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Abstract: Recent advances in machine learning have enabled retailers to leverage diverse data 
streams for demand prediction, yet most systems continue to rely primarily on historical sales. In 
this study, we address the challenge of seasonal demand forecasting by integrating meteorological 
observations, social media activity, and economic indicators with point-of-sale transactions. We 
propose a hierarchical ensemble that combines gradient boosting machines with bidirectional 
LSTMs, where component weights adapt according to product category and forecast horizon. 
Through mutual information screening, we reduce feature dimensionality from 123 to category-
specific subsets averaging 38 features, lowering computational costs by 60% while maintaining 
predictive accuracy. Our approach requires only standard training of the base models along with a 
lightweight meta-learner, without necessitating end-to-end joint training. Evaluation on 10.3 million 
transactions from three U.S. retail chains demonstrates that our method achieves a mean absolute 
percentage error of 19.6%, compared to 37.5% for seasonal naive baselines. Multi-source fusion thus 
provides a practical pathway to more accurate retail forecasting, without the complexity associated 
with end-to-end deep learning systems. Crucially, this approach relies on lightweight feature 
learning and selection techniques combined with meta-learner weighting, rather than on end-to-
end joint representation training. 

Keywords: seasonal demand forecasting; multi-source data fusion; retail analytics; hierarchical 
ensemble; gradient boosting machines 
 

1. Introduction 
Retail demand often exhibits patterns that challenge traditional forecasting methods. 

A sudden drop in temperature can double coat sales overnight. A viral social media post 
can deplete shelves of an obscure product within hours [1]. Economic uncertainty may 
shift consumers from premium to value brands. Such external factors create abrupt 
changes that historical averages alone cannot predict. 

The challenge becomes particularly pronounced during seasonal transitions. 
Consider outdoor furniture in April: last year's sales provide a baseline, but this year's 
weather differs. Temperatures run 10 degrees above normal [2]. Social media is abuzz 
with discussions of backyard renovations. Consumer confidence remains strong despite 
inflation concerns. How should these diverse signals be integrated to adjust forecasts? 

Most retailers address this by building separate models for each factor-one for 
weather effects, another for promotions, and a third for trends-then manually combining 
predictions [3]. This approach often fails to capture interactions. Hot weather can amplify 
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promotional responses. Social media virality may depend on economic conditions [4]. 
These cross-effects are as important as the primary effects themselves. 

Machine learning provides a potential solution. Tree-based models can discover non-
linear relationships. Neural networks can handle sequential data. Ensemble methods can 
combine diverse predictions [5]. Yet retail forecasting presents unique challenges: 
thousands of products with sparse sales, multiple overlapping seasonalities, and extreme 
events that disrupt historical patterns. 

We develop a framework that adapts the weighting of different data sources based 
on context [6]. When predicting next-day sales, historical patterns dominate. For forecasts 
two weeks ahead, external signals become more critical as uncertainty grows. The system 
adjusts these weights by product category-weather is more influential for beverages, 
social media for fashion, and economic signals for electronics. 

Three technical contributions enable practical deployment. First, mutual information 
screening identifies the most relevant features for each category, reducing computational 
load without sacrificing accuracy. Second, asynchronous fusion preserves high-frequency 
signals instead of downsampling all data to monthly granularity. Third, hierarchical 
ensemble learning combines specialized models through adaptive weighting [7]. 

We validate our framework across three retail contexts representing distinct 
forecasting challenges. A grocery chain with 89 stores tests stable demand prediction. An 
outdoor retailer with 34 locations evaluates weather sensitivity. A fashion chain with 33 
stores examines responsiveness to trends [8]. Collectively, these cases span the spectrum 
from routine replenishment to volatile fashion cycles. 

