Journal of Science, Innovation & Social Impact
EISSN: 3105-5028 | PISSN: 3105-501X | Vol. 1, No. 1 (2025)

Article

Research on Intelligent Firmware Vulnerability Detection and
Priority Assessment Method Based on Hybrid Analysis

Xiaoyi Long *

Received: 11 October 2025
Revised: 28 October 2025
Accepted: 09 November 2025
Published: 13 November 2025

1 Computer Science, Georgia Institute of Technology, GA, USA
* Correspondence: Xiaoyi Long, Computer Science, Georgia Institute of Technology, GA, USA

Abstract: Binary firmware underpins critical infrastructure but often contains vulnerabilities that
conventional detection mechanisms fail to identify. In this work, we develop a hybrid analytical
framework that integrates static pattern extraction with runtime behavioral monitoring, achieving
detection rates of 93.7% across a corpus of 40 million procedures collected from production
firmware. Static pattern recognition leverages control flow graph embeddings, while probabilistic
scoring quantifies contextual risk. Cross-architecture evaluation across ARM, MIPS, x86, and
PowerPC demonstrates robustness against variations in compilation. Our methodology also
uncovers zero-day vulnerabilities, and the computational overhead remains manageable for
deployment on resource-constrained platforms, reducing false positive rates by 56.7% compared to
existing approaches.

Keywords: firmware vulnerability detection; hybrid analysis; priority assessment; embedded
security

Copyright: © 2025 by the authors.
Submitted for possible open access
publication under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/license

s/by/4.0/).

1. Introduction
1.1. Background and Motivation of Firmware Security Analysis

Embedded firmware powers billions of devices, from industrial controllers to
medical implants, yet vulnerability detection remains fundamentally inadequate.
Traditional methodologies often achieve less than 40% detection efficacy when analyzing
stripped binaries [1]. Several factors contribute to this underperformance. Heterogeneous
architectures fragment analysis frameworks. Vendor toolchains introduce unpredictable
transformations. Debug symbols are removed during production builds, leaving semantic
voids where meaningful analysis would otherwise occur.

A single vulnerable library function can propagate across entire product lines. For
instance, the Heartbleed vulnerability in OpenSSL affected routers, cameras, and
industrial sensors-any device incorporating the flawed memory handling routine. Our
examination of 2,847 production firmware images revealed that 73% contained critical
vulnerabilities inherited from external dependencies. These vulnerabilities persisted for
an average of 180 days post-disclosure before patches were deployed. Operators
managing thousands of such devices face rapidly expanding attack surfaces, while
remediation efforts progress slowly compared to the speed of exploitation.

Firmware differs fundamentally from desktop software. Resource constraints are
often measured in kilobytes. Real-time deadlines leave no room for analysis overhead.
Peripheral interactions are difficult to emulate. These constraints inform our analytical
approach, necessitating methods that are efficient yet comprehensive.

350

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

1.2. Current Challenges in Automated Vulnerability Detection

Stripped production binaries present severe analytical challenges. Variable names
are removed. Function boundaries are unclear. Type information is lost. Cross-
compilation further complicates analysis-a vulnerability manifest in ARM assembly may
appear entirely different in an optimized x86 binary. Pattern-matching algorithms trained
on one architecture often fail when applied to another.

Memory limitations hinder dynamic analysis. Instrumentation can inflate kilobyte-
scale functions into megabyte-scale representations. Real-time systems cannot tolerate
analysis-induced delays. Peripheral emulation remains unresolved; for example,
simulating the timing-critical interactions between a medical device's firmware and
specialized sensors is extremely challenging. Current methods achieve approximately 67%
detection rates while generating 28-30% false positives, producing unacceptable noise
levels for security teams already burdened by alert fatigue.

Bridging the semantic gap between source-level vulnerability specifications and their
binary manifestations is inherently difficult. Compilers distribute operations across basic
blocks. Optimizations merge vulnerable code with benign instructions. Architecture-
specific idioms replace portable constructs. Each transformation obscures vulnerability
signatures, demanding increasingly sophisticated detection strategies.

1.3. Research Objectives and Contributions

This work integrates static structural analysis with dynamic behavioral validation,
producing a unified framework that mitigates the limitations of individual techniques.
Probabilistic features are extracted from control flow graphs, preserving semantic
invariants across compilation boundaries. Runtime monitoring validates static
predictions through selective instrumentation targeting high-risk regions. Context-aware
scoring quantifies operational risk beyond technical severity alone.

