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Abstract: During a 14-month deployment across four financial institutions, including a tier-1 bank
in the Northeast US, we developed a hybrid threat detection system that integrates Transformer
models with Graph Neural Networks. The system was implemented using Python 3.8.10 and
PyTorch 1.121 on NVIDIA RTX 3090 GPUs (24GB VRAM). Our team, despite frequent
methodological disagreements, achieved a detection accuracy of 86.7%, which fell short of the
anticipated 95% or higher. The federated learning component, initially planned for six months, was
extended due to regulatory compliance requirements. This component enables collaborative threat
intelligence while preserving data privacy. Under normal operating conditions, the system
processes approximately 1.1 million events per second, with throughput decreasing to around
400,000 events per second during periods of market volatility, such as Q4 2023. The architecture
reduces false positives to 2.1%. Implementation costs exceeded the original $127,000 NSF grant by
roughly 40%, necessitating additional university cost-sharing. Three preliminary approaches were
abandoned before the current architecture was finalized. Real-world deployment highlighted
hardware bottlenecks that were not evident in simulations, requiring compromises in system design.
The system is now operational in production, although stability issues persist during high-
frequency trading periods.

Keywords: financial cybersecurity; federated learning; graph neural networks; transformers;
regulatory compliance

Copyright: © 2025 by the authors.
Submitted for possible open access
publication under the terms and
conditions of the Creative Commons
Attribution  (CC  BY) license
(https://creativecommons.org/license

s/by/4.0)).

1. Introduction

Financial networks process approximately $5.2 trillion daily, making them highly
attractive targets. This vulnerability became evident during our work with partner
institutions. Recent research has highlighted the potential of advanced machine learning
algorithms to enhance cybersecurity risk assessment for digital financial systems [1].
However, traditional signature-based intrusion detection systems are insufficient to
address evolving threats. During our initial assessment at Institution A (anonymized per
legal agreement), their legacy IDS failed to detect 34% of sophisticated attacks that we
identified in historical logs.

The challenge extends beyond technical limitations. Financial environments are
unique: high-frequency trading generates traffic patterns that appear suspicious but are
legitimate, cross-border payments involve complex regulatory jurisdictions, and
compliance frameworks require explainable Al decisions, which our first ML model was
unable to provide.

Most academic research relies on synthetic datasets. Our experience showed that
models performing well on synthetic data often fail in real-world settings-our initial state-
of-the-art model trained on synthetic data achieved only 67% accuracy on actual financial
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network traffic. The discrepancy between controlled laboratory conditions and
operational deployment is substantial. Commercial solutions frequently function as black
boxes, which may be acceptable for e-commerce applications but are inadequate when
auditors require detailed decision trails.

Our research began in September 2022 with ambitious objectives that were not fully
achieved. The original hypothesis-that transformer attention mechanisms alone could
capture financial threat patterns-proved incorrect after six months of development. In
March 2023, we pivoted to hybrid architectures, delayed by team disagreements over
graph topology representation. The final system represents the fourth iteration, following
three previous approaches that failed to meet performance or compliance standards.

The key contributions of our work, reflecting what was successful in practice, include:

1) A hybrid neural architecture combining BERT-style transformers with Graph
Attention Networks, optimized for financial network characteristics after
discovering that standard attention patterns are ineffective for transaction
sequences.

2) A federated learning framework with differential privacy (e=0.73 in practice)
enabling cross-institutional threat intelligence sharing without exposing
proprietary data.

3) Real-world evaluation across four institutions using actual operational data,
including incomplete and messy logs typically unreported in academic studies.

4) Regulatory compliance integration that passed audits from multiple
frameworks, including SOX, PCI DSS, and an internal audit.

The system achieved 86.7% detection accuracy (+2.8%), a 2.1% false positive rate, and
processed 1.1 million events per second under normal conditions, dropping to 400,000
events per second during stress periods. Zero-day attack detection reached 87.2%, lower
than initially expected but surpassing baseline models. The system has been running in
production for eight months, with occasional stability issues still under investigation.

