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Abstract: This study presents an adaptive multi-modal fusion algorithm for early-stage cancer 
detection that dynamically integrates imaging, genomic, and clinical data using learned attention 
mechanisms. Unlike traditional approaches that treat fusion weights as fixed parameters, our 
method models them as probabilistic distributions, allowing adaptation to variations in data quality 
and modality availability in clinical environments. The key innovation is a meta-learning 
framework that predicts optimal fusion strategies based on the characteristics of incoming data. 
Experimental validation across 12,847 patients from eight medical centers demonstrates an AUROC 
of 0.947, with 89.3% sensitivity at 95% specificity. The algorithm exhibits particular robustness in 
managing minority cancer classes through hierarchical attention mechanisms that capture both local 
and global patterns. Comparative analysis against current state-of-the-art methods shows consistent 
performance improvements while maintaining computational efficiency suitable for clinical 
deployment. 
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1. Introduction 
1.1. Background and Clinical Significance 
1.1.1. Current Challenges in Early Cancer Detection 

Early-stage cancer detection faces substantial challenges due to heterogeneous 
disease presentations and the limitations of single-modality approaches. Contemporary 
screening protocols often struggle to balance sensitivity and specificity, particularly for 
rare variants representing less than 2% of screened populations. The multi-scale nature of 
cancer biology-spanning molecular alterations to tissue-level changes-necessitates 
comprehensive analysis beyond the capabilities of individual modalities. Furthermore, 
high false-positive rates in current screening programs, often exceeding 10-12% in 
mammography and 24% in low-dose CT lung screening, result in unnecessary biopsies, 
patient anxiety, and increased healthcare costs. In the United States, follow-up procedures 
for false positives impose an estimated economic burden of approximately $4 billion 
annually. 

The challenge is further compounded by significant inter-observer variability among 
radiologists and pathologists. Diagnostic concordance rates for early-stage lesions range 
from 75% to 85%, with borderline cases showing even greater disagreement. Such 
variability directly affects patient outcomes, as delayed diagnosis can allow disease 
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progression from localized to regional or metastatic stages, dramatically reducing five-
year survival rates from over 90% to below 30% for many cancer types. 

Machine learning approaches have demonstrated potential in addressing these 
challenges. For instance, studies have achieved high accuracy in specific cancer detection 
tasks, illustrating both the promise and limitations of single-modality methods. Tumor 
temporal evolution introduces additional complexity, as continuous genetic and 
phenotypic changes may impact diagnostic accuracy over time. Intra-tumoral 
heterogeneity further complicates detection, since single-site biopsies may not capture the 
complete molecular landscape, potentially leading to suboptimal treatment selection and 
therapeutic resistance [1,2]. 

1.1.2. Limitations of Single-Modality Approaches 
Individual diagnostic modalities offer an incomplete characterization of cancer, 

providing only partial insights into the multifaceted nature of malignancies. Imaging 
captures spatial tumor properties but lacks molecular specificity, making it challenging to 
differentiate benign from malignant lesions with similar morphology. Conditions such as 
inflammation, scar tissue, and certain benign neoplasms can mimic early-stage cancer on 
imaging, resulting in diagnostic ambiguity. Additionally, imaging modalities have 
limited sensitivity for microscopic disease, typically detecting lesions larger than 5-10 mm, 
thereby missing opportunities for intervention at the earliest stages [3]. 

Genomic analysis reveals mutation patterns but often overlooks spatial 
heterogeneity and microenvironmental context, which are critical for understanding 
tumor behavior and treatment response. While next-generation sequencing provides 
detailed mutational profiles, it cannot capture the spatial organization of tumor-immune 
interactions, vascular structures, or stromal composition, all of which significantly 
influence disease progression. Clinical biomarkers offer systemic indicators but 
frequently lack specificity when used in isolation, as benign conditions can produce 
overlapping signals with malignancies. For example, elevated CA-125 in ovarian cancer 
screening yields a positive predictive value below 10% in general populations, 
highlighting the need for complementary diagnostic strategies [4]. 

Recent studies have demonstrated that integrating multiple data sources enhances 
detection performance. For example, unsupervised deep learning applied to 
mammography achieved moderate results, which improved substantially with 
multimodal integration [5]. These findings emphasize a key insight: combining 
complementary information from different modalities can overcome the inherent 
limitations of single approaches, providing a more comprehensive and accurate 
representation of disease. 