Our contributions are fourfold:

1) Feature extraction algorithms robust to compilation variations, using
probabilistic embeddings that capture semantic essence while tolerating
syntactic divergence.

2) Context-sensitive risk quantification, acknowledging that a buffer overflow in a
medical device's drug dispensing module has different implications than one in
a consumer lightbulb.

3) Resource-optimized scheduling, enabling deployment on systems with strict
memory and computational constraints.

4) Empirical evaluation across 2,847 firmware images demonstrates 93.7%
detection accuracy and a 56.7% reduction in false positives relative to
contemporary approaches.

2. Related Work and Technical Foundation
2.1. Overview of Static Analysis Techniques for Firmware

Static analysis examines binaries without execution, offering the potential for
complete path coverage but often at the cost of precision. Prior studies categorize static
analysis into graph-based, signature-based, and semantic-based approaches [2]. Graph-
based methods map control flow to identify structural patterns resembling known
vulnerabilities. Performance varies significantly-accuracy can reach 78% when
architectures align but drops to 52% when analyzing ARM binaries on x86 frameworks.
Our hybrid approach addresses this limitation by employing architecture-agnostic
intermediate representations, maintaining 91.8% accuracy even across different
architectures. Accuracy degradation stems from differences in instruction selection,
register allocation, and calling conventions.

Signature-based methods scan instruction streams for vulnerable patterns. N-grams
capture local sequences, edit distance quantifies similarity, and alignment algorithms
tolerate insertions or deletions. While these methods enable large-scale deployment,
analyzing millions of functions per hour, precision is often compromised. Compilers

351

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

reorder instructions, substitute equivalent operations, and inline functions unpredictably,
making vulnerable sequences unrecognizable across binaries.

Intermediate representation lifting promises architecture independence by
translating binary instructions into abstract operations, normalizing platform-specific
details into common semantics. This transformation introduces computational overhead:
quadratic growth in complexity with procedure size can exhaust memory and halt
analysis for large functions.

2.2. Dynamic Analysis Approaches and Runtime Monitoring

Dynamic analysis observes program execution to reveal behaviors inaccessible to
static methods. Instrumentation can track memory operations and system interactions,
detecting up to 85% of memory corruption events, though at the cost of up to three times
execution overhead, which production systems often cannot tolerate.

Emulation creates controlled environments for firmware lacking physical hardware.
Tools like QEMU simulate CPUs, and peripheral models approximate sensors and
actuators. However, timing constraints can break under instrumentation, and hardware
interactions remain challenging to reproduce accurately. Coverage-guided fuzzing
explores execution boundaries by generating inputs that trigger latent bugs, but path
explosion limits exploration depth, as computational resources are quickly overwhelmed
before reaching deeply nested vulnerabilities.

Modern firmware often uses event-driven architectures. Interrupts occur
asynchronously, and peripheral inputs arrive unpredictably. Traditional analysis assumes
sequential execution, potentially missing vulnerabilities triggered by complex
interactions between concurrent events.

2.3. Machine Learning Applications in Vulnerability Detection

Machine learning reframes vulnerability detection as high-dimensional pattern
recognition. Deep neural networks can process raw binaries, extracting local patterns with
convolutional layers, capturing invariants through pooling, and mapping outputs to
vulnerability probabilities via fully connected layers [3,4]. Manual feature engineering
becomes less critical as networks learn directly from data.

Ensemble methods mitigate individual model weaknesses. Random forests handle
severe class imbalances where vulnerable code constitutes a small fraction of total
instructions. Gradient boosting refines predictions iteratively. Transfer learning allows
models trained on one platform, such as x86, to adapt efficiently to another, such as ARM,
with minimal additional data. Pre-trained embeddings encode general vulnerability
patterns, requiring only fine-tuning for specific architectures.

3. Proposed Hybrid Analysis Framework
3.1. Architecture Design and Component Integration

The framework integrates four modules using probabilistic scheduling. Binary lifting
normalizes machine code, static extraction derives features, dynamic monitoring validates
behavior, and classification assigns priorities. Each component operates independently
while enabling bidirectional information flow: static analysis guides dynamic testing, and
runtime observations refine static models.

Function boundaries present immediate challenges. Determining where one function
ends and another begins is critical for accuracy [5]. Recursive traversal disassembly
provides initial segmentation, while machine learning refines boundaries using
contextual cues such as calling conventions, stack frame patterns, and register
preservation. This combination achieves 94% boundary precision even in heavily
optimized code, directly supporting the overall 93.7% vulnerability detection rate.

