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Abstract: The rapid emergence of large language models (LLMs) in healthcare applications presents 
critical challenges related to factual accuracy and hallucination control. This paper proposes an 
alternative approach that integrates enhanced medical terminology definitions with retrieval-
augmented generation (RAG) techniques to mitigate hallucinations in medical question-answering 
systems. The primary technical contributions include: (1) a Medical-Adaptive Confidence 
Calibration (MACC) algorithm that departs from traditional RAG methods by dynamically 
adjusting thresholds based on clinical risk; (2) a multi-source medical knowledge fusion framework 
that incorporates hierarchical relationships from SNOMED-CT, UMLS, and ICD-10; and (3) a 
comprehensive robustness validation procedure featuring real-time monitoring. The proposed 
approach achieves substantial accuracy improvements, reducing hallucinations by 23.7% (p < 0.001, 
95% CI: 19.4%, 28.0%) compared with baseline systems. Experimental evaluations on medical 
consultation datasets demonstrate superior precision and reliability in clinical information delivery, 
yielding an 18.4% increase in precision and a 15.2% enhancement in recall. The framework 
effectively addresses major limitations of existing automated medical consultation systems while 
maintaining computational efficiency and scalability for practical deployment. 

Keywords: medical question answering; hallucination mitigation; retrieval-augmented generation; 
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1. Introduction 
1.1. Background and Motivation of Medical Question Answering Systems 

Medical question-answering (QA) systems play a crucial role in bridging artificial 
intelligence (AI) and healthcare services, particularly amid the rising demand for accurate 
medical information retrieval in the digital health era. The application of large language 
models (LLMs) in clinical contexts offers significant potential to enhance patient 
interactions and support clinical decision-making. As shown in, linking general-purpose 
language models to domain-specific medical consultation requirements highlights the 
necessity of specialised fine-tuning for healthcare-related use cases [1]. 

Recent transformer-based architectures have enabled state-of-the-art medical AI 
systems to address a broad range of complex clinical queries effectively. However, due to 
the high-stakes nature of medical information, accuracy standards are exceptionally 
stringent, as factual inaccuracies can directly affect patient safety and clinical outcomes. 
Research indicates that hallucination rates in general-purpose LLMs may exceed 15-20% 
in medical domains, underscoring the need for specialised algorithms to ensure factual 
reliability. 

Received: 17 October 2025 

Revised: 21 October 2025 

Accepted: 07 November 2025 

Published: 10 November 2025 

 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 1 (2025) 
 

 223  

Medical QA systems must therefore confront multifaceted challenges related to 
precision, trustworthiness, and safety-factors that are fundamental to healthcare 
applications. Given the complexity of medical terminology, the subtlety of clinical context, 
and the critical need for factual correctness in medical advice, language models must be 
adapted to effectively process and interpret clinical data. Consequently, integrating 
domain expertise with computational methodologies is essential to develop reliable 
systems that support both clinical applications and patient education. 

1.2. Hallucination Challenges in Large Language Models for Healthcare Applications 
Because factual inaccuracies can result in patient harm or adverse healthcare 

outcomes, hallucination represents a particularly serious risk in medical language model 
applications. A factuality mechanism can help mitigate such risks by systematically 
reducing hallucination rates. As indicated in, incorporating self-alignment mechanisms 
enables the implementation of factuality controls through iterative verification of model 
outputs [2]. 

In medical contexts, hallucinations may lead to the generation of false or misleading 
content, such as non-existent diseases, incorrect treatment recommendations, or 
fabricated statistics that could distort healthcare decisions. Within clinical hallucination 
taxonomies, four primary categories are commonly identified: 

Factual medical errors, including incorrect diagnoses or treatments; 
1) Fabricated statistical data; 
2) Nonexistent drug interactions; and 
3) Inadequate clinical decisions. 
Studies such as have reported that a majority of hallucinations in medical natural 

language processing systems involve factual inaccuracies, while a smaller portion stem 
from logical inconsistencies in clinical reasoning. The inherently probabilistic nature of 
LLMs contributes to hallucination occurrence, especially when models encounter queries 
requiring highly detailed, domain-specific knowledge not present in their training data. 

The medical field presents unique challenges due to its extensive technical 
terminology, intricate conceptual interrelations, and the necessity for information to be 
conveyed with absolute precision. As shown in, medical concept normalization plays an 
important role in improving the reliability of clinical text processing. Further comparative 
studies, such as, have demonstrated notable discrepancies between physician-generated 
responses and LLM outputs, particularly in factual accuracy and reasoning consistency 
[3,4]. 

Understanding hallucination patterns specific to medical applications therefore 
requires comprehensive insight into model behavior and the precise factual standards 
demanded within each clinical domain. 

1.3. Research Objectives and Main Contributions 
The primary objective of this study is to propose a systematic approach to reducing 

hallucination rates in medical question-answering systems. The method integrates refined 
medical terminology definitions into a retrieval-augmented generation (RAG) framework, 
formulating the process as a structured pipeline that minimizes hallucinations without 
compromising the overall quality of medical responses. 

From the perspective of medical terminology, the retrieval mechanism ensures 
precision and contextual appropriateness in handling clinical issues. The main 
contributions of this research can be summarized as follows: 

1) A medical terminology definition enhancement framework supported by 
structured medical knowledge bases, designed to improve the semantic 
representation and contextual understanding of clinical terms. 

2) A retrieval-augmented generation architecture tailored for medical applications, 
integrating factual verification and domain-specific reasoning into a unified 
framework. 
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This proposed method incorporates multiple layers of validation alongside medical 
domain knowledge, achieving performance gains comparable to or exceeding those of 
previous approaches, as indicated in [5]. The translation of these mechanisms into 
practical cross-modal strategies provides a foundation for subsequent research. The 
outcomes of this study hold practical value for both real-world clinical consultations and 
clinical decision support systems. 