1.2. Research Motivation and Objectives 
1.2.1. Performance Gaps in Existing Fusion Algorithms 

Current multi-modal fusion approaches typically rely on static weights that cannot 
adapt to variations in modality quality across patients or cancer subtypes. This limitation 
often leads to suboptimal integration, where dominant but less informative modalities can 
overshadow critical features. For example, when imaging quality is compromised by 
motion artifacts or low contrast, fixed-weight systems continue to assign predetermined 
importance to corrupted data, reducing overall performance [6]. Studies of clinical 
deployment report a 15-20% performance decline when algorithms encounter data 
distributions different from their training sets, with inference times sometimes exceeding 
practical requirements for real-time diagnostic support. 

The problem of distribution shift is particularly pronounced in multi-institutional 
settings, where differences in imaging protocols, sequencing platforms, and clinical 
practice patterns create significant domain gaps. Fusion methods trained on data from 
academic medical centers often fail to maintain performance when applied in community 
hospitals with different equipment and patient populations. Furthermore, the inability to 
handle missing modalities-common in clinical practice where genomic testing may be 
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unavailable or clinical records incomplete-limits real-world applicability. Existing 
systems typically require complete datasets or rely on simplistic imputation strategies, 
introducing additional uncertainty. 

1.2.2. Need for Optimized Feature Extraction Strategies 
Integrating high-dimensional multi-modal data-encompassing over 20,000 gene 

expressions, millions of image pixels, and dozens of clinical parameters-poses substantial 
computational and methodological challenges that require innovative solutions. Effective 
fusion demands specialized feature extraction methods that preserve modality-specific 
patterns while enabling cross-modal learning. The curse of dimensionality becomes 
especially problematic when features from disparate sources are concatenated naïvely, as 
the resulting high-dimensional space suffers from sparsity and increased computational 
complexity. Temporal alignment of data collected at different time points further 
complicates integration, necessitating robust methods that account for disease 
progression between measurements [7]. 

Additionally, the semantic gap between modalities-where imaging captures visual 
patterns, genomics encodes molecular information, and clinical data reflects systemic 
indicators-requires intelligent encoding strategies to bridge these fundamentally different 
representations. Standard feature extraction techniques optimized for single modalities 
often fail to capture subtle cross-modal correlations that provide essential diagnostic 
insights, such as the relationship between imaging phenotypes and underlying molecular 
subtypes. 

2. Related Work and Theoretical Foundation 
2.1. Evolution of Multi-Modal Fusion Approaches 
2.1.1. Early Fusion Techniques and Limitations 

Early fusion concatenates features at the input level, assuming that low-level 
correlations provide sufficient information for effective integration. This strategy operates 
on the premise that combining raw or minimally processed features from different 
modalities allows the model to learn optimal integration patterns directly. Studies 
analyzing fusion strategies for breast cancer classification have shown that early fusion 
underperforms by approximately 8% compared to more sophisticated methods [8]. The 
primary limitation arises from treating heterogeneous data uniformly, ignoring the 
distinct statistical properties and scale differences across modalities. For example, 
concatenating normalized imaging features (typically ranging from 0 to 1) with raw gene 
expression values (spanning several orders of magnitude) produces an imbalanced 
feature space, where high-variance modalities dominate the learned representations. 

When noise or artifacts affect a modality, early fusion propagates these corruptions 
through the entire pipeline without allowing modality-specific correction. This 
vulnerability is particularly problematic in clinical settings where data quality varies 
across institutions and acquisition protocols. Combining features from different 
distributions also creates optimization challenges, as gradients may be dominated by 
high-dimensional modalities, resulting in suboptimal convergence and limited 
generalization. Furthermore, early fusion lacks flexibility in handling missing modalities, 
a common scenario in clinical practice, as the fixed input structure cannot accommodate 
incomplete data. The computational cost of processing concatenated high-dimensional 
features further limits scalability, especially when integrating genomic data (over 20,000 
dimensions) with dense imaging features (millions of pixels). 

2.1.2. Late Fusion Strategies and Applications 
Late fusion processes each modality independently before combining predictions at 

the decision level, representing the opposite end of the fusion spectrum. This approach 
trains separate models for each modality and integrates their outputs through voting, 
averaging, or learned combination functions. Studies have demonstrated that late fusion 
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allows each modality to contribute according to its strengths, achieving high accuracy in 
complex tasks such as brain tumor detection [9]. 