As shown in Table 1, component resource usage and performance metrics are
summarized.

352

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

Table 1. Component Resource Requirements and Performance Metrics.

Component Memory Usage Processing Time Accuracy
(MB) (ms/KB) Contribution
Binary Lifting 45-78 12.3 15%
Static Analysis 156 - 234 34.7 42%
Dynamic 89 - 145 67.2 28%
Monitoring
ML Classification 234 - 456 23.4 15%

Intermediate representation removes architecture-specific details while preserving
semantics. For example, ADD instructions-whether x86's add eax, ebx or ARM's add 10,
rl, r2-are represented as abstract addition operations. Memory access patterns, control
flow relationships, and data dependencies remain intact. This abstraction enables cross-
architecture analysis without retraining models.

Graph construction proceeds incrementally. Basic blocks form nodes, and control
transfers become edges. Incremental construction reduces memory usage by 60%
compared to loading complete control flow graphs, which is crucial for large firmware
containing thousands of functions. Edge annotations capture branch conditions, enabling
path-sensitive analysis. Loop bounds constrain iterative constructs, and exception
handlers map error flows.

3.2. Feature Extraction and Pattern Recognition Algorithm

Vulnerabilities manifest across multiple abstraction levels. Multi-level feature
extraction has been shown to outperform single-level approaches by 23% [6]. We extract
structural topology using graph embeddings, semantic relationships through data flow
analysis, and behavioral patterns from dynamic traces.

Centrality metrics identify critical nodes where vulnerabilities cluster:
Betweenness_Centrality (v)=X_{s#v, t#v, s #t} (ost (v) / ost)

Nodes with high betweenness often control sensitive operations, which attackers
may target.

Taint propagation tracks untrusted data:

Taint_Propagation (v) =U {Taint (u) | (u, v) € DataFlowEdges}

Any operation touching tainted data becomes suspect, revealing how user inputs
reach sensitive functions.

Distribution moments characterize instruction patterns:

Skewness =E [(X -) 3]/0®

Kurtosis = E [(X -) 4]/o*- 3

Vulnerable code exhibits statistical anomalies, such as unusual instruction mixes or
atypical control flow complexity.

As shown in Figure 1, a pyramidal architecture processes raw binary bytes through
progressive abstraction layers. Level one contains raw hexadecimal machine code. Level
two parses instructions, extracting opcodes, operands, and addressing modes. Level three
aggregates instructions into basic blocks, computing block-level statistics. Level four
assembles blocks into functions, deriving control flow graphs and data dependencies. The
apex synthesizes function-level features into module-wide vulnerability signatures.
Arrows indicate information flow, showing how low-level patterns propagate upward
while high-level context guides feature selection below.

353

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

Behavioral Patterns
a . Behavior
Runtime Traces ¢ Dynamic Flows * Execution Paths

Module-wide

Vulnerability Synthesize

Signatures

T

Function Assembly

CFG, Data FlowsemP/®
Dependencies

T

Structural Features Semantic Features

* Graph Topology Taint Propagation

« Centrality Metrics * Data Dependencies

* API Calls

« Path Complexit: A .
i Basic Block Analysis

Block Statisti¢§/9regate

]) 1
1 : 1
1 1
1) 1
1) i
1 } I
1 y 1
1) 1
1) i
1) I
1 ' 1
1 * Loop Patterns 1 i
1
: * Branch Density : Local Patterns - J * Type Inference
1 N A |
1 y 1
1) i
1) 1
1) I
1 ! 1
1 y 1
1 : i
1 }
1
: . |
1 y 1
1 § i

* Memory Access

*« Structure

Instruction Parsing

Opcodes, Operands Parse
Addressing Modes

) ll\

Raw Binary Stream
OXE8 0%x45 OXFF 0x31 0XCO 0x48...

Figure 1. Multi-level Feature Extraction Pipeline.

Convolutional networks process instruction sequences:

Conv_Output [i] =ReLU (X_{j=0to k - 1} W[j] * Input [I +j] + b)

Kernels detect vulnerable instruction patterns, such as sequences preceding buffer
overflows.

Attention mechanisms focus on relevant features:

Attention_Weight (fi) = exp(score(fi)) / L_j exp(score(fj))

The network learns which features predict vulnerabilities while ignoring irrelevant
noise.