2. Related Work 
2.1. Large Language Models in Medical Domain Applications 

Early research in biomedical text mining and clinical information extraction laid the 
groundwork for medical natural language processing. Initial efforts such as MedLEE and 
MetaMap demonstrated the value of integrating structured medical knowledge, 
establishing a foundation that continues to support the development of advanced medical 
AI systems. 

The adoption of large language models (LLMs) in medical domains has progressed 
rapidly, driven by their transformative potential in healthcare delivery and clinical 
decision support. As noted in, the incorporation of self-reflection mechanisms has been 
effective in mitigating hallucinations, improving factual reliability in domain-specific 
applications. Adapting general-purpose language models to clinical contexts requires a 
detailed understanding of medical terminology, diagnostic reasoning, and evidence-
based medical knowledge [6]. 

Recent advancements in medical language models have shown impressive 
capabilities in processing clinical documentation, supporting differential diagnosis, and 
assisting in medical education. As demonstrated in, domain-specific architectures such as 
BioBERT-NLI and FLAN-T5 highlight the potential of tailored models for symptom-based 
diagnostic tasks. Integrating biomedical knowledge graphs with language model 
architectures has further enabled complex reasoning over medical concepts [7]. 

The evolution of medical LLMs has introduced innovations in domain-specific 
pretraining, knowledge-enhanced fine-tuning, and multimodal integration. 
Comprehensive reviews such as have summarized the technological trends, application 
domains, and trustworthiness concerns associated with medical LLMs. The inclusion of 
clinical guidelines, medical ontologies, and evidence-based protocols in training processes 
has enhanced both the clinical utility and safety of these systems [8]. 

2.2. Retrieval-Augmented Generation Techniques and Medical Knowledge Integration 
Retrieval-augmented generation (RAG) represents a significant advancement in 

language model design, addressing limitations in knowledge retention and factual 
accuracy by integrating external knowledge sources. As shown in, knowledge-enhanced 
medical consultation systems demonstrate strong performance through the combination 
of matching mechanisms and response generation, particularly in evidence-based 
response systems. Structured medical databases coupled with retrieval interfaces enable 
dynamic access to up-to-date medical information and clinical guidelines [9]. 

The application of RAG to medical domains requires careful consideration of 
knowledge reliability, timeliness, and clinical validation. As discussed in, domain-specific 
retrieval strategies such as token factorization enhance retrieval precision for technical 
domains. Medical knowledge integration must account for hierarchical taxonomies, 
temporal elements of clinical guidelines, and contextual dependencies inherent in medical 
decision-making [10]. 

State-of-the-art retrieval frameworks in medical AI incorporate semantic similarity 
measures, clinical relevance scoring, and evidence quality assessment to ensure the 
selection of appropriate knowledge. As indicated in, multimodal retrieval models for 
medical consultation integrate heterogeneous information sources to improve knowledge 
retrieval processes. Optimization in retrieval design must balance precision and recall 
while maintaining sufficient efficiency for real-time consultation systems [11]. 

Relation with Classical RAG: 
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Compared with classical retrieval-augmented generation as defined in 11, which 
focused primarily on knowledge-intensive natural language processing tasks, medical 
applications demand customized adaptations beyond generic retrieval schemes. Classical 
RAG employs fixed similarity metrics and retrieval rules, but it does not address dynamic 
confidence calibration based on clinical risk assessment, hierarchical medical concept 
comprehension, or multi-source knowledge validation essential for ensuring patient 
safety in medical question-answering systems. 

2.3. Hallucination Detection and Mitigation Strategies in Healthcare AI 
Hallucination detection and mitigation in healthcare AI systems constitute a critical 

area of research with direct implications for clinical safety and system reliability. As 
shown in, self-evolving multi-agent consultation frameworks reduce factual errors 
through consensus-based mechanisms. Detecting hallucinations in clinical contexts 
requires precise validation methods aligned with medical accuracy standards [12]. 

Current mitigation strategies include confidence estimation, knowledge verification, 
and multi-source validation. The implementation of self-reflection mechanisms, as 
described in, has demonstrated notable improvements in factual accuracy across multiple 
application areas. Applying such mechanisms to healthcare requires compliance with 
clinical validation criteria and integration with domain-specific medical databases [13]. 

Effective deployment of hallucination mitigation strategies in medical systems 
involves balancing accuracy gains with computational efficiency and response latency. As 
explored in, federated learning approaches can preserve data privacy while sustaining 
system effectiveness in distributed medical environments. Developing real-time 
hallucination detection pipelines capable of assessing clinical accuracy without 
compromising responsiveness remains a key challenge for future research in medical AI 
applications [14]. 

3. Methodology 
3.1. Medical Terminology Definition Enhancement Framework 

Our method builds upon a definition enhancement framework that resolves semantic 
ambiguities and establishes an integrated pipeline combining retrieval and generation 
processes. By incorporating medical ontologies with dynamic definition mechanisms, the 
system ensures that clinical concepts maintain consistent and precise meanings across 
multiple medical specialties and application contexts. This framework leverages 
hierarchical taxonomies such as SNOMED CT, ICD-10, and UMLS to provide 
comprehensive semantic relationships among medical terms, improving both accuracy 
and interpretability in medical question answering. 

Core Innovation: Medical-Adaptive Confidence Calibration (MACC) Framework 
The proposed Medical-Adaptive Confidence Calibration (MACC) framework 

introduces several innovations that distinguish it from classical retrieval-augmented 
generation (RAG) architectures [15]. 

1) Hierarchical Medical Concept Understanding: Traditional RAG systems 
employ generic semantic similarity measures, while MACC utilizes hierarchical 
relationships among medical concepts derived from SNOMED CT to model 
semantic depth and precision. 

2) Dynamic Risk-Based Threshold Adaptation: Unlike static retrieval thresholds 
used in standard RAG, MACC dynamically adjusts confidence thresholds 
according to the assessed clinical risk of each query. 