2. Related Work
2.1. Traditional Financial Security

SWIFT's Customer Security Programme, implemented after the 2016 Bangladesh
Bank heist, represents current best practices. Traditional approaches have established
management models for critical infrastructure cybersecurity, but they struggle to address
the dynamic nature of modern financial threats. During our evaluation at Partner
Institution B, rule-based systems flagged legitimate cross-border transfers as suspicious
12% of the time, creating operational challenges. The core limitation is that rigid rules
cannot adapt to legitimate business variations [2,3].

Legacy approaches exhibit several issues. Signature dependency creates blind spots-
we identified 23 zero-day variants that bypassed existing rules. False positive rates,
averaging 8-12%, disrupt operations, and scalability is limited. For example, Institution
C's system crashed twice during market volatility in December 2023.

2.2. Machine Learning in Cybersecurity

Early machine learning efforts focused primarily on credit card fraud rather than
network intrusion, with reviews documenting the evolution of these approaches [4].
Although some models achieved 94% fraud detection, financial network security presents
distinct challenges: transaction patterns are more complex, regulatory requirements are
stricter, and acceptable false positive rates are much lower.

Deep learning has shown promise in cybersecurity, but real-world deployment
remains challenging. We initially explored CNN-based approaches, inspired by prior
applications of convolutional neural networks to network intrusion detection [5]. Despite
strong results reported in academic literature, our implementation achieved only 71%
accuracy on actual financial network data, highlighting the substantial domain gap
between academic datasets and operational traffic.
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Transformer architectures offer potential for sequential analysis. However, standard
BERT attention mechanisms do not handle irregular financial event timing effectively.
Our modified positional encoding (Section 3.1) addresses this challenge, a process that
required four months to refine. Graph Neural Networks are effective for modeling
transaction relationships but face scalability issues with the massive graphs typical of
major banks; for instance, Institution A processes 847 million transactions monthly [6,7].

2.3. Federated Learning

Most federated learning research targets mobile devices or healthcare applications,
rather than financial services. Privacy requirements for financial data exceed those of
typical federated learning use cases. Our first compliance review rejected an initial privacy
budget of e=1.2 as inadequate.

Practical barriers extend beyond technical challenges. Institution B initially declined
participation due to competitive concerns. Institution D contributed limited data after an
internal risk assessment flagged potential intellectual property exposure. These business
realities, largely absent from academic discussions, dominated our deployment timeline.

2.4. Regulatory Compliance

Al explainability for financial applications remains an open problem. Techniques
such as SHAP values and attention visualization assist in model interpretation, but
compliance officers at Institution A required three weeks to understand our explanation
interfaces [8,9]. Current XAI methods satisfy legal requirements but provide limited
utility for operational staff.

SOX Section 404 mandates comprehensive audit trails. Our initial design did not
capture decision rationale in sufficient detail, necessitating a major architecture revision
in Q2 2023. Recent analyses of bank operational resilience disclosures underscore the
growing importance of comprehensive audit mechanisms. PCI DSS requirements
compelled the addition of extra encryption layers, which reduced throughput by
approximately 15%. These compliance-related costs, rarely reflected in academic
performance metrics, significantly influence real-world deployment considerations.

3. System Architecture
3.1. Hybrid Neural Architecture

The core detection engine integrates modified BERT transformers with Graph
Attention Networks (GATs) through a fusion mechanism developed after standard
approaches failed. Initial attempts using simple concatenation of transformer and GNN
outputs resulted in poor accuracy [10]. Early fusion improved results but required
extensive hyperparameter tuning.

The Transformer component is based on BERT-base with 8 attention heads and 384-
dimensional embeddings (reduced from 512 due to memory constraints on RTX 3090
GPUs). Custom attention masks prioritize threat-relevant patterns, enhancing detection
by approximately 11% compared to vanilla BERT. This approach depends on domain-
specific threat pattern databases, which required six months to compile from institutional
logs (As shown in Figure 1).
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Figure 1. Al-Driven Cyber Threat Detection System Architecture.

The diagram illustrates the hybrid system, showing the workflow from data
ingestion through feature extraction, parallel Transformer and GNN processing, feature
fusion, and final threat detection and response.

Positional encoding modifications handle irregular financial event timing. Unlike
natural language processing, where tokens are evenly spaced, financial events occur at
variable intervals-from microseconds during high-frequency trading periods to hours
during weekends. Standard sinusoidal encodings are ineffective, so we employ learned
temporal embeddings with logarithmic spacing, which increases training complexity.