3.3. Static-Dynamic Analysis Fusion Strategy

Static analysis casts a wide net, while dynamic analysis provides precision. Selective
fusion reduces analysis time by using static filtering to identify candidate functions and
dynamic testing to confirm vulnerabilities [7]. Our approach enhances this by employing
bidirectional information flow: static predictions guide dynamic test generation, and
runtime observations recalibrate static models.

Confidence scores combine results from both analyses:

Combined_Score = * Static_Score + 3 * Dynamic_Score +y * Cross_Validation_Term

Weights «, 3, and y adapt through reinforcement learning, optimizing for each
firmware category.

As shown in Table 2, fusion strategy performance is summarized.

Table 2. Fusion Strategy Performance Compariso.

Strategy Detection Rate False Positives Analysis Time
Static Only 71.3% 28.4% 2.3 hours
Dynamic Only 65.7% 18.2% 8.7 hours
Sequential Fusion 82.4% 22.1% 5.4 hours
Adaptive Fusion 93.7% 12.3% 3.8 hours

Conflicting results trigger deep analysis. If static analysis flags a function as
vulnerable but dynamic testing finds no issue, the discrepancy is examined-whether due

354

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

to incomplete coverage or incorrect static patterns. Each conflict informs future

predictions.
Information flow consistency quantifies agreement:
Information_Flow_Consistency = [Static Dependencies n Dynamic_Flows!| /

| Static_Dependencies U Dynamic_Flows |

High consistency validates both analyses, while low consistency indicates model
disagreement that requires further investigation.

Symbolic execution bridges the gap between static coverage and dynamic precision.
Complex path conditions, such as those involving cryptographic operations or external
inputs, resist random testing. Symbolic reasoning explores these paths to uncover hidden
vulnerabilities.

3.4. Optimization Techniques for Resource-Constrained Environments

Embedded systems often provide megabytes of memory where desktops provide
gigabytes. Memory is a critical bottleneck [8]. Optimizations maximize analysis efficiency
while minimizing resource usage.

Incremental processing leverages firmware update patterns:

Incremental_Analysis_Cost = Base_Cost * (Modified_Procedures / Total_Procedures)

Since most updates touch a small fraction of code, differential analysis reduces
computation by 65% for typical patches.

As shown in Table 3, optimization techniques improve resource efficiency.

Table 3. Resource Optimization Impact.

Optimization Memory Speed
A I t
Technique Reduction Improvement cetiracy fmpac
I 1
ncreme?ta 65% 3.2x -0.3%
Processing
Sparse. 48% 1.8x 0.1%
Representations
Approximate 72% 4.5x 21%
Algorithms
Caching o o
Mechanisms 31% 2.6x 0%

Sparse graphs retain only security-relevant components, discarding uninteresting
normal control flows, significantly reducing memory usage.

Bloom filters enable probabilistic matching;:

False_Positive_Rate = (1 - e*(-kn/m)) " k

This trades perfect accuracy for space efficiency, which is acceptable when
preliminary filtering precedes precise analysis.

Task parallelization exploits multicore processors:

Task_Distribution = min (Available_Cores, Decomposable_Tasks)

Work-stealing balances loads dynamically, with idle cores taking tasks from busy
neighbors. Near-linear speedup is achieved up to eight cores (7.2x), maintaining 60%
efficiency at 32 cores and 35% at 256 cores due to coordination overhead.

4. Vulnerability Priority Assessment Methodology
4.1. Risk Scoring Algorithm Design

Technical severity alone provides an incomplete picture; contextual factors complete
the assessment. Firmware-specific considerations-such as update difficulty, device
criticality, and network exposure-significantly influence risk [9]. Our algorithm quantifies
these dimensions.

Base scores capture intrinsic properties:

Base_Score = Impact_Subscore * Exploitability_Subscore * Scope_Modifier

Each factor incorporates multiple sub-components.

355

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

Impact spans confidentiality, integrity, and availability:

Impact_Subscore =1 - (1 - Conf_Impact) * (1 - Integ_Impact) * (1 - Avail_Impact)

This formula reflects worst-case scenarios: compromise in any dimension yields a
high impact.

Exploitability accounts for attack prerequisites:

Exploitability_Subscore = 8.22 * Attack_Vector * Attack_Complexity * Privileges *
User_Interaction

The constant 8.22 normalizes scores to a 0-10 scale based on empirical studies.

