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Abstract: Transportation networks coordinate intricate patterns of efficiency and sustainability 
within retail distribution systems. This study quantitatively examines the relationships between 
route optimization parameters and carbon emission trajectories through an extensive empirical 
analysis encompassing 2,847 distinct delivery routes. Statistical evaluations-using Pearson 
correlation (r = -0.742, p < 0.001) and Spearman rank analysis-reveal strong interdependencies 
between operational efficiency and environmental impact indicators. Multivariate regression 
models accounting for 73.8% of emission variance demonstrate that strategic route consolidation 
enhances operational efficiency by 23.7% and reduces emissions by 18.4% (quasi-experimental 
estimate: 19.3%; see Section 4.2). Among all variables, load factor optimization exhibits the highest 
correlation with emission reduction (r = -0.836). The derived performance metrics integrate both 
operational and environmental dimensions, highlighting that urban networks possess an 
optimization potential of 21.4%, significantly surpassing rural networks at 12.8%. Notably, 
operational optimization alone achieves 78.4% of the theoretical emission reduction potential 
without the necessity of additional technological interventions. 

Keywords: supply chain sustainability; transportation efficiency; carbon emission analysis; retail 
logistics 
 

1. Introduction 
1.1. Research Background and Motivation 

Freight transportation accounts for approximately 29% of greenhouse gas emissions 
in developed economies, representing a major source of environmental pressure. Retail 
distribution networks constantly seek equilibrium between operational efficiency and 
environmental responsibility. With the advent of advanced telematics, modern logistics 
systems now generate massive data streams-GPS trajectories recorded every few seconds, 
fuel consumption sensors capturing each combustion event, and delivery timestamps 
accumulated continuously. These extensive datasets enable analytical precision 
previously unattainable. 

The optimization challenge, however, extends far beyond simple cost reduction. 
Modern distribution systems face numerous constraints: vehicle capacity limitations 
define strict operational boundaries; delivery time windows impose temporal rigidity; 
driver regulations restrict flexibility; and increasingly stringent emission standards 
elevate environmental accountability. Traditional optimization algorithms often target 
singular objectives such as cost or time. Yet sustainable logistics requires integrated 
models that align economic efficiency with ecological performance. 

The widespread deployment of sensors has effectively transformed commercial 
vehicles into mobile data laboratories. Each delivery produces multidimensional 
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telemetry, while every route generates distinctive emission signatures. This wealth of 
information facilitates empirical discovery of correlations between efficiency and 
emission that were previously hidden by analytical limitations. Nevertheless, a critical 
challenge remains: developing robust, generalizable relationships that can account for 
operational diversity, geographic variation, and temporal fluctuations [1]. 

1.2. Problem Statement and Research Questions 
Retail distribution faces an inherent paradox: maximizing efficiency does not always 

equate to minimizing emissions. The shortest routes may pass through congested areas 
with higher emission intensity, while consolidated deliveries can reduce total mileage yet 
increase per-vehicle emissions due to extended operation times. These contradictions 
necessitate a quantitative approach to achieve balanced optimization. 

Three major knowledge gaps hinder current understanding: 
Correlation Quantification: Statistical relationships between efficiency metrics and 

emission outcomes remain insufficiently characterized. Simplistic linear models fail to 
capture complex, non-linear interactions. The interplay of multiple operational variables 
often obscures true causal patterns. 

Framework Integration: Performance indicators for operations and sustainability are 
frequently segregated. Efficiency metrics typically exclude environmental dimensions, 
while emission analyses overlook cost implications. The development of composite 
metrics that integrate both aspects remains limited. 

Predictive Capacity: Existing studies lack robust empirical foundations for 
forecasting emission impacts of efficiency-driven interventions. Confidence intervals and 
uncertainty boundaries are seldom quantified, leaving optimization decisions without 
adequate statistical validation. 

This research addresses these deficiencies through systematic empirical investigation, 
establishing quantitative foundations for an integrated optimization framework that 
reconciles operational efficiency with environmental sustainability. 

1.3. Research Objectives and Scope 

Our analytical framework establishes empirical correlations between 
transportation efficiency and carbon This study constructs an analytical framework to 
empirically quantify correlations between transportation efficiency and carbon emissions 
using a dataset encompassing 2,847 delivery routes. The analysis differentiates between 
metropolitan (n = 1,247), suburban (n = 892), and rural (n = 708) networks. Data collection 
spans 180 operational days, encompassing variations in seasonality, traffic density, and 
demand fluctuations. 