Modality-specific processing enables the use of specialized architectures and training 
strategies tailored to the unique characteristics of each data type, while providing inherent 
resilience to modality-specific noise and artifacts. Late fusion also handles missing 
modalities gracefully by excluding unavailable predictions from the final combination. 
However, this approach may overlook fine-grained cross-modal patterns essential for 
subtle distinctions. Delayed integration prevents models from learning complementary 
features jointly during training, potentially missing synergistic relationships, such as 
correlations between imaging phenotypes and molecular subtypes. Additionally, 
decision-level combination may suffer from overconfidence when individual modality 
predictions are poorly calibrated, leading to suboptimal ensemble performance despite 
strong individual classifiers. 

2.2. Feature Extraction Methods in Medical Data 
Advanced feature extraction addresses the unique characteristics of medical data, 

including high dimensionality, class imbalance, and domain-specific noise patterns that 
differentiate medical applications from natural image analysis. Convolutional 
architectures dominate imaging feature extraction, with ResNet and DenseNet variants 
capturing hierarchical visual patterns through skip connections and dense connectivity, 
facilitating gradient flow and feature reuse. These architectures have been adapted for 
medical imaging with modifications such as 3D convolutions for volumetric data, 
attention mechanisms to highlight diagnostically relevant regions, and multi-scale feature 
pyramids that capture patterns from cellular to organ levels. 

Genomic data requires specialized encoding to preserve biological relationships 
while reducing dimensionality, as applying standard neural networks directly to gene 
expression data ignores underlying biological structures. Approaches incorporating 
pathway knowledge, gene regulatory networks, and hierarchical biological organization 
have demonstrated superior performance compared to generic dimensionality reduction 
methods. 

Deep feature extraction studies for colorectal cancer detection have shown that 
intermediate convolutional layers provide stronger discriminative power than final 
activations [10]. This indicates that cancer-specific patterns emerge at multiple scales, 
necessitating multi-resolution extraction strategies that aggregate features across network 
depths. Transfer learning from large medical datasets provides robust initialization, 
reduces training requirements, and improves generalization by leveraging patterns 
learned from related tasks and domains. 

3. Proposed Multi-Modal Fusion Algorithm 
3.1. Algorithm Architecture and Design 

3.1.1. Cross-Attention Mechanism for Heterogeneous Data 
We reformulate multi-modal fusion as a probabilistic attention problem where each 

modality queries relevant information from others. The cross-attention mechanism 
enables bidirectional information flow. In text formula: 

Attention for modality i attending modality j = softmax ((Query_i × Key_j^T) / 
sqrt(d_k)) × Value_j 

where Query_i comes from modality i, Key_j and Value_j come from modality j, and 
d_k is the dimension scaling factor. 

Multi-head attention is applied as: 
MultiHead (Q, K, V) = Concatenate (head_1, ..., head_h) × OutputWeight 
where each head is calculated as: 
head_i = Attention (Query × W_Qi, Key × W_Ki, Value × W_Vi) 
fWe use 8 heads for imaging-genomic pairs and 4 heads for clinical-imaging pairs. 

Hierarchical attention aggregates features from local, regional, and global scales: 
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Final output H = W_local × H_local + W_regional × H_regional + W_global × H_global 
Confidence-weighted gating adjusts modality contributions: 
Gate_i = sigmoid (W_gate × [confidence_i; quality_i]) 
Output_i = Gate_i × Attention_i + (1 − Gate_i) × Input_i 
Layer normalization with residual connections stabilizes training: 
Output = LayerNorm (Input + Dropout (MultiHead (Input))) 

3.1.2. Adaptive Weight Learning Framework 
Adaptive fusion weights are predicted using a multi-layer network: 
w_i = softmax (FC3(ReLU (FC2(ReLU (FC1 (concatenate (confidence_i, quality_i, 

representation_i))))))) 
The training objective combines task loss, KL regularization, and temporal 

smoothness: 
Total loss L_total = L_task + λ_KL × KL (w || uniform) + λ_temp × ||w_t − w_(t−1) 

||^2 
For missing modalities, weights are redistributed proportionally: 
Adjusted weight w_i = w_i / sum of w_j over available modalities 