Our experiments show that optimal fusion strategies depend on product 
characteristics rather than universal rules. Weather-sensitive items benefit from early 
integration of meteorological data. Promotional products gain more from late fusion of 
independent models. Stable grocery items show minimal improvement from external data. 
These findings provide guidance for practical implementation: sophisticated fusion 
should be prioritized only where it produces meaningful returns [9]. 

2. Literature Review and Theoretical Foundation 
2.1. Evolution from Statistical to Neural Forecasting Architectures 

Statistical time series models dominated retail forecasting for decades due to their 
mathematical tractability and interpretable parameters. Exponential smoothing state 
space models, formulated as x_t = l_ (t - 1) + b_ (t - 1) + s_ (t - m) + epsilon_t, capture level, 
trend, and seasonal components through recursive filtering. Multiple seasonal (MS) 
extensions incorporate K seasonal periods: x_t = l_ (t - 1) + b_ (t - 1) + sum from k = 1 to K 
of s_(t-m_k) ^ (k) + epsilon_t, where m_k denotes the k-th seasonal period. These 
extensions reduce forecast errors by capturing overlapping seasonal patterns more 
effectively than single-seasonality models. 

Gradient boosting trees fundamentally change the modeling paradigm by learning 
non-parametric mappings through recursive partitioning. Weather features-including 
temperature, humidity, precipitation, wind velocity, and atmospheric pressure-can be 
combined with polynomial interactions up to degree 3 [10]. The tree ensemble F(x) = sum 
from m = 1 to M of gamma_m * h_m(x) aggregates M weak learners h_m, each capturing 
local patterns that global linear models cannot detect. 

The computational advantages extend beyond predictive power. Tree-based 
methods handle mixed variable types using native splitting rules, eliminating the 
dimensional explosion associated with one-hot encoding. Missing values are implicitly 
imputed through surrogate splits that preserve the local tree structure. Non-linear 
relationships emerge through tree depth rather than explicit basis functions, reducing the 
burden of feature engineering [11]. 

2.2. Information Fusion Strategies in Supply Chain Systems 
Multi-source integration follows two main approaches: early fusion, which 

concatenates features before modeling, and late fusion, which combines predictions from 
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specialized models. Ensemble methods consistently outperform single-model approaches 
by reducing variance and optimizing the bias-variance tradeoff [12]. The effectiveness of 
ensembles depends on the diversity of base models, as homogeneous ensembles provide 
minimal improvement due to correlated errors. 

Temporal synchronization remains a computational challenge. Point-of-sale systems 
update instantaneously, weather stations report hourly, and economic indicators arrive 
monthly. Most frameworks adopt lowest-common-denominator synchronization, 
downsampling all sources to match the coarsest granularity. This approach sacrifices 
high-frequency variations that carry predictive signals. Alternative strategies, such as 
upsampling through interpolation, introduce artifacts: linear interpolation creates false 
smoothness, nearest-neighbor interpolation creates discontinuities, and spline 
interpolation can produce spurious oscillations [13]. 

2.3. Environmental and Social Drivers of Retail Demand 
Meteorological conditions influence consumer behavior through complex 

psychophysiological mechanisms. Empirical evidence reveals pronounced asymmetries 
in weather response functions. Positive temperature deviations (Delta T > 0) increase 
beverage sales following S (Delta T) = 1 / (1 + exp (-0.3 * Delta T)), while negative deviations 
follow a linear decline S (Delta T) = 1 + 0.08 * Delta T. This asymmetry-immediate response 
to heat versus delayed response to cold-invalidates symmetric error assumptions in 
classical forecasting [14]. 

Social media operates through different transmission mechanisms, generating 
leading indicators with temporal lags tau ranging from 3 to 7 days. Viral propagation 
follows epidemic models: dI / dt = beta * S * I - gamma * I, where S represents the 
susceptible population, I represents the informed population, beta denotes the 
transmission rate, and gamma denotes the decay rate. Sentiment polarity extracted 
through transformer architectures correlates with purchase intent at r = 0.42 for fashion 
categories, although causality may be confounded by simultaneous marketing campaigns 
[5]. 

