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Abstract: This study presents an adaptive multi-modal fusion algorithm for early-stage cancer
detection that dynamically integrates imaging, genomic, and clinical data using learned attention
mechanisms. Unlike traditional approaches that treat fusion weights as fixed parameters, our
method models them as probabilistic distributions, allowing adaptation to variations in data quality
and modality availability in clinical environments. The key innovation is a meta-learning
framework that predicts optimal fusion strategies based on the characteristics of incoming data.
Experimental validation across 12,847 patients from eight medical centers demonstrates an AUROC
of 0.947, with 89.3% sensitivity at 95% specificity. The algorithm exhibits particular robustness in
managing minority cancer classes through hierarchical attention mechanisms that capture both local
and global patterns. Comparative analysis against current state-of-the-art methods shows consistent
performance improvements while maintaining computational efficiency suitable for clinical
deployment.
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1. Introduction
1.1. Background and Clinical Significance
1.1.1. Current Challenges in Early Cancer Detection

Early-stage cancer detection faces substantial challenges due to heterogeneous
disease presentations and the limitations of single-modality approaches. Contemporary
screening protocols often struggle to balance sensitivity and specificity, particularly for
rare variants representing less than 2% of screened populations. The multi-scale nature of
cancer biology-spanning molecular alterations to tissue-level changes-necessitates
comprehensive analysis beyond the capabilities of individual modalities. Furthermore,
high false-positive rates in current screening programs, often exceeding 10-12% in
mammography and 24% in low-dose CT lung screening, result in unnecessary biopsies,
patient anxiety, and increased healthcare costs. In the United States, follow-up procedures
for false positives impose an estimated economic burden of approximately $4 billion
annually.

The challenge is further compounded by significant inter-observer variability among
radiologists and pathologists. Diagnostic concordance rates for early-stage lesions range
from 75% to 85%, with borderline cases showing even greater disagreement. Such
variability directly affects patient outcomes, as delayed diagnosis can allow disease
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progression from localized to regional or metastatic stages, dramatically reducing five-
year survival rates from over 90% to below 30% for many cancer types.

Machine learning approaches have demonstrated potential in addressing these
challenges. For instance, studies have achieved high accuracy in specific cancer detection
tasks, illustrating both the promise and limitations of single-modality methods. Tumor
temporal evolution introduces additional complexity, as continuous genetic and
phenotypic changes may impact diagnostic accuracy over time. Intra-tumoral
heterogeneity further complicates detection, since single-site biopsies may not capture the
complete molecular landscape, potentially leading to suboptimal treatment selection and
therapeutic resistance [1,2].

1.1.2. Limitations of Single-Modality Approaches

Individual diagnostic modalities offer an incomplete characterization of cancer,
providing only partial insights into the multifaceted nature of malignancies. Imaging
captures spatial tumor properties but lacks molecular specificity, making it challenging to
differentiate benign from malignant lesions with similar morphology. Conditions such as
inflammation, scar tissue, and certain benign neoplasms can mimic early-stage cancer on
imaging, resulting in diagnostic ambiguity. Additionally, imaging modalities have
limited sensitivity for microscopic disease, typically detecting lesions larger than 5-10 mm,
thereby missing opportunities for intervention at the earliest stages [3].

Genomic analysis reveals mutation patterns but often overlooks spatial
heterogeneity and microenvironmental context, which are critical for understanding
tumor behavior and treatment response. While next-generation sequencing provides
detailed mutational profiles, it cannot capture the spatial organization of tumor-immune
interactions, vascular structures, or stromal composition, all of which significantly
influence disease progression. Clinical biomarkers offer systemic indicators but
frequently lack specificity when used in isolation, as benign conditions can produce
overlapping signals with malignancies. For example, elevated CA-125 in ovarian cancer
screening yields a positive predictive value below 10% in general populations,
highlighting the need for complementary diagnostic strategies [4].

Recent studies have demonstrated that integrating multiple data sources enhances
detection performance. For example, unsupervised deep learning applied to
mammography achieved moderate results, which improved substantially with
multimodal integration [5]. These findings emphasize a key insight: combining
complementary information from different modalities can overcome the inherent
limitations of single approaches, providing a more comprehensive and accurate
representation of disease.