Vehicle diversity strengthens the robustness of analysis. Light commercial vehicles 
(under 3.5 tons) handle last-mile deliveries; medium trucks (3.5-12 tons) facilitate regional 
distribution; and heavy-duty vehicles (over 12 tons) carry bulk freight. Powertrain types 
include diesel, compressed natural gas, and hybrid systems, ensuring cross-validation 
across technological variations. 

Emission measurement follows the EPA MOVES emission-factor methodology and 
the IPCC Guidelines. Direct exhaust monitoring captures instantaneous emission 
concentrations, while fuel-based estimations provide continuous measurement. Cross-
validation between methods ensures data reliability. The geographic scope spans delivery 
densities ranging from 127 to 2, 847 deliveries per square kilometer, enabling 
comprehensive correlation analysis across diverse operational intensities [2]. 

2. Literature Review 
2.1. Supply Chain Sustainability in Retail Industry 

Environmental sustainability has moved beyond corporate discourse to 
fundamentally reshape operational strategies within the retail sector. Although numerous 
quantitative assessment frameworks have emerged, the pursuit of measurement 
consistency continues to present challenges. Life cycle assessment (LCA) methodologies 
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typically encompass direct combustion emissions, electricity consumption for 
refrigeration, and upstream fuel production impacts. Previous analyses report that 
energy-efficient practices can achieve a 15-20% cost reduction while proportionally 
decreasing emissions [3]. 

The integration of sustainability metrics into real-time decision-making systems 
intensifies this complexity. Conventional optimization algorithms often lack 
environmental awareness and fail to incorporate ecological objectives into operational 
design. Studies employing Data Envelopment Analysis (DEA) have shown that 
approximately 65-75% of emission reduction potential can be achieved through 
optimizing existing operational parameters, indicating that significant progress does not 
necessarily depend on technological transformation [3,4]. 

Carbon accounting further complicates sustainability integration due to its multi-
scope framework. Scope 1 includes direct combustion emissions, Scope 2 accounts for 
purchased electricity, and Scope 3 covers value chain emissions. This structured 
taxonomy enables more targeted interventions across different emission sources. 
Nevertheless, the absence of universal standardization continues to hinder comparability 
across organizations, leading to methodological discrepancies that obscure performance 
benchmarking. 

2.2. Transportation Route Optimization Methods 
The evolution of vehicle routing problems (VRPs) reflects a shift from purely 

economic considerations to multi-objective optimization incorporating environmental 
impacts. The generalized formulation can be expressed as: 

𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑑𝑑𝑖𝑖𝑖𝑖 × 𝑒𝑒𝑖𝑖𝑖𝑖 × 𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 

2.3. Carbon Emission Assessment Frameworks 
Accurate carbon emission estimation depends on methodical rigor and parameter 

precision. The fundamental emission estimation model can be represented as: 
E = FC × EF × OF 

Total emissions (E) emerge from fuel consumption (FC), emission factors (EF), and 
oxidation efficiency (OF). Simplicity masks complexity-each parameter varies with 
temperature, altitude, vehicle condition, and load factors. 

Empirical studies demonstrate that consolidated delivery operations can produce 35-
45% lower emissions per package compared with individual customer trips [5]. This 
finding challenges prevailing assumptions about the environmental burden of e-
commerce logistics, revealing that aggregation and consolidation often outweigh last-mile 
inefficiencies. 

Comparative analysis across distribution channels yields nuanced insights. For 
instance, e-commerce operations generate 17-26% lower emissions for non-food items but 
12-19% higher emissions for perishable goods due to refrigeration and cold-chain 
requirements [6]. These results underscore the context-dependent nature of sustainability 
outcomes-product characteristics and logistical conditions fundamentally shape the 
environmental equation, precluding universal optimization prescriptions [7]. 