As shown in Table 4, risk factor weights and ranges guide score computation.

Table 4. Risk Factor Weights and Ranges.

Risk Factor Weight Range Critical Threshold
Code Complexity 0.23 0-100 >75
Data Sensitivity 0.31 0-10 >7
Network Exposure 0.28 0-5 >3
Update Feasibility 0.18 0-1 <0.3
Temporal factors capture exploit evolution:
Temporal_Score = Base_Score * Exploit Maturity * Remediation_Level *

Report_Confidence

Fresh vulnerabilities score lower due to the absence of public exploits. Maturity
increases risk, while available patches reduce urgency.

Environmental modifiers account for deployment context:

Environmental_Score = min (10, Temporal_Score
Target_Distribution)

A vulnerability in a single router carries less risk than the same flaw affecting millions
of devices.

As shown in Figure 2, a heatmap visualizes vulnerability clustering across device
categories and vulnerability types. The X-axis enumerates vulnerability classes-buffer
overflows, SQL injections, authentication bypasses, cryptographic weaknesses, and race
conditions-while the Y-axis lists device types, including industrial PLCs, medical infusion
pumps, automotive ECUs, smart home hubs, and enterprise routers. Color intensity maps
risk levels: deep blue indicates minimal risk (scores below 2), green (2-4), yellow (4-6),
orange (6-8), and crimson represents critical risks exceeding 8. Industrial controllers show
high-risk areas for memory corruption, reflecting C/C++ legacy code and minimal
protections. Consumer IoT devices exhibit elevated risks around authentication flaws due
to weak default credentials and limited update mechanisms. Medical devices display
moderate risk levels across multiple vulnerability classes. This visualization informs
security investment decisions, highlighting areas where mitigation efforts provide
maximum impact.

* *

Collateral_Damage

356

Journal of Science, Innovation & Social Impact

Vol. 1 No. 1 (2025)

Industrial PLCs 5.8

Statistics
. Mean: 6.42
Medical Pumps 52 -
Median: 6.5
Std Dev: 1.87
Critical: 31%
Automotive ECUs 4.8 55 EEEECFAREN r{ Iia 77777 D
Smart Home 4.2 4.6
Enterprise Routers 5.0 513
3 Mo & Q\Z S
o“‘ \o\ 0* {\Q:b ('Oo
0 25 5.0 7.5 10
Risk Score

Figure 2. Risk Score Distribution Heatmap.

4.2. Context-Aware Vulnerability Classification

Raw CVSS scores can be misleading. The same vulnerability may have drastically
different consequences depending on the device. Contextual factors such as operational
environment, data sensitivity, and business impact refine prioritization.

Infrastructure criticality adjusts base scores. Multipliers range from 2.5-3.5x for
power grid controllers, 1.8-3.2x for hospital equipment, 1.5-2.8x for financial systems, and
0.8-1.5x for consumer devices. Network exposure measures attack accessibility:

Network_Exposure_Score = External Interfaces * Authentication_Strength *
Encryption_Usage

Internet-facing devices with weak authentication score highest, while air-gapped
systems with strong cryptography score lowest.

Data classification evaluates information types:

Sensitivity_Level = max (Personal_Data_Score,
Operational_Data_Score)

The maximum ensures that highly sensitive data is not diluted in averages.

As shown in Table 5, context-based priority multipliers provide guidance.

Financial Data_Score,

Table 5. Context-Based Priority Multipliers.

Context Category Base Multiplier Additional Factors Final Range
Critical 25 Redur'Idaflcy, 20-35
Infrastructure Monitoring

Healthcare 2.2 Patient Safety 1.8-32
Impact

Financial Systems 2.0 Transaction 1.5-28
Volume

Consumer Devices 1.0 User Base Size 0.8-15

Vulnerability chains amplify risk:

Chain_Risk = I'(Individual_Risks) * Correlation_Factor

Low-risk flaws may combine into high-risk exploit chains.

Dependencies further increase risk:

Correlation_Factor =1 + X (Dependency_Weights * Interaction_Strengths)

Shared libraries and common protocols facilitate vulnerability propagation and
lateral movement.

357

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

4.3. Automated Priority Ranking Implementation

Manual prioritization is infeasible at scale. Thousands of vulnerabilities across
hundreds of devices overwhelm human analysts. Automated ranking reduces
remediation time significantly [10,11]. Our system leverages historical patterns while
adapting to organizational priorities.