1.2. Research Motivation and Objectives
1.2.1. Performance Gaps in Existing Fusion Algorithms

Current multi-modal fusion approaches typically rely on static weights that cannot
adapt to variations in modality quality across patients or cancer subtypes. This limitation
often leads to suboptimal integration, where dominant but less informative modalities can
overshadow critical features. For example, when imaging quality is compromised by
motion artifacts or low contrast, fixed-weight systems continue to assign predetermined
importance to corrupted data, reducing overall performance [6]. Studies of clinical
deployment report a 15-20% performance decline when algorithms encounter data
distributions different from their training sets, with inference times sometimes exceeding
practical requirements for real-time diagnostic support.

The problem of distribution shift is particularly pronounced in multi-institutional
settings, where differences in imaging protocols, sequencing platforms, and clinical
practice patterns create significant domain gaps. Fusion methods trained on data from
academic medical centers often fail to maintain performance when applied in community
hospitals with different equipment and patient populations. Furthermore, the inability to
handle missing modalities-common in clinical practice where genomic testing may be

319



Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

unavailable or clinical records incomplete-limits real-world applicability. Existing
systems typically require complete datasets or rely on simplistic imputation strategies,
introducing additional uncertainty.

1.2.2. Need for Optimized Feature Extraction Strategies

Integrating high-dimensional multi-modal data-encompassing over 20,000 gene
expressions, millions of image pixels, and dozens of clinical parameters-poses substantial
computational and methodological challenges that require innovative solutions. Effective
fusion demands specialized feature extraction methods that preserve modality-specific
patterns while enabling cross-modal learning. The curse of dimensionality becomes
especially problematic when features from disparate sources are concatenated naively, as
the resulting high-dimensional space suffers from sparsity and increased computational
complexity. Temporal alignment of data collected at different time points further
complicates integration, necessitating robust methods that account for disease
progression between measurements [7].

Additionally, the semantic gap between modalities-where imaging captures visual
patterns, genomics encodes molecular information, and clinical data reflects systemic
indicators-requires intelligent encoding strategies to bridge these fundamentally different
representations. Standard feature extraction techniques optimized for single modalities
often fail to capture subtle cross-modal correlations that provide essential diagnostic
insights, such as the relationship between imaging phenotypes and underlying molecular
subtypes.

2. Related Work and Theoretical Foundation
2.1. Evolution of Multi-Modal Fusion Approaches
2.1.1. Early Fusion Techniques and Limitations

Early fusion concatenates features at the input level, assuming that low-level
correlations provide sufficient information for effective integration. This strategy operates
on the premise that combining raw or minimally processed features from different
modalities allows the model to learn optimal integration patterns directly. Studies
analyzing fusion strategies for breast cancer classification have shown that early fusion
underperforms by approximately 8% compared to more sophisticated methods [8]. The
primary limitation arises from treating heterogeneous data uniformly, ignoring the
distinct statistical properties and scale differences across modalities. For example,
concatenating normalized imaging features (typically ranging from 0 to 1) with raw gene
expression values (spanning several orders of magnitude) produces an imbalanced
feature space, where high-variance modalities dominate the learned representations.

When noise or artifacts affect a modality, early fusion propagates these corruptions
through the entire pipeline without allowing modality-specific correction. This
vulnerability is particularly problematic in clinical settings where data quality varies
across institutions and acquisition protocols. Combining features from different
distributions also creates optimization challenges, as gradients may be dominated by
high-dimensional modalities, resulting in suboptimal convergence and limited
generalization. Furthermore, early fusion lacks flexibility in handling missing modalities,
a common scenario in clinical practice, as the fixed input structure cannot accommodate
incomplete data. The computational cost of processing concatenated high-dimensional
features further limits scalability, especially when integrating genomic data (over 20,000
dimensions) with dense imaging features (millions of pixels).