3. Methodology 
3.1. Data Collection and Integration 

Four data streams converge in our pipeline, each requiring specialized handling. 
Point-of-sale transactions arrive continuously through Apache Kafka, capturing every 
purchase with timestamp, product, quantity, price, and location. We achieve a 99.97% 
capture rate, which is crucial because even small losses can delay the detection of 
emerging trends. Lagged backfills are monitored to mitigate gaps [15]. 

Weather observations are collected from 1,247 National Weather Service stations 
reporting 28 variables hourly. Spatial interpolation addresses geographic gaps using 
weights calculated as w_i = (1 / d_i^2) divided by the sum over j of (1 / d_j^2), where 
stations are weighted by the inverse of distance squared. When stations fail, numerical 
weather model outputs are substituted, accepting slightly lower accuracy to maintain 
continuity [16]. 

Social media data requires extensive filtering. Raw Twitter streams contain roughly 
500,000 daily posts matching retail keywords, but most are noise. Ensemble classifiers 
remove spam with 94% precision, though about 6% of noise remains. Sentiment analysis 
using RoBERTa extracts opinions from the remaining text. 

Feature engineering transforms raw data into predictive signals. Temperature alone 
generates 12 features, including current value, deviation from normal, recent trend, and 
comfort index. Temporal lags are created at 1, 7, 14, and 28 days to capture various cycles. 
Interaction features multiply variables, such as temperature × weekend and precipitation 
× promotions. This expansion increases the base 97 features to 123 total features by 
including lags and interactions (As shown in Table 1). 
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Table 1. Feature Categories and Dimensions After Preprocessing. 

Source Updates Features Missing % 
Transactions Continuous 42 0.3 

Weather Hourly 28 3.2 
Social Real-time 15 8.7 

Economic Monthly 12 0.0 

3.2. Feature Selection 
Dimensionality reduction prevents overfitting while preserving predictive signal. 

We apply three complementary approaches: 
Mutual information measures statistical dependence between features and the target. 

It is calculated as I (X; Y) = sum over x and y of p (x, y) * log (p (x, y) / (p(x) * p(y))). Features 
with mutual information less than 0.05 nats with the target are eliminated. This step 
removes roughly 40% of features that provide negligible information. 

Recursive feature elimination using gradient boosting iteratively removes low-
importance features. We train 100-tree models, measure feature importance through total 
gain, eliminate the bottom 10% of features, and repeat until validation error begins to 
increase. Although this greedy approach can occasionally drop useful features, it ensures 
computational efficiency [17]. 

LASSO regularization adds an L1 penalty to the regression objective: minimize over 
beta of (1 / (2 * n)) * ||y - X * beta||^2 + lambda * ||beta||_1. Cross-validation selects 
lambda using the one-standard-error rule, favoring sparsity when performance 
differences are negligible (As shown in Table 2). 

Table 2. Feature Counts by Selection Stage and Product Category. 

Category Original After MI After RFE After LASSO 
Outdoor 123 89 52 47 
Apparel 123 91 48 41 

Beverages 123 78 39 35 
Electronics 123 71 31 28 

3.3. Ensemble Architecture 
Three base models capture different patterns in retail demand: 
SARIMA (2, 1, 2) × (1, 1, 1) _7 handles linear trends and weekly seasonality through 

a parametric structure. Despite its simplicity, it provides a strong baseline for stable 
products. 

XGBoost with 500 trees learns non-linear interactions through recursive partitioning. 
The trees automatically discover thresholds and interactions without explicit specification. 

A bidirectional LSTM with two layers (hidden sizes 128 and 64) models sequential 
dependencies. Forward and backward passes capture patterns in both temporal directions. 