The GNN component uses Graph Attention Networks with edge features
representing transaction amounts, relationship types, and temporal information. Custom
CUDA kernels optimize memory access for large graphs. Institution A's transaction graph
contains 127 million nodes and 2.3 billion edges; standard GNN libraries failed due to
memory limitations.

Integration between Transformer and GNN is achieved via multi-level fusion. Early
fusion incorporates graph embeddings into BERT input sequences, while late fusion
combines outputs using learned attention weights. This dual-fusion captures both
temporal and structural patterns, although it doubles training time and complicates
deployment.

3.2. Federated Learning Framework

Federated learning enables collaborative threat detection without exposing sensitive
data. Financial institutions require shared intelligence but cannot disclose transaction
details or competitive information. Our approach uses differential privacy with Moments
Accountant tracking, though implementation proved more complex than anticipated.

Privacy budgets are managed to maintain € < 0.8 for operational deployments, with
actual values varying: Institution A operates at £=0.73, Institution B at £=0.89, and
Institution C at &=0.61. These variations complicate model convergence, and
standardization remains a challenge.

Homomorphic encryption allows model training without exposing parameters. We
use the Microsoft SEAL library with custom optimizations. Computational overhead is
significant-training time increases by 2.7x-but legal requirements mandate this approach.
Some institutions initially rejected unencrypted federated learning as too risky.

Client selection algorithms balance institutional diversity with data quality.
Geographic diversity supports robust threat detection across regulatory environments
and attack patterns, though timezone differences reduce participation from European
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partners. Secure aggregation relies on hardware security modules for cryptography, with
custom networking protocols extending beyond HTTPS, employing application-layer
encryption with rotating keys updated every 24 hours. Communication bandwidth
averages 67 MB/day per institution, spiking to over 200 MB during model updates.

3.3. Real-Time Processing Pipeline

The processing pipeline uses a multi-stage architecture including edge preprocessing,
centralized analysis, and response coordination. Edge nodes filter routine events,
reducing communication by roughly 83%, a slightly lower rate than the 90% target due to
operational data complexity. For example, Institution C generates 14 million daily events,
mostly routine authentication and transaction confirmations.

Centralized analysis runs on GPU clusters with automatic failover. Load balancing
considers both computational load and model state consistency, adapting to sudden
volume spikes. During the March 2023 Silicon Valley Bank crisis, event volumes at
Institution A increased eightfold, causing temporary system degradation until emergency
capacity was added.

Memory management uses custom memory pools to avoid garbage collection issues
under high load. Initial throughput of 400,000 events per second increased to 1.1 million
per second after three months of profiling and optimization. However, performance still
degrades during periods of unusual market activity.

3.4. Compliance and Audit Integration

Regulatory compliance integration ensures explainable decisions and audit trails.
Implementation complexity exceeded initial estimates, with compliance requirements
driving 40% of development effort.

Explainability frameworks utilize attention visualization and SHAP values to clarify
model decisions. While these methods satisfy legal requirements, operational staff often
find them difficult to interpret. Simplified explanation interfaces were developed
specifically for compliance personnel, requiring extensive user testing and iteration.

Audit trail generation employs blockchain-based logging to ensure integrity. Every
decision, model update, and configuration change is immutably recorded. Storage
requirements are substantial, with audit logs consuming 2.3 TB monthly across all
institutions, as required by regulators.

SIEM integration supports major platforms through standardized adapters.
Institution A uses Splunk Enterprise 9.0, Institution B uses QRadar 7.4, Institution C uses
a custom ELK stack (Elastic 8.5), and Institution D's proprietary SIEM required six weeks
of custom development, despite efforts to standardize integrations.

4. Experimental Design and Methodology
4.1. Data Collection and Deployment Reality

Data collection was conducted across four partner institutions over 14 months,
extending the original 12-month plan due to compliance delays. Institutional diversity
ensures evaluation across distinct threat landscapes, including two major banks, one
payment processor, and one investment firm. Each environment introduced challenges
not captured in academic datasets.

The complete dataset comprises 1.1 billion network events, 340 million transactions,
and 782 confirmed security incidents. Data sanitization required extensive legal review.
Initial proposals to share anonymized data were rejected, necessitating on-premises
processing at each institution. This constraint complicated experimental design and
delayed the timeline by three months.