Gradient boosting aggregates weak learners:

F(x)=X_{m=1to M} ym * hm(x)

Each tree models different vulnerability aspects, with learning rates ym preventing
overfitting.

Feature importance emerges from split analysis:

Importance(feature_i) = X (splits using feature_i) Gain(split) / Total_Splits

Features frequently used in high-gain splits drive prioritization.

As shown in Figure 3, the priority ranking decision tree unfolds asymmetrically. The
root evaluates base CVSS scores, splitting at 7.0-scores below this branch toward lower
priorities, while higher scores branch toward urgent response. Subtrees adjust priority
based on exploit availability, patch status, context multipliers, and operational
environment. Leaf nodes display final priority levels P1 through P5, with node shading
reflecting the proportion of vulnerabilities reaching each classification. High-severity
vulnerabilities follow shorter paths, enabling rapid escalation, while low-severity
vulnerabilities undergo careful validation.

CVSS Score

>7.0? Priority Levels
M P critical
P2: High
P3: Medium
Check Exploit Device Type? . P5: Minimal

Financial

No Exploit Financial
Patch Status?) Volume?

Patch Yes No Patch
Age Check Network?
17% cases Direct
Y

12% cases 18% cases 28% cases 25% cases

Has Exploit Healthcare
Confext? Scorelz 8.0?

1

Decision Criteria :
+ CVSS 2 7.0: Direct path to high priority ~ « Healthcare/Financial: Inmediate P1 if score 2 8.0 + Exploit availability increases priority level :
I

« Patch availability reduces priority by 2 levels + Network exposure multiplies base priority « Age > 180 days reduces priority by 1 level

,,

Figure 3. Priority Ranking Decision Tree.

Dynamic threat intelligence adjusts priorities in real-time:

Updated_Priority = Base_Priority * Threat_Intelligence_Factor * Temporal_Decay

Reports of active exploitation, proof-of-concept code, or mass scanning elevate
urgency.

Temporal decay accounts for aging vulnerabilities:

Temporal_Decay = exp (-A * Days_Since_Discovery)

Old unpatched flaws may be less exploitable due to mitigations, missing
dependencies, or incorrect reporting.

Multi-objective optimization addresses trade-offs:

Pareto_Optimal_Set = {x | =3y: y dominates x in all objectives}

This identifies solutions balancing cost, time, and risk.

Resource allocation maximizes risk reduction per unit effort:

358

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

Resource_Assignment = argmax (Risk_Reduction / Required_Resources)
Simple patches addressing critical vulnerabilities are deployed first, while complex
updates targeting minor issues are scheduled later.

5. Experimental Evaluation and Discussion
5.1. Experimental Setup and Dataset Description

Robust evaluation requires dataset diversity. Consumer routers, industrial
controllers, and medical devices each pose unique challenges [12]. We compiled 2,847
firmware images from 14 vendors, covering 8 device categories and 4 architectures. The
corpus comprises 40 million procedures and 3,672 confirmed vulnerabilities, providing
reliable ground truth for validation.

The experimental infrastructure included a 256-core cluster with 1TB of RAM.
Despite the large dataset, processing 40 million procedures remained tractable. QEMU
emulation supported dynamic testing across architectures. Docker containers ensured
analysis isolation, preventing cross-contamination. Redis queues managed task
distribution, and PostgreSQL stored results efficiently.

Dataset splitting followed standard practice: 70% training, 15% validation, and 15%
testing. Stratification preserved the distribution of vulnerability types. For instance, buffer
overflow vulnerabilities representing 10% of training data also comprised 10% of test data,
preventing overfitting to specific vulnerability distributions.

5.2. Performance Metrics and Comparative Analysis

The experimental results demonstrate that our framework achieved a 93.7% true
positive rate, missing only 6.3% of vulnerabilities. The false positive rate was 12.3%, down
from a 28.4% baseline, representing a 56.7% relative reduction. Each percentage point
corresponds to hundreds of false alarms eliminated, saving analyst hours. Weighted
averages across device categories show high performance: consumer routers reached
95.2%, industrial controllers 94.1%, and medical devices 89.4%, the lower rate reflecting
proprietary protocols and regulatory constraints.

Comparative baselines from lightweight static analysis achieved 76% detection with
19% false positives. The superior performance of our hybrid method stems from
integrating dynamic validation, which effectively eliminates static false positives.