A meta-learner combines predictions from the base models using learned weights. 
The weights are computed as w = softmax (W2 * ReLU (W1 * [h, t, c] + b1) + b2), where 
inputs include the forecast horizon (h), calendar and time features (t), and a category 
embedding (c). The softmax function ensures a valid probability distribution over the 
models (As shown in Table 3). 

Table 3. Base Model Architectures and Hyperparameters. 

Model Training Time Parameters 
1−MAPE (higher is 

better) 
SARIMA 2.3 sec 12 72.5% 
XGBoost 45 sec 125,000 77.4% 

LSTM 12 min 95,232 76.3% 
Meta-learner 30 sec 8,000 - 
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*MAPE = 27.5% ↔ 1−MAPE = 72.5%. 

4. Experimental Results and Performance Evaluation 
4.1. Dataset Characteristics and Experimental Protocol 

Three retail chains provide empirical validation, each representing distinct market 
segments with heterogeneous operational characteristics. The national grocery chain 
encompasses 89 stores distributed across four Köppen climate classifications: continental 
(Dfa), humid subtropical (Cfa), Mediterranean (Csb), and semi-arid (BSk). These locations 
generated 4.2 million transactions over 24 months, capturing multiple seasonal cycles 
while avoiding single-year anomalies. Transaction patterns exhibit substantial 
heterogeneity: urban stores (n = 31) process 127 ± 43 transactions hourly with an average 
basket size of $23.40, suburban supercenters (n = 42) handle 89 ± 28 transactions hourly, 
averaging $67.80, while wholesale clubs (n = 16) process 34 ± 12 bulk orders hourly, 
averaging $142.30. 

The outdoor equipment retailer operates 34 Pacific Northwest locations serving 
recreational enthusiasts. Their catalog spans 8,400 SKUs with demand variability 
coefficients ranging from CV = 0.4 (basic camping equipment) to CV = 3.2 (specialized 
winter sports gear). Sales exhibit pronounced weekly seasonality with weekend volume 
reaching 2.3 times weekday levels. Bimodal annual patterns emerge from optimal 
recreation conditions: a spring peak (April-May) when temperatures reach 60-75°F with 
minimal precipitation, and a fall peak (September-October) driven by favorable early-fall 
weather and holiday-related demand peaks. 

Fashion retail encompasses 33 metropolitan stores targeting trend-conscious 
demographics (age 18-35, household income >$50,000). Social media engagement 
demonstrates stronger predictive power than traditional variables: Instagram interactions 
correlate with next-week sales at r = 0.62 compared to r = 0.31 for promotional spending. 
Inventory velocity reaches 8.2 turns annually compared to the industry median of 4.3, 
amplifying forecasting importance. Markdown rates approaching 40% create complex 
price-demand feedback loops requiring simultaneous optimization. 

Computational infrastructure leverages distributed GPU acceleration: 8 × NVIDIA 
V100 (32GB) coordinated through Horovod, which implements ring-allreduce for 
gradient synchronization. The software stack includes PyTorch 1.13 for neural 
architectures, XGBoost 1.7.0 with GPU histogram algorithms, statsmodels 0.13 for classical 
time series, and Optuna 3.0 for hyperparameter optimization using Tree-structured 
Parzen Estimators with median pruning. While the heatmap shows perishables 
approaching approximately 12-15% error at longer horizons, the statement "<10% at 7 
days" refers to median performance across subcategories. This slight discrepancy reflects 
variation across specific product groups rather than a contradiction. Groceries remain 
relatively stable compared to more volatile categories, with errors rising moderately to 
around 25% at 14 days (As shown in Figure 1). 
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Figure 1. Forecast Accuracy Across Different Time Horizons and Product Categories. 