3) Multi-Source Medical Knowledge Fusion: MACC integrates multiple 
structured knowledge graphs-SNOMED CT, UMLS, and ICD-10-through 
ensemble-based learning to improve cross-source consistency and factual 
reliability. 

Algorithm 1. Medical-Adaptive Confidence Calibration (MACC) 
Input: Medical query Q, knowledge bases KB = {SNOMED, UMLS, ICD-10}, risk 

threshold τ 
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Output: Risk-calibrated enhanced query Q′ 
1) Phase 1: Medical Entity Hierarchical Understanding 
Extract entities E = MedicalNER(Q) using BioBERT-CRF. 
For each entity e ∈ E: 
Compute hierarchy depth from SNOMED_tree and calculate 
semantic_weight = hierarchy_score / max_depth. 
2) Phase 2: Dynamic Confidence Optimization 
Initialize weights w = [w_authority, w_semantic, w_consensus]. 
For each medical domain d ∈ {cardiology, oncology, neurology, ...}: 
Compute loss = CrossEntropyLoss (predicted_risk, ground_truth_risk). 
Update weights w using gradient descent with learning rate 0.001. 
3) Phase 3: Clinical Risk-Based Threshold Adaptation 
Assess clinical risk level: High / Medium / Low. 
If High: τ_adapted = τ × 1.5 (more stringent threshold) 
If Medium: τ_adapted = τ × 1.2 
Else: τ_adapted = τ 
4) Phase 4: Multi-Source Knowledge Fusion 
For each knowledge base KB in {SNOMED, UMLS, ICD-10}: 
Retrieve definitions definitions = RetrieveDefinitions (E, KB) 
Compute confidence = ComputeConfidence (definitions, w, τ_adapted) 
Append result to confidence_scores 
Perform ensemble fusion with domain-specific weighting: 
final_confidence = Σ(domain_weight[i] × confidence_scores[i]) 
5) Output: Return AugmentedQuery (Q, final_confidence) if final_confidence > 

τ_adapted. 
Theoretical Foundation for Weight Optimization 
The weight optimization procedure is grounded in a Bayesian diagnostic reasoning 

framework: 
1) w_authority represents the evidence strength derived from medical knowledge 

bases (e.g., higher weights for high-grade clinical evidence). 
2) w_semantic measures semantic similarity using medical BERT models trained 

on PubMed and clinical corpora. 
3) w_consensus quantifies the agreement level across different medical knowledge 

sources, reflecting inter-database consensus. 
The optimization objective function is defined as: 

𝐿𝐿(𝑤𝑤) = �[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∣ 𝑄𝑄,𝑤𝑤), 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)] + 𝜆𝜆 ∣∣ 𝑤𝑤 ∣∣2] 
Our methodology incorporates semantic embedding models trained on large-scale 

medical literature and clinical documentation to capture subtle semantic relationships 
between medical concepts. The definition enhancement process utilizes graph-based 
knowledge representation to model complex interconnections among symptoms, diseases, 
treatments, and diagnostic procedures. This structured approach enables advanced 
reasoning that accounts for clinical context and patient-specific variables, enhancing the 
precision and contextual relevance of medical terminology definitions in downstream 
processing tasks (As shown in Table 1). 

Table 1. Medical Terminology Enhancement Performance Metrics. 

Enhancement Type Precision Recall F1-Score Coverage 

Symptom Terms 0.924 0.887 0.905 94.3% 

Disease Entities 0.941 0.912 0.926 96.8% 

Treatment Options 0.889 0.856 0.872 91.2% 
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Diagnostic Procedures 0.907 0.893 0.900 93.7% 

The framework implements confidence scoring mechanisms to assess the reliability 
of terminology definitions based on source authority, clinical validation status, and 
consensus among medical knowledge bases. We employ ensemble approaches that 
combine multiple definition sources to generate comprehensive and accurate 
representations of medical concepts. The system also incorporates temporal 
considerations, accounting for evolving clinical guidelines and emerging research 
findings that may influence terminology definitions and clinical recommendations. 

Computational Complexity Analysis: 
The MACC algorithm exhibits a time complexity of O(∣E∣⋅K⋅logN+M⋅T), where ∣E∣ 

represents the number of medical entities, K denotes the number of knowledge bases (3), 
NNN indicates concepts per knowledge base, M represents medical domains (15), and T 
signifies the number of optimization iterations (typically fewer than 100). Compared to 
traditional RAG, which has a complexity of O(∣Q∣⋅logN), our medical-specific processing 
introduces an additional O(∣E∣⋅K) overhead. This overhead is mitigated through 
parallelized knowledge base querying, maintaining acceptable latency (under 300 ms). 

3.2. Retrieval-Augmented Generation Architecture with Semantic Understanding 
Our retrieval-augmented generation model combines semantic understanding with 

advanced retrieval strategies to deliver precise and contextually appropriate medical 
information. The architecture employs a multistage retrieval scheme that integrates lexical 
matching, semantic similarity measures, and a clinical relevance scoring model to identify 
optimal reference sources for query response generation. 

The semantic comprehension module utilizes domain-oriented transformers, with 
the encoder fine-tuned on medical literature and clinical notes to capture domain-specific 
language patterns and semantic relationships. Attention mechanisms are applied to 
clinically relevant terms and phrases while maintaining awareness of the broader context 
necessary for generating comprehensive responses. 

The model leverages medical knowledge graph embeddings to represent complex 
semantics among medical entities, facilitating advanced reasoning over clinical queries. 
This integration ensures that generated responses are accurate, clinically relevant, and 
aligned with the most current medical knowledge (Figure 1). 

 
Figure 1. Multi-Layer Semantic Understanding Architecture for Medical RAG System. 
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The semantic understanding component exhibits a complexity of O(n⋅d⋅logk), where 
nnn represents the query length, ddd is the embedding dimension (768), and kkk denotes 
the size of the knowledge base. The retrieval process maintains a complexity of O(logN) 
through efficient indexing, where N corresponds to the total number of medical 
documents, approximately 2.3 million clinical guidelines and research papers. 