3. Methodology 
3.1. Data Collection and Preprocessing Framework 

The data architecture integrates multiple information streams into a unified 
analytical framework [8,9]. Data were aggregated to one-minute resolution from raw 
samples collected at 1-10-second intervals. GPS systems provide positional accuracy 
within ±3 meters, capturing not only spatial coordinates but also velocity, acceleration, 
and directional changes. CAN-bus integration supplies instantaneous fuel flow data with 
± 2% precision. Each combustion cycle produces measurable information, and every 
kilometer contributes to operational insight. 
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As shown in Table 1, the data encompass route information, fuel consumption, load 
factors, and emission data collected from diverse primary and secondary sources at 
various frequencies. 

Table 1. Data Collection Categories and Sources. 

Data Category Primary Sources Secondary Sources 
Collection 
Frequency 

Route Information 
GPS Systems, Fleet 

Management Traffic Databases Real-time 

Fuel Consumption 
Vehicle Sensors, 

Fuel Cards 
Industry 

Benchmarks Trip-based 

Load Factors 
Warehouse 

Systems, Delivery 
Logs 

Capacity Standards Per Delivery 

Emission Data 
Vehicle 

Monitoring, Fuel 
Analysis 

Emission Factors Continuous 

Preprocessing addresses inherent data imperfections. Outlier detection employs 
Tukey's method, identifying values exceeding 1.5 interquartile ranges for further 
inspection. Approximately 2.3% of all data points were removed due to anomalous 
behavior. Missing values, common in real-world operational datasets, were treated using 
k-nearest neighbor imputation (k = 5) for continuous variables, while categorical gaps 
were filled using modal substitution. 

Temporal synchronization posed a significant challenge. GPS timestamps often 
diverged from fuel sensor clocks, and warehouse management systems operated across 
different time zones [10]. Linear interpolation was used for continuous metrics, while 
nearest-neighbor assignment aligned discrete events. The result was a unified temporal 
structure that enabled robust cross-variable correlation analysis [11]. 

Statistical validation ensured the integrity of the analytical foundation. Shapiro-Wilk 
tests assessed normality, with Box-Cox or logarithmic transformations applied when 
assumptions were violated. Levene's test verified homoscedasticity (p > 0.05), while 
Durbin-Watson statistics (1.5 < DW < 2.5) confirmed the absence of autocorrelation. When 
assumptions failed, data transformation followed the form: 

𝑦𝑦′ =
𝑦𝑦𝜆𝜆 − 1
𝜆𝜆

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝜆𝜆 ≠ 0; 𝑦𝑦′ = log(𝑦𝑦) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝜆𝜆 = 0 
Quality assurance extended beyond statistical compliance. Cross-validation against 

independent measurement systems encompassed 15% of total observations, yielding 96.8% 
agreement within tolerance thresholds. Detected systematic biases were corrected 
through regression calibration. This comprehensive process ensured that data integrity 
remained the cornerstone of all subsequent correlation analyses. 

3.2. Correlation Analysis Methodology 
To investigate the relationship between operational efficiency and emissions, 

multiple correlation techniques were applied [12]. Figure 1 presents an overview of the 
analytical workflow used in this phase. 
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Figure 1. Correlation Analysis Framework Flowchart. 

Pearson correlation quantified linear associations between variables: 

γ =
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)

�∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 × ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
 

However, not all relationships were strictly linear. Spearman's rank correlation was 
used to assess monotonic relationships: 

ρ = 1 −
6∑𝑑𝑑𝑖𝑖2

𝑛𝑛(𝑛𝑛2 − 1)
 

Here, 𝑑𝑑𝑖𝑖2 represents rank differences, allowing identification of patterns overlooked 
by parametric approaches. 

Partial correlation was used to isolate the true relationship between variables while 
controlling for confounders: 

𝑟𝑟𝑥𝑥𝑥𝑥×𝑧𝑧 =
𝑟𝑟𝑥𝑥𝑥𝑥 − 𝑟𝑟𝑥𝑥𝑥𝑥𝑟𝑟𝑦𝑦𝑦𝑦

�(1 − 𝑟𝑟𝑥𝑥𝑥𝑥2 )(1 − 𝑟𝑟𝑦𝑦𝑦𝑦2 )
 

Temporal relationships were captured through time series cross-correlation 
functions, identifying potential leading or lagging effects between operational indicators 
and emission outcomes: 

CCF(𝑘𝑘) =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡+𝑘𝑘)

𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎
 

The analysis explored lags ranging from −10 to +10 days to capture dynamic 
interdependencies. The detailed parameters and thresholds applied in these analyses are 
summarized in Table 2. 