Performance evaluation employs multiple error metrics capturing different aspects 
of forecast quality. Mean Absolute Percentage Error, MAPE = (100 / n) * sum (|y_i - 
y_hat_i| / y_i), provides a scale-independent comparison across categories with order-of-
magnitude differences in demand. Root Mean Square Error, RMSE = square root of ((1 / n) 
* sum ((y_i - y_hat_i) ^ 2)), penalizes large deviations quadratically, identifying unstable 
predictions. Quantile losses, L_tau = sum ((tau – indicator (y_i < y_hat_i)) * (y_i - y_hat_i)) 
for tau in {0.1, 0.5, 0.9}, assess probabilistic calibration critical for inventory optimization 
under asymmetric costs. Although the dataset primarily spans 2020-2022, selected plots 
are extended to early 2023 to illustrate seasonal trends. No additional out-of-sample data 
were introduced; 2023 markers correspond to held-out test folds (As shown in Table 4). 

Table 4. Performance Comparison Across Model Configurations (MAPE %). 

Model 
Configurati

on 

Grocery 
Chain 

Outdoor 
Retailer 

Fashion 
Retailer Average 

Improveme
nt 

Naive 
Seasonal 

31.2 42.8 38.5 37.5 Baseline 
Model 

Exponential 
Smoothing 24.6 35.2 31.3 30.4 18.9% 

Univariate 
LSTM 22.3 31.7 28.6 27.5 26.7% 

Multi-
source 

XGBoost 
18.7 25.4 23.8 22.6 39.7% 

Proposed 
Ensemble 16.2 22.1 20.4 19.6 47.7% 

4.2. Comparative Performance Analysis of Fusion Strategies 
Fusion architecture selection critically determines predictive performance, with 

optimal strategies varying systematically across product characteristics. Early fusion 
concatenates all 123 features before model training, enabling joint optimization over the 
complete feature space. This approach excels for weather-sensitive categories where 
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environmental variables interact multiplicatively: temperature-humidity combinations 
define comfort zones, precipitation-promotion interactions modulate price elasticity, and 
weekend-weather patterns drive recreational purchasing. The unified feature space 
allows gradient boosting trees to discover compound decision rules, such as: "if 
temperature in [75,85] AND humidity < 70% AND weekend AND promotion active 
THEN demand multiplier = 1.45". Such complex conditionals remain invisible to 
separated models, explaining why early fusion shows a marked advantage over late 
fusion for garden supplies. 

Late fusion maintains model independence, training specialized predictors for each 
data source before combining predictions through learned weights. This architecture 
dominates for products with orthogonal demand drivers. Electronics respond primarily 
to promotional calendars and competitive dynamics, exhibiting minimal weather 
sensitivity beyond extreme events such as blizzards or hurricanes. Social signals track 
product launches, reviews, and influencer endorsements rather than meteorological 
conditions. Model specialization enables targeted optimization: promotional models 
employ price elasticity curves, social models implement viral propagation dynamics, and 
baseline models capture steady-state consumption. Temporal weight adaptation alpha(t) 
emphasizes relevant models: during promotions, weights [alpha_promo, alpha_social, 
alpha_baseline] ≈ [0.7, 0.2, 0.1]; after launches ≈ [0.2, 0.6, 0.2]; in stable periods ≈ [0.1, 0.1, 
0.8]. 

Hybrid fusion balances accuracy with computational efficiency without end-to-end 
joint training. Within-source representation learning (PCA, LDA, and pretrained 
autoencoders) generates compact features, which are then combined via a lightweight 
meta-learner (ridge regression or XGBoost) that learns context-dependent weights by 
product category and forecast horizon. This preserves interpretability and deployment 
simplicity while avoiding end-to-end coupling. During seasonal transitions, weather 
attention reaches alpha_weather = 0.65 while social influence diminishes to alpha_social 
= 0.20. During holiday periods, this relationship inverts: alpha_social = 0.52, 
alpha_weather = 0.25. These learned attention patterns reveal when each information 
source provides maximum predictive value (As shown in Table 5). 

Table 5. Fusion Strategy Performance by Product Characteristics. 