Network event data quality varies across institutions. Institution A maintains
comprehensive logs with microsecond timestamps and detailed metadata. Institution B
logs are less granular, aggregating some events hourly due to storage limitations.
Institution C experienced a logging system failure in Q3 2023, creating a six-week data
gap that affects temporal analysis.

245



Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

Ground truth for security incidents varies in completeness. Some institutions provide
detailed forensic reports, while others supply only high-level summaries. Institution D
could not share specific attack details due to ongoing legal proceedings, limiting
evaluation of certain attack categories.

Data preprocessing required substantial effort rarely documented in academic
studies. Normalizing formats across four disparate logging systems necessitated custom
parsers and extensive validation. Missing data imputation employed domain-specific
approaches, as financial transaction logs exhibit characteristics distinct from typical
network data. Approximately 12% of events required some form of preprocessing or
imputation.

4.2. Evaluation Challenges and Methodology

Traditional machine learning metrics inadequately reflect financial cybersecurity
requirements, where false positives disrupt operations and false negatives result in
significant financial losses. We developed a cost-weighted evaluation framework
accounting for operational impact: false positives cost Institution A roughly $2,300 each
due to investigation overhead, whereas missed attacks incur an average of $47,000 in
incident response costs.

Detection latency is measured end-to-end, from event observation to alert generation.
Performance fluctuates with system load, increasing 3-4x during market opening hours
when event volumes spike. Statistical analyses must consider these load variations,
necessitating time-series modeling rather than simple averages.

Throughput evaluations simulate realistic operational loads, including crisis
scenarios. The March 2023 banking crisis provided natural stress testing; the system
degraded but maintained core functionality. The October 2023 cyberattack simulation,
coordinated with Institution B's red team, exposed bottlenecks in graph processing that
required emergency optimization.

Zero-day evaluation employed temporal validation: models trained on historical
data were tested on chronologically subsequent threats. This approach is more realistic
than synthetic attack generation but introduces challenges, as the number of confirmed
zero-day incidents is small (23 cases across all institutions), limiting statistical power.

4.3. Implementation Phases and Lessons

System development proceeded in three phases, each revealing operational
challenges not anticipated in academic planning. Phase 1 (algorithm development)
focused on core model design. Phase 2 (pilot deployment) uncovered integration
complexities. Phase 3 (production) required extensive optimization and bug fixing.

Hardware limitations necessitated architectural compromises. Initial designs
assumed unlimited GPU memory, but RTX 3090 constraints (24GB) required reductions
in model size and batch optimization. Institution C's older hardware (RTX 2080 Ti with
11GB) required further optimization, delaying deployment by six weeks.

Integration with existing security infrastructure required custom development for
each institution. Institution A's legacy SIEM (10+ years old) lacked modern APIs, requiring
custom log parsing and injection mechanisms [8]. Institution D's security team mandated
air-gapped deployment, complicating federated learning coordination.

Performance optimization continued throughout deployment. Real operational data
revealed bottlenecks absent in synthetic testing. Memory leaks appeared only after
extended operation (72+ hours), necessitating careful debugging of distributed
components. Load balancing algorithms were tuned for each institution's specific traffic
patterns.

Regulatory compliance proved more complex than anticipated. Initial assessments
were optimistic; actual audits required extensive documentation and explanations,
consuming substantial development resources. SOX compliance alone required an
additional three months of documentation and system modifications.
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5. Results and Operational Performance
5.1. Detection Performance Reality

Overall detection accuracy reaches 86.7% + 2.8% across all threat categories—lower
than our initial target of 92% but substantially better than baseline systems averaging 71.2%
accuracy. These results reflect real operational data with all its messiness, not clean
academic datasets (see Table 1 for a comparative performance analysis).

Table 1. Comparative Performance Analysis (Real Deployment Data).

Accuracy Precision Recall F1-Score FP Rate Response

Syst

ystem (%) (%) (%) (%) (%) Time (s)
Legacy Rule- )/ » 163 691271 209% 636462 97:28 148442

Based 5.8
Commercial (), o 793440 78 754146 51217 6923

ML 51
OurHybrid o v 2g gg2x24 X% 1409 21:08  34+17

System 3.2

Performance varies significantly across institutions. Institution A (larger, more
sophisticated infrastructure) achieves 89.1% accuracy. Institution C (regional bank with
legacy systems) achieves 83.2%. This variation reflects real-world deployment complexity
not captured in academic evaluations (Figure 2).