Scalability Considerations: 
To achieve horizontal scaling, the system architecture leverages distributed retrieval 

mechanisms and semantic embedding caches. Empirical testing demonstrates linear 
scaling up to 10,000 concurrent queries, with an expected availability of 99.5%. 

An integrated architectural diagram illustrates how medical terminology 
enhancement is embedded within the semantic understanding layer, which in turn 
supports the retrieval-augmented generation modules. The diagram highlights data flow 
through multiple processing stages, including medical entity recognition, semantic 
embedding generation, knowledge graph integration, and response synthesis. 

Within the diagram, color-coded pathways represent attention mechanism flows 
across interconnection modules, revealing the relationships between semantic 
understanding components and retrieval mechanisms. Multiple parallel processing 
streams converge at decision points where the system selects information for response 
generation based on confidence scores and relevance to the clinical context. 

The retrieval mechanism applies sophisticated ranking algorithms to prioritize 
medical information according to clinical authority, evidence quality, and contextual 
relevance. Dynamic knowledge base selection strategies adjust to the complexity of 
queries and the requirements of specific medical specialties, ensuring that diverse clinical 
scenarios are served with appropriate knowledge sources. 

Different retrieval pipelines are maintained for various categories of medical 
information, including clinical guidelines, research literature, drug information, and 
diagnostic criteria. This architecture enables specialized processing tailored to each type 
of knowledge, enhancing the accuracy and reliability of the generated responses. 

Training Data Construction: 
1. PubMed Abstracts: 2,847,392 medical paper abstracts published 2019-2023 
2. Clinical Guidelines: 89,334 clinical guideline segments from Mayo Clinic, 

UpToDate, Cochrane 
3. Medical Textbooks: 234,567 segments from authoritative texts, including Grey's 

Anatomy, Harrison's Principles 
4. EHR Data: De-identified electronic health records (IRB approved), 123,445 records 
Preprocessing Pipeline: 
Algorithm 2: Medical Text Preprocessing 
Input: Raw medical text T 
Output: Preprocessed and standardised text T' 
1. // Step 1: Medical entity standardisation 
E = MedicalNER.extract(T) 
For each entity e ∈ E: 
e_standard = UMLS_Normalizer.normalize(e) 
T = Replace(T, e.span, e_standard) 
2. // Step 2: Abbreviation expansion 
T = MedicalAbbreviationExpander.expand(T) 
3. // Step 3: Medical notation standardisation 
T = HandleMedicalNotation(T) 
// Examples: "mg/dl" → "milligrams per deciliter" 
//          "q6h" → "every 6 hours" 
//          "NPO" → "nothing by mouth" 
4. Return T 
Model Architecture: 
Base Model: BioBERT-large (340M parameters) 
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Medical Specialisation Layers: Additional 12 Transformer layers for medical concept 
hierarchies 

Loss Function: InfoNCE + medical concept hierarchy loss 
L_total = L_InfoNCE + α·L_hierarchy + β·L_clinical_relevance 
where: α=0.3, β=0.2 (optimised via grid search) 
Training Hyperparameters: 
Learning rate: 2e-5 (cosine annealing scheduler) 
Batch size: 32 (gradient accumulation steps: 4) 
Training epochs: 15 (early stopping patience=3) 
Optimizer: AdamW (β₁=0.9, β₂=0.999, weight_decay=0.01) 
Hardware: 8×A100 40GB, mixed precision training 
Total training time: 127 hours 
Knowledge Base Integration Implementation: 
Algorithm 3: Multi-Source Knowledge Fusion 
Input: Medical concept C, Knowledge bases KB = {SNOMED, UMLS, ICD-10} 
Output: Fused definition D_fused 
1. // Retrieve definitions from all knowledge sources 
For each kb ∈ KB: 
D[kb] = kb.get_definition(C) 
2. // Compute inter-definition semantic similarity 
S = ComputeSemanticSimilarity(D.values()) 
3. // Generate fusion weights based on similarity consensus 
W = Softmax (Mean (S, axis=1)) 
4. // Weighted fusion of definitions 
D_fused = WeightedFusion (D, W) 
5. Return D_fused 
As shown in Table 2, retrieval performance varies significantly across different 

medical knowledge categories. 

Table 2. Retrieval Performance Across Medical Knowledge Categories. 

Knowledge Category Retrieval Accuracy Response Time (ms) Source Coverage 

Clinical Guidelines 0.943 145 98.7% 

Drug Information 0.928 132 96.4% 

Diagnostic Criteria 0.915 158 94.8% 

Treatment Protocols 0.937 141 97.2% 

Research Literature 0.902 167 92.6% 

3.3. Hallucination Mitigation Algorithm Design and Implementation 
The core innovation in our approach is the hallucination mitigation algorithm. This 

is implemented with multi-layered validation mechanisms that meet authenticity testing 
requirements and also consider the suitability of responses generated from a clinical point 
of view. 

Our algorithm checks facts on the fly, employing procedures that compare the 
material generated against official medical knowledge repositories and globally 
recognised evidence-based clinical guidelines. The resulting model employs ensemble 
verification techniques in which various detection strategies are integrated together to 
achieve the most comprehensive possible approach for detecting-and circumventing-
hallucinations once more. 

Confidence estimates may be calculated from several sources, such as the provenance 
of the original information, consensus among experts, and the degree to which evidence 
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supports it. Procedures for dynamic threshold adjustment are set in motion at the time of 
query, making sure that we employ validation criteria appropriate to both the complexity 
in question and clinical significance. This ensures an accurate standard appropriate for 
different types of medical information. 

Validation outcomes are continuously used as training data-through feedback loops, 
the program learns from the information thus obtained. Expert clinical reviews of these 
validations also influence the next round multifandomly (Figure 2). 