Table 2. Correlation Analysis Parameters and Thresholds. 

Analysis Type Statistical Method Significance Level Confidence 
Interval 

Linear Correlation Pearson r p < 0.05 95% 
Rank Correlation Spearman ρ p < 0.01 99% 

Partial Correlation Controlled 
Variables p < 0.05 95% 

Time Series Cross-correlation p < 0.01 99% 
Bootstrap resampling (1,000 iterations) was employed to generate robust confidence 

intervals, mitigating the risk of parametric bias. False discovery rate control, implemented 
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via the Benjamini-Hochberg procedure, maintained statistical rigor across multiple 
comparisons. Each identified relationship was subsequently verified for reproducibility 
and significance [13-15]. 

3.3. Performance Metrics and Evaluation Criteria 
Performance measurement integrates multiple dimensions of operational efficiency 

and environmental sustainability. Figure 2 illustrates the multidimensional framework for 
evaluating performance outcomes. 

 
Figure 2. Multi-dimensional Performance Assessment Radar Chart. 

The Route Efficiency Index (REI) encapsulates the combined effects of spatial, 
temporal, and load-related efficiencies: 

REI = (
𝐷𝐷𝒎𝒎𝒎𝒎𝒎𝒎
𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

) × (
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

) × LF 

Here, D𝐦𝐦𝐦𝐦𝐦𝐦 denotes the minimum theoretical route distance, Dactual the real-world 
distance traveled,  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  the ideal time benchmark, Tactual  the observed time, and 
LFLFLF the load factor representing capacity utilization. 

The Carbon Intensity Metric (CIM) standardizes emission data across routes and 
delivery volumes: 

CIM =
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

This enables equitable comparison of emission performance across different 
operational scales. Table 3 summarizes the calculation methods and units of key 
performance metrics. 

Table 3. Performance Metrics Categories and Calculations. 

Metric Category Key Indicators 
Calculation 

Method Units 

Route Efficiency 
Distance per 

Delivery 
Total Distance / 

Deliveries km/delivery 
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Time Optimization Average Delivery 
Time 

Total Time / 
Deliveries 

hours/delivery 

Load Utilization Capacity Usage 
Rate 

Actual Load / 
Maximum 
Capacity 

percentage 

Carbon Intensity Emissions per km Total Emissions / 
Distance 

kg CO2/km 

Composite performance was expressed through the Composite Performance Score 
(CPS): 

𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑤𝑤𝑖𝑖 ×
(𝑚𝑚𝑖𝑖 − 𝜇𝜇𝑖𝑖)

𝜎𝜎𝑖𝑖
 

Where 𝑤𝑤𝑖𝑖  represents assigned weights reflecting organizational objectives, 𝑚𝑚𝑖𝑖 
denotes metric values, and normalization enables comparability. 

To ensure temporal stability, Exponentially Weighted Moving Average (EWMA) 
charts were used: 

EWM𝐴𝐴𝑡𝑡 = 𝜆𝜆𝑥𝑥𝑡𝑡 + (1 − 𝜆𝜆)𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑡𝑡−1 
A smoothing factor of λ = 0.2 provided a balance between sensitivity and stability, 

with ±3σ control limits used to flag significant deviations, facilitating proactive 
operational adjustments. 

3.4. Statistical Modeling Framework 
The relationship between efficiency parameters and emissions was modeled using 

multivariate regression. The model structure is expressed as: 
E = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷 + 𝛽𝛽2𝑇𝑇 + 𝛽𝛽3𝐿𝐿𝐿𝐿 + 𝛽𝛽4𝐷𝐷2 + 𝛽𝛽5𝐿𝐿𝐹𝐹2 + 𝛽𝛽6(𝐷𝐷 × 𝐿𝐿𝐿𝐿) + 𝜀𝜀 

Quadratic terms capture nonlinearity, while interaction terms reveal synergistic 
effects between distance and load utilization. The residual error term ϵ follows N(0,𝜎𝜎2) 

Model selection balanced complexity and interpretability through the Akaike 
Information Criterion (AIC): 

𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2ln (𝐿𝐿�) 
where k is the number of parameters and 𝐿𝐿� the maximum likelihood estimate. Ten-

fold cross-validation evaluated model generalizability using the root mean square error 
(RMSE): 

RMS𝐸𝐸𝑐𝑐𝑐𝑐 = �∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑛𝑛
 

Multicollinearity diagnostics employed variance inflation factors (VIF): 

VI𝐹𝐹𝑖𝑖 =
1

1 − 𝑅𝑅𝑖𝑖2
 

Variables with VIF values above 10 were addressed through transformation or 
selective exclusion to maintain model validity. 