(a) Detection Accuracy (b) Detection Latency (c) Zero-Day Detection Rate

450ms
94.7%
95 - 82.1%

300 - 280ms 60 -

85.7%

45.3%

40 -
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Detection Accuracy (%)
&

Detection Latency (ms)

Zero-Day Detection (%)

100 - 87ms 20-
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Traditional ML-Based SHIELD Traditional ML-Based SHIELD Traditional ML-Based SHIELD
DS Systems (Ours) DS Systems (Ours) DS Systems (Ours)

Figure 2. Real-Time Threat Detection Performance Comparison.

The three-panel comparison (Detection Accuracy, Detection Latency, Zero-Day
Detection Rate) provides a clear visual summary of your system's performance
advantages over traditional and ML-based baselines, complementing the detailed
numerical data in your table.

Advanced Persistent Threat detection reaches 88.9% =+ 3.7% —better than rule-based
systems (52.1%) but still challenging. As shown in Table 2, APTs by definition adapt to
detection systems, creating an ongoing arms race. Our system catches most known APT
patterns but struggles with novel techniques (as expected).

Table 2. Threat Category Performance (Operational Data).

Th
Caterezt Detection Rate  Avg.Time  FP Rate Notes
sony (%) (s) (%)
Malware §7.3+3.1 21£09 1405  Strong performance
Injection
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Network 89.8+2.7 28+14  1.8+07 Good across
Intrusion institutions
Insider Threats 79.4+52 53+28  37+14 Most challenging
category
Social 728+6.1 46+22  42s1g  ublective ground
Engineering truth
Financial Fraud 91.7+23 24+11 11204 Extensive training
data
Zero-Day 87.2+43 38+19  23+09  imited testcases (23
Exploits total)

Financial fraud detection performs best due to extensive historical data. Social
engineering detection is challenging because attacks exploit legitimate communication
channels in ways difficult to distinguish algorithmically. Insider threats remain
problematic-behavioral baselines are difficult to establish and individual variations are
high.

5.2. Zero-Day Detection and Federated Learning Impact

Zero-day detection achieves 87.2% =+ 4.3% accuracy through federated learning-
significant improvement over individual institutional deployments averaging 74.6%.
However, evaluation is limited by small sample size (23 confirmed zero-day incidents
across all institutions over 14 months).

Federated learning demonstrates clear value for novel threat detection. Institutions
participating in collaborative learning show 16% improved detection rates compared to
standalone deployments. However, participation levels vary-Institution B contributes less
data due to internal privacy concerns, reducing overall benefit (Figure 3).

(a) Zero-Day Detection Rate Improvement Through Adaptive Learning

©
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<
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©
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-
o
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Figure 3. Zero-Day Threat Detection Timeline and Adaptive Learning Process.

This dual-panel figure effectively demonstrates both the temporal improvement in
zero-day detection through your adaptive learning approach and the performance gains
across different threat categories, directly supporting your federated learning impact
discussion, as summarized in Table 3.
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Table 3. Federated Learning Collaboration Impact.

Collaboration Detection Covera  Comm. Overhead Privacy
Size Accuracy (%) ge (MB/day) Budget (¢)
Single
Lo 74.6+5.8 71.3 0 N/A
Institution
Two
o 81.4+4.2 78.9 321 0.41
Institutions
Four
. 87.2+4.3 89.7 73.4 0.76
Institutions

Privacy preservation analysis shows differential privacy guarantees remain within
acceptable bounds, though actual privacy budgets (¢=0.73-0.89) exceed theoretical targets
(e=0.5) due to operational requirements. Real deployments require more privacy budget
than academic papers suggest.

Communication overhead is manageable for current collaboration sizes but would
scale poorly to larger networks. Institution A's network bandwidth limitations
occasionally delay federated updates during peak business hours, creating temporary
model staleness.