 
Figure 2. Hallucination Detection and Mitigation Workflow Diagram. 

A case in point is this flowchart of the entire hallucinatory reduction process, which 
regards query input review, semantic analysis, confidence scoring mechanisms, and 
response verification strategy for a paradigm. 

These diagrams contain decision trees from which many branches stream different 
validation scenarios, along with the corresponding ways of tackling them. Colored risk 
assessment indicators mark the main decision points where possible illusions might arise-
and how they were dealt with. 

The visualisation continues a tradition of including, with each processing stage, time 
measures and graphic diagrams showing which validation streams run in parallel to 
converge into the final answer approval place. Interactive parts demonstrate the model's 
process of changing validation criteria based on query traits and context in clinical 
practice. 

Our program involves hostile validation methods that test if the produced responses 
might have inaccuracies or fail appraisals by comparing them to evidence sources in the 
live system. The ultimate goal of the algorithm is to achieve liberalism and naturalness. 
After numerous modifications, it deduces many invariants that eventually help fix these 
same, more flexible system errors. 
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based upon their observations; above all, one should not slavishly follow any set theory. 
A careful approach ensures that the overall meaning being conveyed is correct, then 
makes gradual changes according to local conditions along those lines-never seeking more 
than a few adjustments at one time without verification. 

If its content can become part of an essay with quotation marks only if it appears 
elsewhere, then replace any quotation marks from the EFL.MATCH command by 
parentheses (Table 3). 
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Table 3. Hallucination Detection Performance by Medical Domain. 

Medical 
Domain 

Detection 
Rate 

False 
Positives 

Mitigation 
Success 

Processing 
Time 

Cardiology 0.912 0.078 0.946 234ms 

Oncology 0.897 0.085 0.931 267ms 

Neurology 0.923 0.071 0.952 245ms 

Endocrinology 0.889 0.092 0.925 289ms 

Infectious 
Disease 0.934 0.063 0.961 223ms 

The approach employs hierarchical verification schemes that dynamically modulate 
certifying efforts according to query complexity and risk perception. Straightforward 
factual queries experience smooth validations, whereas multifaceted diagnostic or 
therapeutic queries go through in-depth multi-tiered validations. The architecture logs 
validation decisions and results, enabling gradual training of more robust hallucination 
detectors, and logs errors for systematic evaluation of failure modes in ongoing work to 
improve the algorithms. 

4. Experimental Design and Results 
4.1. Dataset Construction and Evaluation Metrics for Medical Question Answering 

The validation of the experimental procedure presented requires extensive 
construction of a dataset that covers various medical consultation contexts and clinical 
query cases. We created a multi-domain medical QA dataset comprising 12,847 genuine 
medical questions, obtained from verified clinical consultation platforms, medical 
teaching materials, and expert-validated medical exam questions. 

The compilation of the dataset involved stringent quality assurance mechanisms, 
expert medical review and fact-checking from authoritative clinical sources, and the 
standardisation of response formats for uniform assessment protocols. 

Dataset Construction Protocol: 
1. Primary Sources: 12,847 medical queries were systematically collected from: 
Mayo Clinic patient portal (3,247 queries, IRB approval 2023-045) 
Medical education platforms (4,156 queries, anonymised) 
Expert-validated medical examinations (3,892 queries) 
Clinical consultation transcripts (1,552 queries, patient consent obtained) 
2. Quality Assurance Process: 
Stage 1: Automated filtering for query completeness (removal of 847 incomplete 

queries) 
Stage 2: Clinical expert review by board-certified physicians (inter-rater agreement κ 

= 0.89) 
Stage 3: Fact verification against clinical guidelines (using UpToDate, Cochrane 

Reviews) 
Stage 4: Stratified sampling to ensure domain balance (chi-square test, p = 0.23, 

indicating adequate balance) 
3. Ethical Considerations: 
All patient materials were de-identified under proper HIPAA guidelines. The 

research was approved by Columbia University IRB (Protocol 2023-AAAU2856). 
The evaluation contains several assessment dimensions that are tailored towards 

medical question answering systems, including factual correctness, clinical relevance, 
preservative considerations, and response completeness. We created specialised metrics 
that took into consideration the specific needs of information delivery in medicine, 
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including penalty information for harmfully inaccurate information and bonus points for 
clinically responsible cautions and disclaimers. 

The evaluation framework encompasses computer-based assessments 
complemented by expert clinician review for high-stakes medical questions that require 
professional judgment (Table 4). 

Table 4. Dataset Composition and Evaluation Metrics Framework. 

Medical 
Specialty 

Query 
Count 

Complexity 
Level 

Expert 
Validation 

Automated 
Metrics 

Clinical 
Safety Score 

Cardiology 1,247 High 100% BLEU, 
ROUGE, F1 0.943 

Oncology 1,089 Very High 100% BLEU, 
ROUGE, F1 0.956 

Neurology 967 High 100% BLEU, 
ROUGE, F1 0.932 

Endocrinology 834 Medium 100% BLEU, 
ROUGE, F1 0.918 

Infectious 
Disease 921 High 100% BLEU, 

ROUGE, F1 0.951 

Emergency 
Medicine 1,156 Very High 100% BLEU, 

ROUGE, F1 0.967 

Other 
Specialties 6,633 Variable 100% BLEU, 

ROUGE, F1 0.924 

4.1.1. Medical-Specific Evaluation Metrics with Rigorous Definitions 
1. Clinical Safety Score (CSS) Detailed Computation: 
CSS = w₁·(1 - P_harm) + w₂·(1 - P_contraindication) + w₃·P_completeness 
where: 
 P_harm: Potential harm probability via expert annotation (5-point scale converted 

to [0,1]) 
 P_contraindication: Contraindication detection accuracy (drug interaction 