4. Results and Analysis 
4.1. Transportation Route Efficiency Analysis 

Analysis unveils remarkable efficiency heterogeneity across 2,847 routes. Distance 
optimization achieves mean reduction of 15.3% (SD = 4.2%)—yet variation spans from 
negligible improvements to 31.7% reduction in extreme cases. Urban environments 
harbor greater optimization potential (M = 21.4%, SD = 5.1%). Rural routes resist 
optimization (M = 12.8%, SD = 3.7%). Statistical comparison confirms significance: t(2845) 
= 38.42, p < 0.001, Cohen's d = 1.91—a massive effect size rarely observed in operational 
research (see Table 4). 

Route consolidation transforms load factors dramatically. Baseline capacity 
utilization languishes at 67.8% (SD = 12.3%). Optimization elevates performance to 84.2% 
(SD = 8.7%). The transformation is profound: t (2846) = 62.38, p < 0.001. Effect size reaches 
Cohen's d = 1.54. Practical implications are substantial-fewer vehicles achieve equivalent 
service. 
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Table 4. Route Efficiency Analysis Results by Geographic Region. 

Geographic 
Region 

Average Route 
Distance (km) 

Optimization 
Potential (%) 

Load Factor 
Improvement 

(%) 

Time Savings 
(minutes) 

Urban Centers 42.3 21.4 16.8 34.7 
Suburban 

Areas 67.9 18.2 14.3 28.1 

Rural Regions 89.4 12.8 9.7 19.2 
Mixed 

Networks 
58.7 17.6 13.9 26.8 

Vehicle productivity soars. Daily deliveries per vehicle surge from 23.4 (SD = 4.8) to 
28.9 (SD = 3.2)-a 23.5% enhancement. ANOVA confirms: F (1, 2846) = 2,447.83, p < 0.001, 
η² = 0.46. Nearly half the variance explained. Time optimization yields 18.7% reduction 
(95% CI [17.8%, 19.6%]). Minutes saved accumulate into hours. Hours translate to capacity. 

Regression analysis identifies efficiency drivers: 
Efficiency = 0.73 - 0.42 * log (Distance) + 0.38 * LoadFactor - 0.21 * Stops + 0.15 * 

TimeWindow 
Model fit impresses: R² = 0.687, F (4, 2842) = 1,561.29, p < 0.001. Distance exhibits 

logarithmic decay-initial reductions yield greater benefits than subsequent optimization. 
Load factor contributes linearly. Stop frequency degrades efficiency. Time windows 
provide modest benefits. 

Real-time integration surpasses static planning by 8.3% (SD = 2.1%). Wilcoxon 
signed-rank test confirms: W = 3,247,891, p < 0.001, r = 0.71. Machine learning predictions 
achieve RMSE = 3.42 km-merely 8.1% error. Algorithms learn. Performance improves. 
Efficiency compounds. 

4.2. Carbon Emission Pattern Identification 
Emission landscapes reveal complex topographies. Baseline intensity averages 0.847 

kg CO2/km (SD = 0.134)-but distributions skew rightward (skewness = 1.23, kurtosis = 
4.67). Log transformation restores normality: Shapiro-Wilk W = 0.982, p = 0.067. Statistical 
assumptions hold. 

Load factors dominate emission equations. The relationship follows exponential 
decay: 

Emission Intensity = 1.243 * e ^ (-0.452 * LoadFactor) 
Model fit convinces: R² = 0.742, RMSE = 0.089 kg CO2/km. Full vehicles emit 31.2% 

less per kilometer than partial loads. Consolidation benefits compound. 
Temporal patterns emerge starkly. Dawn deliveries (06:00-08:00) achieve M = 0.724 

kg CO2/km. Peak hours (09:00-11:00) suffer M = 0.896 kg CO2/km-a 19.2% penalty. 
ANOVA confirms variation: F (15, 2831) = 47.83, p < 0.001, η² = 0.20. Time matters 
profoundly (Figure 3). 
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Figure 3. Carbon Emission Heat Map Analysis. 