5.3. Real-Time Performance Under Operational Stress

Real-time performance evaluation reveals significant variations based on operational
conditions not captured in controlled testing. Average response times of 3.4 + 1.7 seconds
meet requirements for most applications, but performance degrades substantially during
market stress.

During normal conditions, the system processes 1.1 million events per second.
However, performance drops to approximately 400,000 events/sec during market
volatility when event complexity and volume both increase. The March 2023 banking
crisis provided natural stress testing that revealed several bottlenecks requiring
emergency optimization.

Performance varies significantly across institutions based on hardware and network
infrastructure. Institution A's modern data center maintains consistent performance.
Institution C's older infrastructure shows higher response time variance (+3.2s vs *1.1s).
These real-world constraints don't appear in academic evaluations but dominate
operational deployment decisions.

Memory usage patterns show periodic spikes during graph processing that
occasionally trigger garbage collection pauses. These pauses (200-800ms) are acceptable
for most threats but problematic for high-frequency trading environments where
microsecond timing matters.

Load balancing algorithms required extensive tuning for each institutional
environment. Initial round-robin approaches performed poorly due to varying
computational complexity of different event types. Current adaptive load balancing
improves overall throughput by approximately 23% but complicates system monitoring
and debugging.

5.4. Regulatory Compliance in Practice

Regulatory compliance evaluation represents the most time-consuming aspect of
deployment, requiring approximately 40% of total project effort. Successful compliance
approval for SOX, PCI DSS, and internal banking regulations across all partner
institutions validates the approach, though the process revealed numerous practical
challenges, as shown in Table 4.
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Table 4. Regulatory Compliance Results.

Compliance Score Audit Trail Documentat Review Time

F K
ramewor (%) (%) ion (days)
SOX (Sarbanes- 92.1 9.8 Acceptable+ 18
Oxley)
PCI DSS 94.3 97.2 Good 12
Basel III 87.6 91.4 Needs work 26
GDPR 90.8 94.1 Good 9
Institution A 88.9 93.7 Acceptable 21

Internal

Audit trail generation meets regulatory requirements but storage costs are
substantial (2.3TB monthly across all institutions). Explainability mechanisms satisfy legal
compliance but operational staff find them difficult to use in practice. We developed
simplified interfaces for compliance personnel, though these required extensive user
training.

Compliance officers at different institutions interpret requirements differently,
requiring customization of explanation interfaces and audit procedures. Institution B's
compliance team demanded additional detail levels not required elsewhere, complicating
standardization efforts.

The most challenging aspect was explaining ensemble decision-making to auditors
unfamiliar with ML techniques. Standard SHAP explanations were insufficient-we
developed custom visualization tools showing decision pathways through the hybrid
architecture. This took 6 weeks of additional development not anticipated in original
project planning.

6. Discussion: Lessons from Real Deployment
6.1. What Actually Works vs. What We Expected

The hybrid neural architecture demonstrates measurable improvements over
existing financial cybersecurity approaches, although performance gains are smaller than
initially projected. Real-world deployment exposes practical constraints that are rarely
captured in academic evaluations or vendor demonstrations.

Federated learning successfully enables collaborative threat intelligence without
compromising institutional privacy, representing a genuine advance in cybersecurity
capabilities. However, business and legal constraints often limit participation more than
technical privacy concerns. Institution D joined the collaboration only after four months
of legal review, significantly delaying the project timeline.

Computational requirements pose challenges for smaller institutions with limited
infrastructure. Institution C required hardware upgrades costing approximately $78,000
to operate the system effectively. This cost barrier indicates that sophisticated Al
cybersecurity solutions may widen rather than narrow the gap between large and small
financial institutions.

6.2. Operational Reality vs. Academic Assumptions

Data quality challenges proved more significant than anticipated. Although financial
institutions maintain comprehensive logs, format variations, quality inconsistencies, and
completeness gaps require extensive preprocessing. Institution B's log format changed
twice during deployment, necessitating parser updates and data reprocessing.

Integration complexity exceeded initial expectations due to diverse security tools,
network configurations, and operational procedures. Each institution required four to
eight weeks of custom integration work despite efforts toward standardization.
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Institution A's legacy mainframe systems demanded custom protocol adapters not
anticipated in the original architecture.