screening) 
 P_completeness: Response completeness score (information coverage) 
 Weights: w₁=0.5, w₂=0.3, w₃=0.2 (determined by clinical importance) 
Expert Annotation Protocol: 
5 board-certified physicians conducted independent scoring 
Modified Likert scale (1=high risk, 5=no risk) 
Krippendorff's α = 0.847 (high inter-rater reliability) 
Conflicting cases resolved through expert panel discussion 
2. Medical Accuracy Index (MAI) Rigorous Definition: 
MAI = Σᵢ(cᵢ·aᵢ·wᵢ) / Σᵢ(cᵢ·wᵢ) 
Where: 
 cᵢ: Binary indicator of concept i's presence in response 
 aᵢ: Accuracy score for concept i (expert-rated 0-1) 
 wᵢ: Clinical importance weight for concept i 
Clinical importance weights determined by: 
 Diagnostic concepts: wᵢ = 1.0 
 Treatment concepts: wᵢ = 0.9   
 Symptom concepts: wᵢ = 0.7 
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 General medical knowledge: wᵢ = 0.5 
3. Expert Agreement Coefficient (EAC) Calculation Details: 
Fleiss' kappa for multi-rater consistency 
5 specialists: cardiology, oncology, neurology, emergency, family medicine 
Rating criteria: 1=completely incorrect, 2=partially incorrect, 3=acceptable, 4=good, 

5=excellent 
Weighted kappa accounts for the severity of rating differences 
Results Summary: 
CSS: 0.943 (vs. 0.812 for best baseline) 
MAI: 0.887 (vs. 0.704 for GPT-4 baseline) 
EAC: 4.2/5.0 (vs. 3.1/5.0 for Med-PaLM 2) 

4.1.2. Public Benchmark Dataset Validation 
To ensure generalizability and enable fair comparisons, we conducted 

comprehensive evaluations on authoritative medical QA benchmarks: 
Primary Benchmark Datasets: 
1. MedQA (USMLE): United States Medical Licensing Examination questions 

containing 12,723 multiple-choice items 
Training set: 10,178 questions 
Validation set: 1,272 questions   
Testing set: 1,273 questions 
2. PubMedQA: Biomedical question answering based on PubMed abstracts 
Expert-annotated: 1,000 question-answer pairs 
Automatically generated: 61,249 question-answer pairs 
Expert validation accuracy: 91.3% 
3. BioASQ: Biomedical semantic indexing and QA challenge dataset 
Task B data: 2,747 factoid questions 
Four question types: yes/no, factoid, list, summary 
Fair Comparison Protocol: 
To ensure comparison fairness, all baseline methods employ identical configurations: 
Knowledge Base Access: All methods utilise identical SNOMED-CT v20230901, 

UMLS 2023AB versions 
Computational Resources: Unified 8×A100 GPU configuration with identical 

inference batch sizes 
Evaluation Metrics: Standardized accuracy@1, F1-score, clinical safety score across 

all methods 
Random Seeds: Fixed at 42 for reproducible results 
MedQA Benchmark Results are shown in Table 5 

Table 5. MedQA Benchmark Results. 

Method Accuracy@1 F1-Score Clinical Safety 
Inference 

Time 
GPT-4 

(medical 
tuned) 

67.2% 0.678 0.823 1.2s 

Med-PaLM 2 71.3% 0.721 0.847 0.9s 
PMC-LLaMA 64.8% 0.651 0.798 1.4s 
MACC-RAG 

(Ours) 78.9% 0.801 0.912 0.8s 

PubMedQA Benchmark Results: 
Accuracy improvement: 76.4% vs best baseline 69.1% (+7.3%) 
F1-score enhancement: 0.784 vs 0.708 (+10.7%) 
Clinical safety score: 0.891 vs 0.834 (+6.8%) 
Statistical Significance Validation: 
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Dual validation using paired t-test and Wilcoxon signed-rank test: 
MedQA: p < 0.001 (t-test), p < 0.001 (Wilcoxon) 
PubMedQA: p < 0.001 (t-test), p < 0.001 (Wilcoxon) 
BioASQ: p = 0.002 (t-test), p = 0.001 (Wilcoxon) 

4.2. Comparative Analysis with Baseline Methods and Performance Evaluation 
Statistical Significance Testing: 
All performance improvements were validated using paired t-tests with Bonferroni 

correction for multiple comparisons. The hallucination reduction results show: 
 Mean improvement: 23.7% (SD = 4.2%) 
 95% Confidence Interval: [19.4%, 28.0%] 
 p-value: < 0.001 (highly significant) 
 Effect size (Cohen's d): 1.84 (considerable effect) 
Baseline Methods Comparison: 
Our evaluation includes state-of-the-art medical LLMs: 
1. GPT-4 with medical fine-tuning (OpenAI, 2023) 
2. Med-PaLM 2 (Google, 2023)  
3. PMC-LLaMA (Wu et al., 2023) 
4. ClinicalBERT (Alsentzer et al., 2019) 
5. BioBERT (Lee et al., 2020) 
Statistical Analysis Rigour Assurance: 
1. Confidence Interval Calculation Method: 
Bootstrap methodology (10,000 resamples) for 95% confidence intervals: 
23.7% improvement CI: [19.4%, 28.0%] 
Bootstrap standard error: SE = 2.1% 
Bias correction: Bias-corrected and accelerated (BCa) method 
2. Multiple Comparison Correction: 
Bonferroni-Holm step-down procedure: 
Original α level: 0.05 
Corrected significance thresholds: 
Smallest p-value: α/15 = 0.0033 
Second smallest: α/14 = 0.0036 
Sequential adjustment continues... 
3. Effect Size Validity Verification: 
Cohen's d = 1.84 validity confirmed through: 
Domain Comparison: Medical AI effect sizes are typically large (Topol, 2019) 
Baseline Disparity: Traditional methods demonstrate poor medical domain 

performance 
Sample Size Calculation: Post-hoc power analysis reveals statistical power > 0.99 
4. Potential Bias Controls: 
Selection Bias: Stratified random sampling implementation 
Measurement Bias: Double-blind evaluation (assessors unaware of method source) 
Confounding Variables: Query complexity, medical speciality, and query length 

controls 
We systematically evaluated our approach, comparing it with established 

benchmarks, including standard question generation systems augmented by conventional 
retrieval techniques, standard question answering systems in medicine, and state-of-the-
art language models adapted for medical use. 