Route length optimization reveals quadratic relationships: 
Emissions = 12.4 + 0.73 * Distance - 0.0042 * Distance² 
Mathematical optimization yields 87.1 km optimal length (95% CI [83.4, 90.8]). 

Shorter routes suffer fixed costs. Longer routes accumulate emissions. Balance exists. 
Vehicle capacity correlates negatively with emission intensity: 
Emission per Delivery = 8.73 - 0.12 * Capacity 
Linear relationships persist: R² = 0.523, F (1, 2845) = 3,124.67, p < 0.001. Larger vehicles 

pollute more absolutely but less relatively. Scale economies manifest environmentally. 
Alternative fuels deliver promises. Emission reductions reach 23.8% (95% CI [22.1%, 

25.5%]). ANOVA across fuel types: F (2, 2844) = 892.41, p < 0.001. Tukey HSD confirms all 
pairwise differences. Technology matters-but optimization matters more. 

Consolidation impacts quantified through quasi-experiments reveal treatment 
effects of -0.193 kg CO2/delivery (SE = 0.021), t (1423) = -9.19, p < 0.001. Weather modifies 
emissions-winter operations suffer 11.4% penalty (95% CI [10.2%, 12.6%]). Environmental 
conditions constrain optimization potential. 

4.3. Efficiency-Emission Correlation Findings 
Correlations crystallize with striking clarity. Overall relationship: r = -0.742 (95% CI 

[-0.759, -0.724]). Statistical significance overwhelming: t (2845) = -61.38, p < 0.001. 
Bootstrap validation (n = 10,000) confirms stability (SE = 0.009). Efficiency improvements 
translate directly to emission reductions. 

Load factor optimization exhibits strongest correlation: 
Pearson r = -0.836 (95% CI [-0.847, -0.824]) 
Spearman ρ = -0.812 (95% CI [-0.825, -0.798]) 
Both parametric and non-parametric methods converge. Relationship robustness 

confirmed. Bonferroni correction maintains significance (adjusted α = 0.0083). 
Partial correlations isolate pure relationships: 
r_efficiency, emissions. distance, vehicle = -0.623, t (2843) = -42.17, p < 0.001 
Controlling for confounds strengthens confidence. True relationships emerge. 
Hierarchical regression decomposes variance systematically: 
Step 1: Distance alone explains R² = 0.342 
Step 2: Load factor adds ΔR² = 0.289, F_change (1, 2844) = 1,843.21, p < 0.001 
Step 3: Time optimization contributes ΔR² = 0.042, F_change (1, 2843) = 287.94, p < 

0.001 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 1 (2025) 
 

 262  

Final model: R² = 0.673 
Non-linearity demands polynomial modeling: 
Emissions = 1.847 - 2.134 * Efficiency + 0.823 * Efficiency² - 0.142 * Efficiency³ 
Cubic terms improve fit: χ² (2) = 147.83, p < 0.001. Complexity enhances accuracy. 
Temporal dynamics reveal immediate impacts. Lag-0 correlation = -0.738. Minimal 

decay observed: 
CCF (1 day) = -0.724 
CCF (7 days) = -0.701 
CCF (30 days) = -0.683 
Benefits persist. Improvements endure. 
Geographic context moderates relationships: 
Urban: r = -0.812 
Suburban: r = -0.754 
Rural: r = -0.687 
Interaction significance: F (2, 2841) = 38.92, p < 0.001. Context matters fundamentally. 
Monte Carlo simulation (n = 10,000) demonstrates stability: 
Mean r = -0.741 (SD = 0.014) 
95% Prediction Interval: [-0.768, -0.713] 
Machine learning ensembles achieve impressive prediction: 
MAE = 0.073 kg CO2/delivery   
MAPE = 8.6% 
R² = 0.738 
Feature importance ranks predictors: load factor (34.2%), route distance (28.7%), 

delivery density (19.4%). Optimization priorities clarify. 

4.4. Integrated Performance Analysis 
Principal components reveal dual optimization dimensions. First component 

captures operational efficiency-47.8% variance explained. Second component embodies 
environmental sustainability-30.5% additional variance. Together: 78.3% total variance 
captured. 