Performance optimization revealed bottlenecks and edge cases absent in controlled
testing environments. Real financial network traffic exhibits patterns and volume spikes
that stress Al systems unpredictably. For example, the October 2023 flash crash generated
event sequences that caused memory exhaustion, requiring emergency optimization.

Team dynamics also influenced project timelines and outcomes. Early disagreements
about graph topology representation delayed development by six weeks. Conflicting
institutional requirements could not be resolved purely through technical solutions,
necessitating business-level negotiations and compromises.

6.3. Ongoing Challenges and Future Directions

Several areas require further investigation based on deployment experience. More
efficient architectures that maintain detection performance while reducing computational
overhead would enable broader institutional adoption. Current system requirements
exclude smaller banks and credit unions lacking advanced IT infrastructure.

Enhanced explainability remains necessary despite satisfying regulatory
requirements. While compliance officers understand legal implications, operational
security staff require intuitive explanations for daily use. Current XAI techniques meet
auditor needs but are insufficient for practitioners acting on system outputs.

Cross-sector threat intelligence sharing represents a logical extension of collaborative
approaches, though business and regulatory barriers remain substantial. Comparable
cybersecurity challenges exist in other critical infrastructure sectors, such as smart power
systems, suggesting potential for cross-domain knowledge transfer. Energy, healthcare,
and transportation sectors face similar challenges but operate under distinct legal
frameworks that complicate data-sharing agreements.

6.4. Broader Implications for Al in Regulated Industries

This work demonstrates that Al systems can function effectively in highly regulated,
high-stakes environments while satisfying operational and compliance requirements.
However, deployment complexity and resource demands far exceed what academic
research often suggests.

Regulatory compliance integration shows that Al can meet transparency
requirements in regulated industries, although development effort-approximately 40% of
total project resources-surpasses typical academic estimates. Compliance integration must
be considered from project inception rather than appended after algorithm development.

Business and legal constraints often dominate technical considerations in regulated
environments. Technical solutions that disregard these realities are unlikely to succeed,
regardless of algorithmic sophistication. Effective deployment requires close coordination
among technical teams, compliance officers, legal counsel, and business stakeholders.

7. Conclusion

This study presents a comprehensive approach to Al-driven cybersecurity for
financial infrastructure, addressing practical deployment requirements alongside
algorithmic innovation. The hybrid neural architecture effectively integrates temporal
sequence analysis with structural relationship modeling, achieving 86.7% +2.8% detection
accuracy under operational conditions.

The federated learning framework enables collaborative threat intelligence while
preserving institutional privacy and regulatory compliance. Fourteen months of
operational deployment across four institutions demonstrate notable performance
improvements: 86.7% detection accuracy, 87.2% zero-day detection, and a 2.1% false
positive rate under real-world conditions.

Key contributions include:

A hybrid architecture combining Transformers and Graph Neural Networks
optimized for financial network characteristics through iterative deployment experience.
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1) Federated learning implementation with differential privacy, tested and

validated under actual regulatory audits.

2)  Comprehensive regulatory compliance integration providing transparency and

audit capabilities, verified across multiple frameworks.

3) A real-time processing pipeline capable of handling 1.1 million events per

second, with performance validated through extended deployment.

Nevertheless, deployment reveals significant challenges absent from academic
research. Computational requirements may preclude adoption by smaller institutions.
Data quality and integration complexities require substantial custom development.
Regulatory compliance consumes 40% of project resources. Business and legal constraints
frequently outweigh technical considerations.

The system operates in production at multiple institutions with measurable threat
detection improvements, although ongoing stability issues during high-frequency trading
periods require continued optimization. Regulatory compliance capabilities facilitate Al
adoption in environments requiring transparency, though explanation interfaces need
improvement for operational staff.

Future work should focus on enhancing computational efficiency for broader
adoption, improving operational explainability beyond current legal requirements, and
developing business models to enable cross-sector collaboration. Cost barriers and
integration complexity may restrict sophisticated Al cybersecurity to well-resourced
institutions unless more efficient approaches are developed.

This research demonstrates that advanced Al techniques can be successfully
deployed in regulated, mission-critical environments when designed with careful
attention to operational requirements, regulatory constraints, and practical deployment
challenges. However, the resource demands and system complexity significantly exceed
academic expectations, underscoring the need for more realistic evaluations of Al
deployment costs and timelines.
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