To ensure fair and meaningful comparisons of divergent methodological approaches 
across datasets, computational resources, and evaluation standards, our experiments 
were conducted under stringent controls. 

Our results include the GPT-4 model fine-tuned for medical text use; BIOBERT-
associated question answering systems; Med-PaLM and ClinicalBERT-a pair of 
specialised medical language models that have been explicitly trained on medical texts. 
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In terms of performance, the evaluation framework defined many measures such as 
response accuracy, clinical security, hallucination rates, response speed, as well as 
efficiency consumed during computations since inspection of its predecessors (Young et 
al., 2019; theoretical perspective). 

The consistency of our approach is particularly evident in the extensive ablation 
experiments that were run. We found it necessary to solicit the views of specialists on this 
point since no prior work had been done in controlled experiments (Figure 3). 

 
Figure 3. Comparative Performance Analysis Across Medical Specialities and Baseline Methods. 

The performance contrast of different medical specialities and baseline strategies is 
shown in a comprehensive multi-panel visualisation.  

We use radar charts to compare our approach with baselines using multiple 
evaluation metrics, such as accuracy, safety at both response levels, and computational 
efficiency.  

Heatmaps demonstrate that performance varies across different medical disciplines; 
the colour gradient shows how well or poorly the indicators of relative performance levels.  

Statistically significant differences in performance improvements are demonstrated 
by bar charts that illustrate confidence intervals and P values.  

Annotations and callouts highlight various significant performance advantages of 
the proposed methodology.  

The visualisation incorporates interactive features so that individual aspects of 
performance can be examined in detail and annotated with their impressions as well as 
their measurements.  

The experimental results show that our proposed method is substantially better in all 
performance indicators. When comparing it to the best baseline approach, the incidence 
of hallucinations was reduced by 23.7%.  

Depending on the occupation and degree, similar queries were given back; this 
improvement of response accuracy varied from 15.2% ~ 28.9%.  

The system maintains computational efficiency on par with baseline approaches 
while yielding enhanced accuracy and security. 

4.3. Ablation Studies and Error Analysis on Hallucination Reduction 
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In comprehensive ablation trials, each element of the system was obliterated to 
examine what contribution it makes towards achieving excellence in reducing 
hallucinations on average. We turned off various parts of the framework as a whole, 
including medical term enhancement, understanding semantics, and multistage checks, 
to see how these different operations affected system performance individually. A 
readjusting analysis showed that the ablation of medical term definition enhanced 34.2% 
of overall hallucination reduction, while understanding semantics modes contributed 
28.7%. 

The error analysis dug into the continued occurrences of hallucinations. It broke 
down the patterns and attributes of these problems that can inform future improvements 
for our system. Hallucination types were categorised as factual errors, logical 
contradictions, contextual awkwardness, or safety breaches, and their distribution was 
examined across fields of medicine and requests made. Our analysis shows that 
complicated multi-step reasoning scenarios offer the most significant impetus for making 
errors of a hallucinogenic nature. This is particularly true when respondents must link 
together several different medical concepts or think of issues specific to patients. 

Our error analysis uncovered where, in particular, the system should be improved, 
such as how it learns about new moments to arise in medicine, fresh forms of treatment, 
and possible problems caused by complex drug interactions between multiple agents 
within the body. We noticed that the system has immense power in fields like general 
medicine FAQs and established clinical rules, yet there is plenty of room for improvement 
left when it comes to applying this knowledge to cutting-edge medical studies in general 
and highly specialised sub-disciplines like these. As a result, the analysis served as an 
entry point for targeted improvement on aspects of knowledge base coverage and 
validation schemes that will enhance system performance in some measure or another. 

The folk song-style ablation results reveal our total system approach to be more 
effective than the sum of its parts, with combined system performance levels far exceeding 
those produced by individual component contributions. With fine detail and precision, 
the medical term subtraction framework showed its role in terminological interpretation. 
At the same time, the semantic understanding facilities provided a comprehensive 
understanding of context required for an appropriate response. Multi-layered validation 
procedures were critical to maintaining clinical safety standards while also ensuring that 
our responses bore some relationship whatsoever (albeit slight) with reality (Table 6). 

Table 6. Systematic Failure Case Deep Analysis (n=156). 

Failure Type Cases Root Cause Improvement 
Strategy 

Expected 
Effect 

Rare Disease 
Misdiagnosis 

47 
(30.1
%) 

Training data 
scarcity 

Enhanced rare disease 
dataset; Few-shot 

learning 

40% 
improvement 

expected 
Drug 

Interaction 
Complexity 

38 
(24.4
%) 

Insufficient multi-
drug interaction 

modelling 

Graph neural 
networks for drug 

interaction modelling 

35% 
improvement 

expected 
Multi-System 

Disease 
Reasoning 

34 
(21.8
%) 

Limited cross-
system reasoning 

capability 

Causal reasoning 
mechanism 
introduction 

45% 
improvement 

expected 
Emerging 
Treatment 
Modalities 

23 
(14.7
%) 

Knowledge base 
update lag 

Real-time literature 
monitoring system 

60% 
improvement 

expected 

Personalised 
Medicine 

14 
(9.0%

) 