Product 
Type 

Demand 
Pattern 

Best 
Strategy MAPE 

Weather 
Contributio

n 

Social 
Contributio

n 
Seasonal 
Apparel 

High 
Seasonality 

Hybrid 
Fusion 

18.3% 38% 31% 

Groceries Stable Early 
Fusion 14.7% 12% 8% 

Electronics 
Promotiona

l Late Fusion 21.2% 5% 42% 

Garden 
Supplies 

Weather-
Driven 

Early 
Fusion 

19.8% 52% 15% 

Sports 
Equipment 

Event-
Driven 

Hybrid 
Fusion 

23.4% 28% 35% 

*Contribution = (MAPE_without_source − MAPE_full)/MAPE_full. 
Statistical significance testing using the Diebold-Mariano test confirms multi-source 

superiority (p < 0.01) for 78% of product categories. The test statistic DM = d̄ / square 
root(var(d) / T) compares forecast errors between methods, where d represents paired 
differences. Critical value 2.58 (99% confidence) is exceeded for the majority of product 
categories, strongly rejecting the null hypothesis of equal predictive accuracy. Categories 
failing significance tests exhibit extreme sparsity: over 60% zero-sales periods create 
insufficient signal for reliable parameter estimation. 
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4.3. Decomposition Analysis of Source-Specific Contributions 
Systematic ablation quantifies each data source's marginal contribution to ensemble 

accuracy. Removing weather data increases MAPE by 8.3 percentage points on average 
across weather-sensitive categories, but temporal patterns reveal pronounced seasonality. 
Spring months (March-May) experience 12.7-point degradation when temperature 
standard deviation reaches sigma_T = 15°F, while winter months with sigma_T = 8°F show 
only a 4.1-point impact. This asymmetry reflects behavioral adaptation: spring's volatility 
paralyzes purchase planning as consumers await stable conditions, while winter's 
predictability enables routine consumption despite absolute cold. 

Social media signals contribute heterogeneously across platforms and products. 
Instagram generates a 3.8-point improvement for fashion categories versus X (formerly 
Twitter) 2.3 points, explained by platform affordances and user demographics. Visual 
platforms facilitate product discovery through image-based browsing, while text 
platforms propagate functional information and reviews. Sentiment polarity 
(positive/negative classification) provides twice the predictive value of raw mention 
volume. Viral event detection prevents catastrophic prediction failures: during influencer-
triggered demand surges, models without social inputs underpredict by 47% on average. 
The stacked contributions do not sum exactly to total improvement due to overlapping 
effects and interaction terms in the meta-learner; plotted percentages represent 
approximate marginal contributions rather than strict additive decomposition. 

Economic indicators contribute modest but consistent improvements: 2.4 percentage 
points overall, decomposing into 4.1 points for discretionary categories versus 0.9 points 
for necessities. This aligns with permanent income hypothesis predictions, where 
consumption of durables responds more elastically to wealth shocks. Consumer 
confidence indices provide 14-21day leading signals sufficient for inventory repositioning. 
Unemployment rate changes operate coincidentally, immediately reducing discretionary 
spending. Interaction effects amplify during recessions: each standard deviation decline 
in confidence increases promotional price sensitivity by beta_interaction = 0.20, indicating 
that stressed consumers not only reduce quantity but alter purchase patterns toward 
value-seeking behavior (As shown in Figure 2). 

 
Figure 2. Marginal Contribution of Data Sources to Forecast Accuracy. 

Temporal evolution of source importance reveals non-stationary contribution 
patterns. Weather dominance peaks biannually during spring (March-April) and fall 
(September-October) transitions when temperature variability maximizes. During these 
periods, meteorological variables explain up to 15 percentage points of accuracy 
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improvement-nearly double their annual average. Social media exhibits secular growth 
from 18% relative contribution in Q1 2022 to 28% by Q4 2023, potentially reflecting 
algorithmic amplification of viral content or accelerating social commerce adoption. These 
shifting patterns motivate adaptive rather than static weighting schemes. 

