factorization to prevent reconstruction of individual users.
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As shown in Figure 1, the feature engineering pipeline demonstrates data flow from
raw input through privacy mechanisms (exponential, Gaussian, and Laplace noise
injection) to processed output. Budget allocation and feedback loops dynamically adjust
privacy parameters.
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Figure 1. Privacy-Aware Feature Engineering Pipeline Architecture.

Architecture of the privacy-aware feature engineering pipeline, showing data flow
from raw input through privacy mechanisms to processed output.

As shown in Table 2, privacy-preserving feature extraction maintains high utility
with minimal loss, while preserving privacy and computational efficiency.

Table 2. Privacy-Preserving Feature Extraction Performance Metrics.

Feature Original DP Utility (e = Privacy Processing Time
Type Utility 1.0) Loss (ms)
Click 0.892 0.834 6.5% 123

History

App Usage 0.867 0.798 8.0% 15.7
Location 0.823 0.751 8.7% 18.2
Data
Device Info 0.756 0.719 4.9% 8.4
Time
0.789 0.728 7.7% 11.6
Patterns

Differentially private sequence mining algorithms extract temporal behavioral
patterns while protecting user trajectories. Private Markov chain models capture state
changes in user behavior with formal privacy guarantees. Feature selection under
differential privacy considers both information gain and privacy cost, employing
differentially private mutual information estimation to rank and select optimal features

[9].

3.3. Algorithm Optimization Under Privacy Budget Constraints

Optimizing algorithms under privacy constraints involves balancing prediction
accuracy, privacy protection, and computational efficiency. Our multi-objective
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optimization framework addresses these challenges for privacy-preserving machine
learning.

The optimization process evaluates the entire pipeline, selecting parameters that
maximize utility while satisfying privacy goals. Adaptive gradient descent methods
integrated with DP-SGD, advanced gradient clipping, and noise injection techniques are
applied to CTIR prediction. Dynamic learning rates and smart batching strategies balance
computational efficiency and privacy protection.

As shown in Figure 2, the three-dimensional optimization landscape illustrates
privacy-utility trade-offs, with axes representing privacy budget (&), computational
complexity (FLOPS), and prediction accuracy (AUC). Pareto frontiers indicate optimal
configurations.

Performance Regions

High Accuracy (AUC > 0.90)
Medium Accuracy (0.85-0.90)
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Accuracy (AUC)
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Figure 2. Multi-Objective Optimisation Landscape for Privacy-Utility Trade-offs.

Three-dimensional optimization landscape showing trade-offs between privacy,
computational complexity, and prediction accuracy.

As shown in Table 3, algorithm performance under varying privacy constraints
demonstrates that neural network optimization remains effective across multiple privacy
levels. Moment accountant techniques and Rényi differential privacy enable tighter
privacy accounting. Privacy amplification through sampling reduces effective privacy
costs while maintaining accuracy.

Table 3. Algorithm Performance Under Different Privacy Constraints.

Privacy Level AUC Training Time Memory Usage Convergence

(e) Score (min) (GB) Epochs
PZ‘E:I:;) 0.924 452 8.3 85
2.0 0.908 52.7 9.1 92
1.0 0.889 61.3 9.8 108
0.5 0.864 74.8 10.7 127
0.1 0.812 95.4 122 156

Hyperparameter optimization under privacy constraints employs privacy-
preserving Bayesian optimization with Gaussian process models and privacy-aware
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acquisition functions, achieving optimal configurations while respecting differential
privacy conditions [10]. Adaptive regularization ensures a balance between model
complexity and privacy requirements.

4. Experimental Evaluation
4.1. Dataset Description and Experimental Setup

We evaluate our approach using three datasets representing diverse mobile
advertising scenarios. The primary dataset contains 10 million mobile advertisement
interaction records collected over six months, spanning users in 50 countries and 15
language regions to accurately reflect global mobile advertising patterns. The second
dataset includes 5.2 million app installation and usage records, capturing temporal usage,
session duration, and cross-application behavior correlations. The third dataset consists
of 8.7 million location-based advertising interactions, incorporating geographical context
and mobility patterns to enhance prediction accuracy.

This experimental setup adopts a holistic evaluation approach to assess privacy-
preserving CTR prediction performance. Stratified sampling techniques were applied to
create representative test sets across customer segments and advertisement types. Cross-
validation methods are tailored to differential privacy evaluation, accounting for privacy
budget consumption in model selection and performance measurement [11].

The experimental infrastructure comprises distributed computing clusters with GPU
acceleration for efficient neural network training. The privacy computation module
implements optimized differential privacy libraries with hardware-accelerated noise
generation and gradient clipping. Detailed monitoring tracks privacy budget usage,
computational performance, and memory utilization throughout experiments.

As shown in Table 4, the datasets' characteristics are summarized, highlighting
feature count, user coverage, time span, and click rates.

Table 4. Dataset Characteristics and Statistical Overview.

Dataset Records Feature Users Time Click Rate
Component (Millions) s (K) Span (%)
Mobile Ads 10.0 127 2,340 6 months 3.2
App Usage 52 89 1,870 4 months N/A

Location Context 8.7 64 2,100 5 months 2.8
Combined 23.9 280 3200  6months 3.0
Dataset

4.2. Privacy-Utility Trade-off Analysis and Performance Metrics

Privacy-utility trade-off analysis is central to this evaluation, examining the impact
of privacy mechanisms on prediction accuracy. Performance metrics include area under
the ROC curve (AUC), log-loss, calibration metrics, and statistical tests for significance.