2.1.2. Late Fusion Strategies and Applications

Late fusion processes each modality independently before combining predictions at
the decision level, representing the opposite end of the fusion spectrum. This approach
trains separate models for each modality and integrates their outputs through voting,
averaging, or learned combination functions. Studies have demonstrated that late fusion
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allows each modality to contribute according to its strengths, achieving high accuracy in
complex tasks such as brain tumor detection [9].

Modality-specific processing enables the use of specialized architectures and training
strategies tailored to the unique characteristics of each data type, while providing inherent
resilience to modality-specific noise and artifacts. Late fusion also handles missing
modalities gracefully by excluding unavailable predictions from the final combination.
However, this approach may overlook fine-grained cross-modal patterns essential for
subtle distinctions. Delayed integration prevents models from learning complementary
features jointly during training, potentially missing synergistic relationships, such as
correlations between imaging phenotypes and molecular subtypes. Additionally,
decision-level combination may suffer from overconfidence when individual modality
predictions are poorly calibrated, leading to suboptimal ensemble performance despite
strong individual classifiers.

2.2. Feature Extraction Methods in Medical Data

Advanced feature extraction addresses the unique characteristics of medical data,
including high dimensionality, class imbalance, and domain-specific noise patterns that
differentiate medical applications from natural image analysis. Convolutional
architectures dominate imaging feature extraction, with ResNet and DenseNet variants
capturing hierarchical visual patterns through skip connections and dense connectivity,
facilitating gradient flow and feature reuse. These architectures have been adapted for
medical imaging with modifications such as 3D convolutions for volumetric data,
attention mechanisms to highlight diagnostically relevant regions, and multi-scale feature
pyramids that capture patterns from cellular to organ levels.

Genomic data requires specialized encoding to preserve biological relationships
while reducing dimensionality, as applying standard neural networks directly to gene
expression data ignores underlying biological structures. Approaches incorporating
pathway knowledge, gene regulatory networks, and hierarchical biological organization
have demonstrated superior performance compared to generic dimensionality reduction
methods.

Deep feature extraction studies for colorectal cancer detection have shown that
intermediate convolutional layers provide stronger discriminative power than final
activations [10]. This indicates that cancer-specific patterns emerge at multiple scales,
necessitating multi-resolution extraction strategies that aggregate features across network
depths. Transfer learning from large medical datasets provides robust initialization,
reduces training requirements, and improves generalization by leveraging patterns
learned from related tasks and domains.

3. Proposed Multi-Modal Fusion Algorithm
3.1. Algorithm Architecture and Design

3.1.1. Cross-Attention Mechanism for Heterogeneous Data

We reformulate multi-modal fusion as a probabilistic attention problem where each
modality queries relevant information from others. The cross-attention mechanism
enables bidirectional information flow. In text formula:

Attention for modality i attending modality j = softmax ((Query_i x Key_j*T) /
sqrt(d_k)) x Value_j

where Query_i comes from modality i, Key_j and Value_j come from modality j, and
d_k is the dimension scaling factor.

Multi-head attention is applied as:

MultiHead (Q, K, V) = Concatenate (head_1, ..., head_h) x OutputWeight

where each head is calculated as:

head_i = Attention (Query x W_Qi, Key x W_Ki, Value x W_Vi)

fWe use 8 heads for imaging-genomic pairs and 4 heads for clinical-imaging pairs.
Hierarchical attention aggregates features from local, regional, and global scales:
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Final output H=W_local x H_local + W_regional x H_regional + W_global x H_global
Confidence-weighted gating adjusts modality contributions:

Gate_i = sigmoid (W_gate x [confidence_i; quality_i])

Output_i = Gate_i x Attention_i + (1 — Gate_i) x Input_i

Layer normalization with residual connections stabilizes training:

Output = LayerNorm (Input + Dropout (MultiHead (Input)))

3.1.2. Adaptive Weight Learning Framework

Adaptive fusion weights are predicted using a multi-layer network:

w_i = softmax (FC3(ReLU (FC2(ReLU (FC1 (concatenate (confidence_i, quality_i,
representation_i)))))))

The training objective combines task loss, KL regularization, and temporal
smoothness:

Total loss L_total = L_task + A_KL x KL (w | | uniform) + A_temp x | lw_t — w_(t-1)
1112