Average analysis time per firmware was 3.8 hours, 56.3% faster than exhaustive
dynamic testing, with peak memory usage of 456MB during classification. These figures
indicate that deployment is feasible on standard workstations rather than requiring
specialized high-end clusters.

5.3. Case Studies on Real-World Firmware Samples

To evaluate practical effectiveness, we analyzed three representative domains.

Commercial Routers: Analysis revealed 47 zero-day vulnerabilities, including
authentication bypasses in administrative interfaces, buffer overflows in DHCP handlers,
and command injections in diagnostic tools. Each vulnerability was verified through
proof-of-concept exploits, confirming the reliability of the detection framework.

Industrial Controllers: Critical flaws appeared in process control logic, including
integer overflows in sensor processing and race conditions in alarm handlers. The priority
ranking system successfully elevated safety-critical issues-those with potential physical
consequences-above vulnerabilities affecting only system availability, demonstrating
effective context-aware prioritization and alignment with operational risk [13].

Medical Devices: These devices posed distinct challenges due to proprietary
protocols, stringent regulatory constraints, and non-standard architectures that initially
complicated model predictions. Adaptations included custom protocol parsers, gentler
fuzzing strategies, and architecture-specific feature extraction. Despite these complexities,
the final detection accuracy reached 89.4%. Vulnerabilities impacting patient safety were
consistently assigned maximum priority, validating the effectiveness of the context-aware
ranking methodology [14,15].

359

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

6. Conclusion

This work presents a hybrid firmware vulnerability analysis framework that
integrates static structural analysis with dynamic behavioral monitoring to achieve high
detection accuracy while maintaining practical efficiency. By leveraging architecture-
agnostic intermediate representations, probabilistic feature embeddings, and context-
aware risk scoring, the framework addresses the challenges posed by stripped binaries,
heterogeneous architectures, and resource-constrained embedded environments.

Extensive evaluation across 2,847 firmware images, encompassing 40 million
procedures and multiple device categories-including consumer routers, industrial
controllers, and medical devices-demonstrated a true positive rate of 93.7% and a false
positive rate of 12.3%, representing a substantial improvement over baseline static or
dynamic approaches. Case studies highlighted domain-specific performance variations,
confirming the effectiveness of context-aware prioritization in elevating safety-critical
vulnerabilities and guiding remediation efforts.

Furthermore, the proposed risk scoring methodology incorporates technical severity,
operational context, dependency chains, and temporal factors to produce actionable
vulnerability rankings, enabling efficient resource allocation and timely mitigation.
Optimization techniques such as incremental analysis, sparse representations, and
parallel processing ensure feasibility on memory- and computation-limited platforms.

In summary, this framework provides a practical, scalable, and robust solution for
firmware security assessment, bridging the gap between theoretical detection capabilities
and real-world operational requirements. Its combination of hybrid analysis and context-
aware prioritization offers a blueprint for securing increasingly complex embedded
systems, enhancing overall resilience against emerging vulnerabilities.

Acknowledgments: This investigation materialized through extensive collaboration. Industrial
partners-who must remain anonymous for security reasons-provided thousands of firmware
samples and validation expertise. Their trust enabled unprecedented analysis scope. The broader
embedded security research community established foundations upon which we build.
Anonymous reviewers challenged assumptions, strengthening arguments. Their -critique
transformed a good paper into-we hope-an excellent contribution. Funding arrived via National
Science Foundation Grant CNS-2024789 and the Department of Defense Cyber Security Research
Program. Computational resources flowed from our institution's High-Performance Computing
Center-256 cores running continuously for three months, encompassing initial model training,
hyperparameter optimization, cross-validation experiments, and the final evaluation of 2,847
firmware images. Open-source communities maintaining IDA Pro plugins, QEMU modifications,
and binary analysis frameworks created the infrastructure making this research possible. To all
contributors, named and unnamed, we extend sincere gratitude.

References

1. P. Sun, L. Garcia, G. Salles-Loustau, and S. Zonouz, "Hybrid firmware analysis for known mobile and IoT security
vulnerabilities," In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), June, 2020, pp.
373-384. doi: 10.1109/dsn48063.2020.00053

2. X. Feng, X. Zhu, Q. L. Han, W. Zhou, S. Wen, and Y. Xiang, "Detecting vulnerability on IoT device firmware: A survey,"
IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 1, pp. 25-41, 2022.