Cross-source interactions generate super-additive improvements exceeding 
individual contributions. Weather-social coupling for outdoor products exemplifies this 
synergy: sunny weekend forecasts trigger anticipatory social sharing about recreational 
plans, creating demand amplification beyond either signal independently. The interaction 
term beta_weather × social contributes 3.2 percentage points of pure value creation 
unavailable to single-source models. Promotion-economic interactions add 2.1 points as 
financial stress amplifies discount sensitivity. These synergies justify the computational 
overhead of deep fusion architectures capable of learning cross-domain dependencies. 

5. Discussion 
5.1. Practical Implications 

Product characteristics exert a greater influence on the effectiveness of data fusion 
than the complexity of the model itself. Items sensitive to environmental conditions, such 
as beverages or apparel influenced by weather, benefit significantly from multi-source 
integration. Fashion products respond strongly to social sentiment monitoring, while 
staple groceries-typically exhibiting stable demand-gain little from complex modeling, 
raising questions about cost-effectiveness except in risk management scenarios. 

A cost-benefit assessment indicates that the break-even point occurs at 
approximately 50,000 USD in annual revenue when the coefficient of variation (CV) 
exceeds 0.5. For products below this threshold, conventional forecasting methods remain 
sufficient. In contrast, categories above this level yield measurable returns within six to 
eight months after adopting fusion-based forecasting. 

Non-technical barriers often match or surpass technical ones. Planning and 
merchandising teams tend to distrust "black box" algorithms due to limited 
interpretability. Effective adoption therefore depends on gradual integration: 
demonstrating value through pilot projects, providing transparent explanations of model 
outputs, and expanding deployment incrementally over an 18-24-month period. 

5.2. Limitations 
The proposed framework assumes that statistical properties remain stable within 

training windows. However, real-world retail environments are continuously evolving. 
For example, global disruptions such as pandemics have accelerated e-commerce 
transformation, and climate variability has altered traditional seasonal demand cycles. 
Additionally, frequent changes in social media platform algorithms can modify user 
engagement dynamics, indirectly affecting sentiment-based signals. 

Geographical and regulatory differences also constrain generalization. Stringent 
privacy regulations in Europe limit access to user-level social data. Asian markets display 
distinct responses to meteorological factors, while emerging economies often lack reliable 
sensor infrastructure necessary for environmental data collection. 

Future extensions should focus on adaptive architectures capable of handling regime 
shifts, cross-regional validation to ensure transferability, and the transition from 
correlational analysis toward causal inference that enables actionable interventions for 
inventory and promotion optimization. 

6. Conclusion 
This study presented a hierarchical ensemble framework for short-term retail 

demand forecasting that integrates meteorological, social media, and economic data with 
transactional histories. Across 10.3 million transactions from three retail chains, the 
approach achieved a 47.7% reduction in forecasting error compared with seasonal naïve 
baselines. A major contribution lies in the use of mutual information screening, which 
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reduces feature dimensionality by approximately 60% while maintaining predictive 
accuracy-thereby making multi-source fusion computationally efficient and scalable. 

Our findings reveal that optimal fusion strategies vary by product type. Weather-
sensitive goods benefit most from early fusion of environmental and transactional signals, 
while promotional items respond better to late fusion with social sentiment. In contrast, 
low-variance products show minimal improvement, suggesting that advanced fusion 
methods should be prioritized for high-value, high-volatility categories exceeding 50,000 
USD in annual revenue. 

Although the current framework assumes relative stationarity and may require 
regional adjustments, it demonstrates that multi-source data fusion can markedly enhance 
retail forecasting performance without resorting to excessively complex end-to-end 
neural architectures. Future research should address non-stationary dynamics through 
online model adaptation and progress from predictive modeling toward prescriptive 
analytics, enabling data-driven decision-making that directly supports strategic retail 
planning. 
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