For missing modalities, weights are redistributed proportionally:

Adjusted weight w_i = w_i / sum of w_j over available modalities

3.2. Feature Extraction and Processing Pipeline
3.2.1. Imaging Feature Extraction

Deformable convolutions are applied to ResNet-101:

Output at position p_0 = sum over n of [weight n x Input (p_0 + p_n + offset_n) x
modulation_n]

Feature pyramid networks combine multi-scale features:

P_i = Convolution (C_i + Upsample (P_ (I +1)))

Spatial attention weighting:

F_attended =F x sigmoid (Conv (GlobalAveragePool(F)) + Conv (GlobalMaxPool(F)))

Multi-resolution aggregation combines conv3_x (512-d), conv4_x (1024-d), conv5_x
(2048-d).

3.2.2. Genomic Data Encoding

Variance stabilization:

VST(x) = arcsinh (x / ©), where 0 = sqrt(variance(x)/mean(x))

Pathway aggregation:

GSVA score = sum over genes in pathway of (gene_expression x gene_weight) / sqrt
(sum of gene_weights squared)

Transformer encoding with 6 layers, each with 4-head attention, feedforward
network (256 — 512 — 256), and layer normalization.

Variational compression:

Latent encoding z ~ Normal(mean(x), variance(x))

Loss L_VAE = Expected log-likelihood of x given z + 3 x KL divergence between q(z | x)
and p(z)

Resulting in 128-dimensional genomic features retaining 78.2% of original
information.

3.3. Fusion Strategy and Optimization
3.3.1. Dynamic Fusion Weight Calculation
Modality-level weights:
W_modality = softmax (MLP ([mean_i, std_i, H_i, SNR_i]))
Feature-level weights:
W_feature = sigmoid (ConvlD(F_i) x AttentionMap_i)
Total fusion weights:
W_total = W_modality x W_feature (element-wise multiplication)
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Uncertainty is computed as variance over multiple weight samples, and gradient is
adjusted accordingly:
grad_W = grad_L / (1 + Uncertainty)

3.3.2. Gradient-Based Optimization

Modality-specific AdamW optimizer with cosine learning rate schedule:

Learning rate at step t =1r_min + 0.5 x (Ir_max — Ir_min) x (1 + cos (pi x current_step
/ max_steps))

Gradients are stabilized with clipping, penalty, and harmonization across
dimensions. Alternating optimization is performed: fusion weights (50 iterations), feature
extractors (150 iterations), and joint refinement (100 iterations).

4. Experimental Evaluation and Results
4.1. Dataset Description and Preprocessing
4.1.1. Multi-Modal Cancer Datasets Overview

Experiments utilize data from 12,847 patients across 8 medical centers, including
matched imaging (CT/MRI, 512x512x128 voxels), genomic (RNA-seq, 20,531 genes), and
clinical data. Distribution includes breast (3,421), lung (2,867), colorectal (2,134), brain
(1,956), and rare cancers (2,469). Quality assessment reveals 6.2% imaging artifacts, 3.8%
low sequencing depth, and 11.4% temporal inconsistencies, providing realistic evaluation
conditions.

To enhance the model's ability to distinguish malignant from benign presentations,
1,099 synthetic benign cases were generated using conditional GANSs trained on
histologically confirmed non-malignant samples. These negative controls were included
exclusively in the training set to improve decision boundary definition.

4.1.2. Data Augmentation and Balancing Strategies

Class imbalance-where individual rare cancer subtypes each comprise less than 2%
of the original screening population-requires sophisticated balancing. After applying
SMOTE and MixUp augmentation, the combined rare cancer category represents 19.7%
of the balanced training dataset, ensuring adequate representation for model learning.

1) SMOTE: synthetic sample = original sample + A x (neighbor sample - original

sample), A sampled from uniform distribution between 0 and 1.

2)  MixUp: mixed sample = A x sample_i + (1 — A) x sample_j, A sampled from Beta

distribution with o =0.2.

3) Modality-specific augmentation: imaging (rotation #30 degrees, elastic

deformation), genomic (dropout probability = 0.1, pathway noise), clinical
(bounded perturbations).