Lack of patient-
specific factors 

Genomics data 
integration 

30% 
improvement 

expected 
Specific Failure Case Analysis: 
Case 1: Erdheim-Chester Disease Misdiagnosis 
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 Query: 54-year-old male with bone pain, polyuria, polydipsia, exophthalmos 
 System Response: Recommended diabetes and thyroid disease evaluation 
 Correct Diagnosis: Erdheim-Chester disease (rare histiocytosis) 
 Failure Cause: Only 3 relevant cases in training data 
 Improvement Measures: Rare disease expert system construction, few-shot learning 

implementation 
Case 2: Warfarin-Aspirin-Clopidogrel Triple Therapy 
 Query: Atrial fibrillation patient requiring antithrombotic therapy, drug selection 
 System Response: Recommended conventional dual antiplatelet therapy 
 Correct Recommendation: Careful bleeding risk assessment required, 

individualised dosage adjustment 
 Failure Cause: Insufficient modelling of complex multi-drug interaction network 

effects 
 Improvement Measures: Graph attention network-based drug interaction 

prediction model development 
Systematic Improvement Strategies: 
1. Knowledge Graph Enhancement: Disease-symptom-treatment triplet knowledge 

graph construction 
2. Uncertainty Quantification: Bayesian deep learning for prediction uncertainty 

estimation 
3.Human-AI Collaboration: Automatic expert referral for high-uncertainty cases 
4. Continual Learning Framework: Continuous model parameter updates from 

failure cases 

5. Conclusion and Future Work 
5.1. Summary of Key Findings and Technical Contributions 

This study provides a holistic solution for hallucination control in medical 
information systems using semantic understanding, retrieval reinforcement, and multi-
level validation. The results show that our approach is statistically superior: compared to 
the baselines established by most at present, it achieves a significant reduction in 
hallucinations of 23.7% (p < 0.001), 18.4% higher accuracy from ground truth, and a 15.2% 
greater recall success rate. 

The technical contributions now range over novel terminology enhancement 
algorithms, adaptive confidence score mechanisms for automated information systems, 
and complete safety validation protocols with a specific focus on clinical practice. The 
technical contributions of this study include developing a novel medical terminology 
definition enhancement framework, which uses structured medical knowledge bases to 
improve the semantic understanding of clinical terms. Our multi-level validation method 
offers comprehensive hallucination detection and control for specific use in a medical 
environment. Confidence score methods integrated with dynamic threshold adjustment 
procedures lead to an adaptive validation strategy compatible with differing clinical 
judgments. 

The experiment results show that our approach is practical for real-world medical 
advice-giving applications, with precision, recall, and clinical safety measurements all 
being significantly improved. At the same time, the computational efficiency of our 
system architecture, combined with significantly improved accuracy levels, makes it 
suitable for use in resource-constrained medical settings. Our methodology bridges a 
critical gap between currently available medical AI systems and future possibilities in 
artificial intelligence for healthcare. 

5.2. Practical Implications for Medical Consultation Services 
The practical applications of our research have connections with different aspects of 

medical care and consulting practice. Our system provides better reliability for automatic 
medical information systems and supports both patient education projects and clinical 
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decision support. The improved accuracy and decreased hallucination percentage make 
it possible to use the system in the delicate and sensitive medical environment. 

Your medical institution can use the process of our team to upgrade AI medical 
consultation services while reducing the risk of misdirection of medical information, 
which could incorrectly result in harm. The system can be deployed to scale for multiple 
medical specialities and kinds of consultation. This makes it possible to achieve 
comprehensive coverage at consistent quality levels and conform to medical safety 
standards. This, coupled with integration capabilities, keeps our methodology practical 
for application in clinical workflow and patient care processes. 

Our approach encourages greater use of AI in healthcare, ensuring that high-quality 
medical data is available without delay and encouraging healthcare workers to adopt new 
attitudes and skills. The methodology creates a foundation for developing more advanced 
medical AI systems. These can help to make decisions when treating patients in hospitals 
or companies, but they must have adequate human oversight and medical judgment. 

5.3. Limitations and Directions for Future Research 
Although the results of this study are remarkable, there are several limitations and 

open questions that warrant further research. To the present day, our system must rely on 
previously established medical knowledge bases and does not incorporate the latest 
findings of medical research or emerging clinical guidelines. The computational 
requirements for comprehensive validation procedures can be daunting in resource-
restricted healthcare settings, making it essential to devise optimisation strategies for 
practical application. 

A proper subject for future research would be to expand this methodology, 
introducing real-time medical literature updates as well as the latest clinical evidence into 
our knowledge enhancement framework. Another central line of inquiry is to increase the 
sophistication and reasoning abilities of AI systems. They must be capable of more 
complex medical challenge scenarios and multi-step queries. Finally, integration with 
electronic health record systems and consideration of a personalised medical history 
would improve the clinical usefulness and significance of responses. 

Adapting our methodology such that it could be used for multilingual medical 
counselling and in an environment where different cultures mix presents an opportunity 
that is tailor-made for improving global health. Investigating federated learning methods 
may set up a model with the capability of improving applications while at the same time 
ensuring patients' privacy and hospital security requirements. Specialised versions for 
particular medical categories or healthcare facilities may make them additionally useful 
and bring higher adoption in diverse healthcare environments. 

5.4. Safety Considerations and Risk Mitigation 
Clinical Risk Assessment: 
Medical AI systems carry inherent risks that demand systematic mitigation: 
1. Patient Safety Protocols: 
Mandatory clinical disclaimers for all medical advice 
Automatic referral recommendations for emergency symptoms 
Integration with clinical decision support alerts 
2. Failure Mode Analysis: 
False confidence scenarios: Implemented confidence calibration using temperature 

scaling 
Out-of-distribution queries: Deploy uncertainty estimation with entropy-based 

detection 
Adversarial inputs: Robust input validation and semantic coherence checking 
3. Regulatory Compliance: 
FDA AI/ML guidance adherence for medical device software 
GDPR compliance for patient data processing in EU deployments 
Integration with existing clinical workflows and EHR systems 
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Safety Guardrails: 
Real-time monitoring dashboard for hallucination detection 
Automatic escalation protocols for high-risk queries 
Continuous learning from clinical feedback loops 
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