3.2. Feature Extraction and Processing Pipeline 
3.2.1. Imaging Feature Extraction 

Deformable convolutions are applied to ResNet-101: 
Output at position p_0 = sum over n of [weight_n × Input (p_0 + p_n + offset_n) × 

modulation_n] 
Feature pyramid networks combine multi-scale features: 
P_i = Convolution (C_i + Upsample (P_ (I + 1))) 
Spatial attention weighting: 
F_attended = F × sigmoid (Conv (GlobalAveragePool(F)) + Conv (GlobalMaxPool(F))) 
Multi-resolution aggregation combines conv3_x (512-d), conv4_x (1024-d), conv5_x 

(2048-d). 

3.2.2. Genomic Data Encoding 
Variance stabilization: 
VST(x) = arcsinh (x / θ), where θ = sqrt(variance(x)/mean(x)) 
Pathway aggregation: 
GSVA score = sum over genes in pathway of (gene_expression × gene_weight) / sqrt 

(sum of gene_weights squared) 
Transformer encoding with 6 layers, each with 4-head attention, feedforward 

network (256 → 512 → 256), and layer normalization. 
Variational compression: 
Latent encoding z ~ Normal(mean(x), variance(x)) 
Loss L_VAE = Expected log-likelihood of x given z + β × KL divergence between q(z|x) 

and p(z) 
Resulting in 128-dimensional genomic features retaining 78.2% of original 

information. 

3.3. Fusion Strategy and Optimization 
3.3.1. Dynamic Fusion Weight Calculation 

Modality-level weights: 
W_modality = softmax (MLP ([mean_i, std_i, H_i, SNR_i])) 
Feature-level weights: 
W_feature = sigmoid (Conv1D(F_i) × AttentionMap_i) 
Total fusion weights: 
W_total = W_modality × W_feature (element-wise multiplication) 
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Uncertainty is computed as variance over multiple weight samples, and gradient is 
adjusted accordingly: 

grad_W = grad_L / (1 + Uncertainty) 

3.3.2. Gradient-Based Optimization 
Modality-specific AdamW optimizer with cosine learning rate schedule: 
Learning rate at step t = lr_min + 0.5 × (lr_max − lr_min) × (1 + cos (pi × current_step 

/ max_steps)) 
Gradients are stabilized with clipping, penalty, and harmonization across 

dimensions. Alternating optimization is performed: fusion weights (50 iterations), feature 
extractors (150 iterations), and joint refinement (100 iterations). 

4. Experimental Evaluation and Results 
4.1. Dataset Description and Preprocessing 
4.1.1. Multi-Modal Cancer Datasets Overview 

Experiments utilize data from 12,847 patients across 8 medical centers, including 
matched imaging (CT/MRI, 512×512×128 voxels), genomic (RNA-seq, 20,531 genes), and 
clinical data. Distribution includes breast (3,421), lung (2,867), colorectal (2,134), brain 
(1,956), and rare cancers (2,469). Quality assessment reveals 6.2% imaging artifacts, 3.8% 
low sequencing depth, and 11.4% temporal inconsistencies, providing realistic evaluation 
conditions. 

To enhance the model's ability to distinguish malignant from benign presentations, 
1,099 synthetic benign cases were generated using conditional GANs trained on 
histologically confirmed non-malignant samples. These negative controls were included 
exclusively in the training set to improve decision boundary definition. 

4.1.2. Data Augmentation and Balancing Strategies 
Class imbalance-where individual rare cancer subtypes each comprise less than 2% 

of the original screening population-requires sophisticated balancing. After applying 
SMOTE and MixUp augmentation, the combined rare cancer category represents 19.7% 
of the balanced training dataset, ensuring adequate representation for model learning. 

1) SMOTE: synthetic sample = original sample + λ × (neighbor sample − original 
sample), λ sampled from uniform distribution between 0 and 1. 

2) MixUp: mixed sample = λ × sample_i + (1 − λ) × sample_j, λ sampled from Beta 
distribution with α = 0.2. 

3) Modality-specific augmentation: imaging (rotation ±30 degrees, elastic 
deformation), genomic (dropout probability = 0.1, pathway noise), clinical 
(bounded perturbations). 

4.1.3. Cross-Validation Setup and Protocols 
Five-fold stratified cross-validation with patient-level splitting prevents data leakage. 