4.1.3. Cross-Validation Setup and Protocols

Five-fold stratified cross-validation with patient-level splitting prevents data leakage.
Temporal validation is structured as: 2018-2021 training, 2022 validation, and 2023 testing.
Nested cross-validation (5x3x50) optimizes hyperparameters via Bayesian optimization.
Similar protocols have been validated in prior work; our extension ensures modality-
specific validation.

4.2. Performance Metrics and Baselines
4.2.1. Evaluation Metrics for Imbalanced Classification
Primary metrics include:
1)  AUROC, for threshold-independent discrimination.
2) AUPRC, emphasizing minority class performance.
3) MCC, calculated as (TP x TN - FP x FN) / square root of ((TP + FP) (TP + FN)
(TN +FP) (TN + EN)).
4)  F2 score, emphasizing recall.
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Calibration metrics include expected calibration error (ECE = sum of (n_i/N) x
laccuracy_i — confidence_il), Brier Score, and Hosmer-Lemeshow statistic. Clinical utility
was assessed using sensitivity at 95% specificity, decision curve analysis, and number
needed to screen.

4.2.2. Baseline Algorithms and Implementations

Comparisons include early fusion using MLP (AUROC = 0.876), late fusion with
independent processing (AUROC = 0.891), tensor fusion with outer products (AUROC =
0.883), MISA with shared/private subspaces (AUROC =0.912), and GMF with gated fusion
(AUROC =0.924). An AdaBoost ensemble was also evaluated (AUROC = 0.907) [10].

4.3. Results Analysis and Interpretation
4.3.1. Quantitative Performance Comparison

Our algorithm achieves an AUROC of 0.947 (95% CI: 0.939-0.955), representing a
0.023 AUROC improvement over GMF (0.924), which is statistically significant (DeLong's
p <0.001).

Cancer-specific performance:

1)  Breast: AUROC 0.961, sensitivity 91.3% at 95% specificity.

2)  Lung: AUROC 0.952, early-stage sensitivity 84.6%.

3) Colorectal: AUROC 0.944, MSI-H subtype 0.957.

4)  Brain: AUROC 0.938, glioblastoma differentiation 0.951.

5) Rare: AUROC 0.927, only 2.2% degradation.

Robustness analysis shows decreases without genomics (-3.2%), without clinical data
(-2.0%), and without imaging (-7.8%). Computational efficiency: inference time 127 ms
(V100 GPU), memory usage 3.8 GB.

As shown in Table 1, the performance metrics are summarized by cancer type.

Table 1. Performance Metrics by Cancer Type.

Cancer Type AUROC AUPRC Sens@95%Spe Inference(ms)
Breast 0.961 0.892 0.913 118
Lung 0.952 0.871 0.897 134
Colorectal 0.944 0.856 0.881 129
Brain 0.938 0.843 0.869 142
Rare 0.927 0.798 0.834 131

4.3.2. Ablation Studies on Fusion Components

Component removal impact: cross-attention (—0.043), adaptive weights (-0.031),
meta-learning (—0.024), deformable convolutions (-0.018). Progressive modality addition:
imaging only (0.864) — +genomic (0.916, +6.0%) — +clinical (0.947, +3.4%). Total
improvement 9.6%, exceeding additive expectation by 12%. Attention contributions vary
by cancer type: glioblastoma (67% imaging), breast ER+ (41% imaging, 43% genomic),
colorectal MSI-H (balanced distribution).

As shown in Table 2, ablation study results are summarized.

Table 2. Ablation Study Results.

Configuration AUROC AAUROC Parameters(M)
Full Model 0.947 127.3
w/o Cross - 0.904 -0.043 98.6
Attention
w/o Adaptive 0.916 -0.031 1248
Weights
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w/o Meta -

. 0.923 -0.024 119.2
Learning

As shown in Table 3, the architecture parameters are listed.

Table 3. Architecture Parameters.