3. M.Liu, Y. Zhang, J. Li, J. Shu, and D. Gu, "Security analysis of vendor customized code in firmware of embedded device," In
International Conference on Security and Privacy in Communication Systems, October, 2016, pp. 722-739. doi: 10.1007/978-3-319-
59608-2_40

4. Y. David, N. Partush, and E. Yahav, "Firmup: Precise static detection of common vulnerabilities in firmware," ACM SIGPLAN
Notices, vol. 53, no. 2, pp. 392-404, 2018.

5. A.Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L. Agba, "Automatic vulnerability detection in embedded devices
and firmware: Survey and layered taxonomies," ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1-42, 2021.

6. J.B.Hou, T. Li, and C. Chang, "Research for vulnerability detection of embedded system firmware," Procedia Computer Science,
vol. 107, pp. 814-818, 2017.

7. Y. Wang, J. Shen, J. Lin, and R. Lou, "Staged method of code similarity analysis for firmware vulnerability detection," IEEE
Access, vol. 7, pp. 14171-14185, 2019. doi: 10.1109/access.2019.2893733

8. W. Xie, Y. Jiang, Y. Tang, N. Ding, and Y. Gao, "Vulnerability detection in IoT firmware: A survey," In 2017 IEEE 23rd

International Conference on Parallel and Distributed Systems (ICPADS), December, 2017, pp. 769-772. doi: 10.1109/icpads.2017.00104

360

Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

9.

10.

11.

12.

13.

14.

15.

Y. G. Hassan, A. Collins, G. O. Babatunde, A. A. Alabi, and S. D. Mustapha, "Automated vulnerability detection and firmware
hardening for industrial IoT devices," International Journal of Multidisciplinary Research and Growth Evaluation, vol. 4, no. 1, pp.
697-703, 2023. doi: 10.54660/.ijmrge.2023.4.1.697-703

S. Ul Hagq, Y. Singh, A. Sharma, R. Gupta, and D. Gupta, "A survey on IoT & embedded device firmware security: Architecture,
extraction techniques, and vulnerability analysis frameworks," Discover Internet of Things, vol. 3, no. 1, p. 17, 2023.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, "AVATAR: A framework to support dynamic security analysis of
embedded systems' firmwares," In NDSS, February, 2014, pp. 1-16. doi: 10.14722/ndss.2014.23229

T. Bakhshi, B. Ghita, and I. Kuzminykh, "A review of IoT firmware vulnerabilities and auditing techniques," Sensors, vol. 24, no.
2, p. 708, 2024. doi: 10.3390/s24020708

O. Sallenave, and R. Ducournau, "Lightweight generics in embedded systems through static analysis," ACM SIGPLAN Notices,
vol. 47, no. 5, pp. 11-20, 2012. doi: 10.1145/2248418.2248421

H. Wang, Z. Ding, and Y. Zhong, "Static analysis test platform construction for embedded systems," In 2008 International
Conference on Audio, Language and Image Processing, July, 2008, pp. 808-812.

H. M. Kienle, J. Kraft, and T. Nolte, "System-specific static code analyses: A case study in the complex embedded systems
domain," Software Quality Journal, vol. 20, no. 2, pp. 337-367, 2012. doi: 10.1007/s11219-011-9138-7

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s)
disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or
products mentioned in the content.

361

	1. Introduction
	1.1. Background and Motivation of Firmware Security Analysis
	1.2. Current Challenges in Automated Vulnerability Detection
	1.3. Research Objectives and Contributions

	2. Related Work and Technical Foundation
	2.1. Overview of Static Analysis Techniques for Firmware
	2.2. Dynamic Analysis Approaches and Runtime Monitoring
	2.3. Machine Learning Applications in Vulnerability Detection

	3. Proposed Hybrid Analysis Framework
	3.1. Architecture Design and Component Integration
	3.2. Feature Extraction and Pattern Recognition Algorithm
	3.3. Static-Dynamic Analysis Fusion Strategy
	3.4. Optimization Techniques for Resource-Constrained Environments

	4. Vulnerability Priority Assessment Methodology
	4.1. Risk Scoring Algorithm Design
	4.2. Context-Aware Vulnerability Classification
	4.3. Automated Priority Ranking Implementation

	5. Experimental Evaluation and Discussion
	5.1. Experimental Setup and Dataset Description
	5.2. Performance Metrics and Comparative Analysis
	5.3. Case Studies on Real-World Firmware Samples

	6. Conclusion
	References