Temporal validation is structured as: 2018-2021 training, 2022 validation, and 2023 testing. 
Nested cross-validation (5×3×50) optimizes hyperparameters via Bayesian optimization. 
Similar protocols have been validated in prior work; our extension ensures modality-
specific validation. 

4.2. Performance Metrics and Baselines 
4.2.1. Evaluation Metrics for Imbalanced Classification 

Primary metrics include: 
1) AUROC, for threshold-independent discrimination. 
2) AUPRC, emphasizing minority class performance. 
3) MCC, calculated as (TP × TN − FP × FN) / square root of ((TP + FP) (TP + FN) 

(TN + FP) (TN + FN)). 
4) F2 score, emphasizing recall. 
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Calibration metrics include expected calibration error (ECE = sum of (n_i/N) × 
|accuracy_i − confidence_i|), Brier Score, and Hosmer-Lemeshow statistic. Clinical utility 
was assessed using sensitivity at 95% specificity, decision curve analysis, and number 
needed to screen. 

4.2.2. Baseline Algorithms and Implementations 
Comparisons include early fusion using MLP (AUROC = 0.876), late fusion with 

independent processing (AUROC = 0.891), tensor fusion with outer products (AUROC = 
0.883), MISA with shared/private subspaces (AUROC = 0.912), and GMF with gated fusion 
(AUROC = 0.924). An AdaBoost ensemble was also evaluated (AUROC = 0.907) [10]. 

4.3. Results Analysis and Interpretation 
4.3.1. Quantitative Performance Comparison 

Our algorithm achieves an AUROC of 0.947 (95% CI: 0.939-0.955), representing a 
0.023 AUROC improvement over GMF (0.924), which is statistically significant (DeLong's 
p < 0.001). 

Cancer-specific performance: 
1) Breast: AUROC 0.961, sensitivity 91.3% at 95% specificity. 
2) Lung: AUROC 0.952, early-stage sensitivity 84.6%. 
3) Colorectal: AUROC 0.944, MSI-H subtype 0.957. 
4) Brain: AUROC 0.938, glioblastoma differentiation 0.951. 
5) Rare: AUROC 0.927, only 2.2% degradation. 
Robustness analysis shows decreases without genomics (−3.2%), without clinical data 

(−2.0%), and without imaging (−7.8%). Computational efficiency: inference time 127 ms 
(V100 GPU), memory usage 3.8 GB. 

As shown in Table 1, the performance metrics are summarized by cancer type. 

Table 1. Performance Metrics by Cancer Type. 

Cancer Type AUROC AUPRC 
Sens@95%Spe

c Inference(ms) 

Breast 0.961 0.892 0.913 118 
Lung 0.952 0.871 0.897 134 

Colorectal 0.944 0.856 0.881 129 
Brain 0.938 0.843 0.869 142 
Rare 0.927 0.798 0.834 131 

4.3.2. Ablation Studies on Fusion Components 
Component removal impact: cross-attention (−0.043), adaptive weights (−0.031), 

meta-learning (−0.024), deformable convolutions (−0.018). Progressive modality addition: 
imaging only (0.864) → +genomic (0.916, +6.0%) → +clinical (0.947, +3.4%). Total 
improvement 9.6%, exceeding additive expectation by 12%. Attention contributions vary 
by cancer type: glioblastoma (67% imaging), breast ER+ (41% imaging, 43% genomic), 
colorectal MSI-H (balanced distribution). 

As shown in Table 2, ablation study results are summarized. 

Table 2. Ablation Study Results. 

Configuration AUROC ΔAUROC Parameters(M) 
Full Model 0.947  127.3 
w/o Cross - 
Attention 0.904 -0.043 98.6 

w/o Adaptive 
Weights 

0.916 -0.031 124.8 
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w/o Meta - 
Learning 

0.923 -0.024 119.2 

As shown in Table 3, the architecture parameters are listed. 

Table 3. Architecture Parameters. 

Component Imaging Genomic Clinical Fusion 
Hidden Dim 512 256 128 256 

Learning Rate 1e-4 5e-5 1e-3 1e-4* 
Dropout 0.3 0.4 0.2 0.3 
Attention 

Heads 8 4 2 8† 

*With cosine annealing schedule 
†Pairwise fusion uses 8 heads for imaging-genomic pairs and 4 heads for clinical-

imaging pairs. Meta-learning network employs three-layer architecture: 256→128→64 
neurons. 