Component Imaging Genomic Clinical Fusion
Hidden Dim 512 256 128 256
Learning Rate le-4 5e-5 le-3 le-4*
Dropout 0.3 0.4 0.2 0.3
Attention
8 4 2 8t
Heads

*With cosine annealing schedule

tPairwise fusion uses 8 heads for imaging-genomic pairs and 4 heads for clinical-
imaging pairs. Meta-learning network employs three-layer architecture: 256—128—64
neurons.

As shown in Table 4, the class distribution after balancing is summarized.

Table 4. Class Distribution After Balancing.

Cancer Type Original After SMOTE After MixUp Final %
Breast 3,421 3,421 4,105 22.7%
Lung 2,867 2,867 3,440 19.0%

Colorectal 2,134 2,561 3,073 17.0%
Brain 1,956 2,347 2,816 15.6%
Rare* 2,469 2,962 3,555 19.7%

Benignt - - 1,099 6.1%
Total 12,847 14,158 18,088 100.0%

*Rare cancers include ovarian, pancreatic, gastric, and other subtypes with individual
prevalence <2% in the original screening population. After balancing, rare cancers
comprise 19.7% of training data.

tBenign cases (n=1,099) were synthetically generated using conditional GANs to
serve as negative controls during model training, improving specificity by providing
boundary examples between malignant and non-malignant presentations.

As shown in Figure 1, the adaptive weight learning architecture depicts three parallel
streams (imaging, genomic, clinical) feeding into quality assessment modules. The meta-
learning network (256 — 128 — 64 neurons) generates normalized fusion weights,
displayed as dynamic distributions, converging at the fusion layer for weighted
combination.
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As shown in Figure 2, dynamic weight evolution across 200 epochs for different
cancer types is visualized using stacked area charts. Initial uniform weights (33.3% each)
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As shown in Figure 3, ROC curve comparisons across seven methods highlight the
proposed approach (AUROC = 0.947) versus baselines. Confidence bands from 1,000
bootstrap iterations indicate non-overlapping intervals, with an inset highlighting the
high-specificity region relevant for clinical deployment.
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Figure 3. ROC Curve Comparison.

5. Discussion and Future Directions
5.1. Clinical Implications and Deployment Considerations
5.1.1. Real-World Performance Expectations

Pilot deployments in three hospitals demonstrate AUROC values between 0.91 and
0.92. This performance reflects expected degradation from controlled research conditions
while potentially surpassing current clinical standards. Variations in performance arise
from differences in imaging protocols, patient population diversity, and equipment
heterogeneity, contributing to a 3-4% decrease in accuracy.

The 127-millisecond inference time allows integration into radiological workflows
without introducing delays. Batch processing accommodates 500-700 cases overnight.
Attention visualizations correspond with radiologist reasoning in approximately 87% of
cases, supporting interpretability and potentially enhancing clinical trust.

5.1.2. Computational Efficiency Analysis

The system supports deployment across a spectrum of computational environments,
from high-performance servers to resource-limited settings. GPU deployment (e.g., RTX
3080) enables processing of 500-700 cases daily using mixed precision. CPU optimization
via quantization allows inference in approximately 3.2 seconds per case with minimal
accuracy loss. Edge deployment supports mobile screening units, facilitating service
delivery to underserved populations.

5.2. Limitations and Challenges
5.2.1. Data Availability and Quality Issues

Matched multi-modal datasets remain limited, particularly for rare cancer subtypes.
Data quality varies considerably across institutions, with community hospitals often
providing lower-resolution imaging. Temporal misalignment between modalities
introduces additional uncertainty. Inter-rater agreement for borderline lesions is 82%, and
privacy restrictions further constrain dataset development.
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5.2.2. Generalization across Cancer Types

Performance differs across cancer categories. Solid tumors achieve AUROC values
between 0.92 and 0.96, whereas hematological malignancies perform lower, with AUROC
ranging from 0.83 to 0.88. Pediatric cancers are underrepresented, comprising less than 3%
of the dataset. Detection of metastatic lesions (AUROC 0.871) lags behind primary tumor
identification (AUROC 0.947). These results indicate an 8-12% lower accuracy in
underrepresented populations, highlighting the need for improved data diversity to
enhance generalization.
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