The privacy assessment framework performs rigorous auditing to verify differential
privacy guarantees. Membership inference attacks and reconstruction attacks are
employed to evaluate privacy protection empirically. The analysis also explores privacy
budget composition across multiple operations and tests for privacy amplification effects
through subsampling [12].

As shown in Figure 3, the analysis dashboard provides multi-panel visualization of
privacy-utility trade-offs. The primary panel presents a scatter plot comparing Laplace,
Gaussian, and Exponential mechanisms at varying epsilon values, with bubble sizes
indicating computational cost. Additional panels include: time-series plots of privacy
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budget consumption, heatmaps of privacy-utility correlations, violin plots of accuracy
distributions under different privacy levels, and parallel coordinates linking privacy
settings with performance metrics. Bootstrap sampling and confidence interval estimation
techniques are employed to quantify performance uncertainty under privacy constraints.
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Figure 3. Comprehensive Privacy-Utility Analysis Dashboard.

Robustness is evaluated across different random seeds and initialization strategies,
ensuring stability of results. Utility analysis extends beyond accuracy to include
prediction latency, memory consumption, and scalability under varying privacy
configurations. Model interpretability and feature importance under privacy constraints
are also examined.

Advanced multi-panel dashboard illustrating privacy-utility trade-offs,
computational cost, and performance trends under different privacy mechanisms.

4.3. Comparative Study with State-of-the-Art Baseline Methods

We compare our method with state-of-the-art privacy-preserving CTR prediction
approaches and traditional non-private baselines, including logistic regression, gradient
boosting machines, deep neural networks, and differential privacy adaptations. Federated
learning and local differential privacy approaches are also evaluated [13].

All methods share identical feature sets, training procedures, and evaluation metrics
for fair comparison. Statistical significance tests and effect size analyses quantify
performance improvements. Computational efficiency is assessed in terms of training
time, inference latency, memory usage, scalability, convergence, and optimization
stability under various privacy configurations.

Comparative analysis shows our approach achieves higher accuracy retention (96.2%
vs. 87.3%), reduced computational overhead (23% faster training), and improved
scalability across user segments. With & = 1.0 differential privacy guarantees, our method
retains 96.2% of non-private baseline accuracy. Privacy robustness is validated through
empirical tests, including membership inference, property inference, and reconstruction
attacks, confirming that theoretical privacy guarantees hold in practice [14].

Our approach demonstrates consistent performance across sparse features, cold-start
scenarios, and diverse geographic regions, validating its broad applicability for global
mobile advertising platforms [15].

369



Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

5. Conclusion and Future Work
5.1. Summary of Key Research Findings

This research advances privacy-preserving mobile advertising by proposing a
differential privacy framework that maintains 96.2% of baseline accuracy while ensuring
€ = 1.0 privacy protection. The key contributions include: (1) adaptive noise injection
strategies, (2) optimized privacy budget allocation, and (3) privacy-aware feature
engineering techniques tailored for mobile environments.

The privacy budget optimization algorithm introduces novel methods for efficient
allocation of privacy resources across heterogeneous mobile advertising data. The
adaptive noise injection strategies provide superior utility preservation compared to static
privacy mechanisms, yielding a 10% improvement in prediction accuracy at equivalent
privacy levels. The framework's modular architecture enables seamless deployment
across various mobile advertising platforms and supports scalability for millions of
concurrent users.

Privacy-aware feature engineering techniques developed in this study offer practical
solutions for handling diverse mobile advertising data types while maintaining
differential privacy guarantees. Specialized approaches for categorical, continuous, and
temporal features significantly enhance utility compared to generic differential privacy
mechanisms. This detailed privacy-utility analysis provides actionable guidelines for
selecting privacy parameters in real-world mobile advertising deployments.

5.2. Practical Applications and Industry Implications

The practical implications of this research for the mobile advertising industry are
substantial. First, the framework supports rapid compliance with privacy regulations
such as GDPR and CCPA while maintaining competitive performance. Second, the 10%
accuracy improvement over existing privacy-preserving methods can translate into
meaningful revenue retention for advertising platforms. Third, the modular architecture
facilitates straightforward integration into existing advertising systems.

Widespread industry adoption could transform user-advertiser relationships by
providing transparent privacy guarantees without compromising personalization
effectiveness. This aligns with growing demand for privacy-conscious digital services and
supports the economic viability of free, ad-supported mobile applications.

5.3. Future Research Directions and Limitations

Future research can extend this methodology to multimodal advertising data,
including video and audio content, enabling richer user engagement models. New
privacy mechanisms, such as shuffle models and secure aggregation, present
opportunities to enhance privacy while maintaining functionality. Integrating advanced
privacy tools, including homomorphic encryption and secure multi-party computation,
can further strengthen privacy protection for sensitive advertising applications.

The current framework primarily emphasizes individual privacy and could be
expanded to address group privacy and fairness considerations. Future work may explore
privacy-preserving cross-device tracking and attribution methods. Privacy amplification
and advanced composition techniques offer potential to improve the efficiency of privacy
budget usage in ad delivery pipelines.

Current limitations include the computational overhead of differential privacy
mechanisms and the complexities of tuning privacy parameters within diverse
advertising frameworks. Achieving low-latency predictions remains a priority, and
hardware acceleration may provide additional performance benefits. Further validation
across different cultural and regulatory contexts will enhance the generalizability of the
results and encourage broader adoption of privacy-preserving advertising technologies.
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