As shown in Table 4, the class distribution after balancing is summarized. 

Table 4. Class Distribution After Balancing. 

Cancer Type Original After SMOTE After MixUp Final % 

Breast 3,421 3,421 4,105 22.7% 

Lung 2,867 2,867 3,440 19.0% 

Colorectal 2,134 2,561 3,073 17.0% 

Brain 1,956 2,347 2,816 15.6% 

Rare* 2,469 2,962 3,555 19.7% 

Benign† - - 1,099 6.1% 

Total 12,847 14,158 18,088 100.0% 

*Rare cancers include ovarian, pancreatic, gastric, and other subtypes with individual 
prevalence <2% in the original screening population. After balancing, rare cancers 
comprise 19.7% of training data. 

†Benign cases (n=1,099) were synthetically generated using conditional GANs to 
serve as negative controls during model training, improving specificity by providing 
boundary examples between malignant and non-malignant presentations. 

As shown in Figure 1, the adaptive weight learning architecture depicts three parallel 
streams (imaging, genomic, clinical) feeding into quality assessment modules. The meta-
learning network (256 → 128 → 64 neurons) generates normalized fusion weights, 
displayed as dynamic distributions, converging at the fusion layer for weighted 
combination. 
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Figure 1. Adaptive Weight Learning Architecture. 

As shown in Figure 2, dynamic weight evolution across 200 epochs for different 
cancer types is visualized using stacked area charts. Initial uniform weights (33.3% each) 
diverge to cancer-specific distributions, with correlation matrices illustrating 
relationships between weights and validation accuracy. 

 
Figure 2. Dynamic Weight Evolution. 

As shown in Figure 3, ROC curve comparisons across seven methods highlight the 
proposed approach (AUROC = 0.947) versus baselines. Confidence bands from 1,000 
bootstrap iterations indicate non-overlapping intervals, with an inset highlighting the 
high-specificity region relevant for clinical deployment. 
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Figure 3. ROC Curve Comparison. 

5. Discussion and Future Directions 
5.1. Clinical Implications and Deployment Considerations 
5.1.1. Real-World Performance Expectations 

Pilot deployments in three hospitals demonstrate AUROC values between 0.91 and 
0.92. This performance reflects expected degradation from controlled research conditions 
while potentially surpassing current clinical standards. Variations in performance arise 
from differences in imaging protocols, patient population diversity, and equipment 
heterogeneity, contributing to a 3-4% decrease in accuracy. 

The 127-millisecond inference time allows integration into radiological workflows 
without introducing delays. Batch processing accommodates 500-700 cases overnight. 
Attention visualizations correspond with radiologist reasoning in approximately 87% of 
cases, supporting interpretability and potentially enhancing clinical trust. 

5.1.2. Computational Efficiency Analysis 
The system supports deployment across a spectrum of computational environments, 

from high-performance servers to resource-limited settings. GPU deployment (e.g., RTX 
3080) enables processing of 500-700 cases daily using mixed precision. CPU optimization 
via quantization allows inference in approximately 3.2 seconds per case with minimal 
accuracy loss. Edge deployment supports mobile screening units, facilitating service 
delivery to underserved populations. 

5.2. Limitations and Challenges 
5.2.1. Data Availability and Quality Issues 

Matched multi-modal datasets remain limited, particularly for rare cancer subtypes. 
Data quality varies considerably across institutions, with community hospitals often 
providing lower-resolution imaging. Temporal misalignment between modalities 
introduces additional uncertainty. Inter-rater agreement for borderline lesions is 82%, and 
privacy restrictions further constrain dataset development. 
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5.2.2. Generalization across Cancer Types 
Performance differs across cancer categories. Solid tumors achieve AUROC values 

between 0.92 and 0.96, whereas hematological malignancies perform lower, with AUROC 
ranging from 0.83 to 0.88. Pediatric cancers are underrepresented, comprising less than 3% 
of the dataset. Detection of metastatic lesions (AUROC 0.871) lags behind primary tumor 
identification (AUROC 0.947). These results indicate an 8-12% lower accuracy in 
underrepresented populations, highlighting the need for improved data diversity to 
enhance generalization. 
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