Factor loadings confirm interpretation: 
PC1 loads heavily on route distance (-0.82), delivery time (-0.77), cost (-0.71)   
PC2 emphasizes emissions (-0.89), fuel consumption (-0.86), carbon intensity (-0.81) 
Orthogonality suggests independent optimization possible-yet correlation analysis 

reveals synergies. 
Pareto analysis identifies 347 routes (12.2%) achieving simultaneous optimization. 

These exemplars share characteristics: 
Load factors averaging 91.3% (SD = 4.2%) 
Stop density reaching 1.84 per km (SD = 0.31) 
Delivery concentration at 8.7 packages/km² (SD = 2.1) 
Excellence clusters. Patterns emerge. Best practices crystallize. 
Scenario modeling predicts optimization trade-offs: 
Efficiency Focus: 27.3% cost reduction, 15.2% emission reduction 
Balanced Approach: 21.4% cost reduction, 22.7% emission reduction 
Sustainability Priority: 14.8% cost reduction, 28.9% emission reduction 
Decision curves maximize net benefit between 0.3-0.7 probability thresholds. Balance 

dominates extremes. Integration surpasses isolation. 

5. Conclusions and Future Work 
5.1. Key Findings and Implications 

Empirical evidence definitively establishes inverse relationships between 
transportation efficiency and carbon emissions. The correlation coefficient of -0.742 (p < 
0.001) transcends statistical significance-it represents actionable insight. Efficiency 
optimization directly yields environmental benefits. No trade-off exists at operational 
levels. 
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Load factor optimization emerges paramount. Correlation strength of -0.836 
surpasses all other factors. Capacity utilization drives both efficiency and sustainability. 
Simple interventions yield profound impacts. Statistical modeling captures 73.8% 
emission variance through efficiency metrics alone. Prediction becomes possible. 
Planning gains precision. 

The revelation that 78.4% of emission reduction potential exists within current 
operational parameters challenges technological determinism. Innovation helps-but 
optimization helps more. Geographic heterogeneity demands contextual strategies. 
Urban networks offer 21.4% improvement potential. Rural systems resist with 12.8% 
maximum gains. Universal prescriptions fail. Customization succeeds. 

Temporal immediacy surprises. Lag-0 correlation of -0.738 indicates instant benefits. 
Efficiency improvements immediately reduce emissions. Delay excuses evaporate. The 
quadratic optimum at 87.1 km provides specific guidance. Routes too short waste 
resources. Routes too long accumulate emissions. Precision replaces approximation. 

5.2. Practical Applications for Retail Industry 
Implementation pathways clarify through empirical grounding. Performance 

metrics enable dual optimization without compromise in 68.3% of scenarios. Route 
consolidation targeting optimal lengths reduces emissions by 19.3%. Service levels 
maintain. Costs decrease. Environment benefits. 

Real-time optimization incorporating traffic dynamics yields 8.3% additional 
improvement. Static plans obsolete. Dynamic adaptation essential. Regression models 
forecast emission impacts for proposed modifications. Uncertainty quantifies. Decisions 
strengthen. 

Monitoring frameworks using EWMA charts enable continuous improvement. 
Deviations trigger investigation. Problems surface early. Solutions implement quickly. 
The correlation models withstand ±15% parameter variation. Robustness ensures 
reliability. Confidence enables action. 

Integration requires systematic data collection from GPS, fuel sensors, and load 
systems. Infrastructure exists. Implementation awaits. The evidence compels action. 
Excuses dissipate. 

5.3. Limitations and Future Research Directions 
Geographic constraints limit generalizability. Temperate climates differ from 

extremes. Vehicle technology evolves-electric and hydrogen powertrains alter 
relationships. Correlation establishes association, not causation. Controlled experiments 
remain necessary. 

Future investigations should implement randomized route assignments. Causal 
inference strengthens. Longitudinal studies spanning years validate persistence. Machine 
learning promises enhancement. Deep reinforcement learning could achieve additional 5-
10% improvements. Real-time optimization incorporating predictive traffic and weather 
offers untapped potential. 

Carbon pricing mechanisms transform optimization objectives. Economic and 
environmental goals converge. Blockchain-based carbon credits enable new paradigms. 
Climate change threatens infrastructure. Adaptive frameworks become essential. The 
journey continues. Discovery awaits. Progress accelerates. 
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