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Abstract: The rapid emergence of large language models (LLMs) in healthcare applications presents
critical challenges related to factual accuracy and hallucination control. This paper proposes an
alternative approach that integrates enhanced medical terminology definitions with retrieval-
augmented generation (RAG) techniques to mitigate hallucinations in medical question-answering
systems. The primary technical contributions include: (1) a Medical-Adaptive Confidence
Calibration (MACC) algorithm that departs from traditional RAG methods by dynamically
adjusting thresholds based on clinical risk; (2) a multi-source medical knowledge fusion framework
that incorporates hierarchical relationships from SNOMED-CT, UMLS, and ICD-10; and (3) a
comprehensive robustness validation procedure featuring real-time monitoring. The proposed
approach achieves substantial accuracy improvements, reducing hallucinations by 23.7% (p <0.001,
95% CI: 19.4%, 28.0%) compared with baseline systems. Experimental evaluations on medical
consultation datasets demonstrate superior precision and reliability in clinical information delivery,
yielding an 18.4% increase in precision and a 15.2% enhancement in recall. The framework
effectively addresses major limitations of existing automated medical consultation systems while
maintaining computational efficiency and scalability for practical deployment.
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1. Introduction
1.1. Background and Motivation of Medical Question Answering Systems

Medical question-answering (QA) systems play a crucial role in bridging artificial
intelligence (Al) and healthcare services, particularly amid the rising demand for accurate
medical information retrieval in the digital health era. The application of large language
models (LLMs) in clinical contexts offers significant potential to enhance patient
interactions and support clinical decision-making. As shown in, linking general-purpose
language models to domain-specific medical consultation requirements highlights the
necessity of specialised fine-tuning for healthcare-related use cases [1].

Recent transformer-based architectures have enabled state-of-the-art medical Al
systems to address a broad range of complex clinical queries effectively. However, due to
the high-stakes nature of medical information, accuracy standards are exceptionally
stringent, as factual inaccuracies can directly affect patient safety and clinical outcomes.
Research indicates that hallucination rates in general-purpose LLMs may exceed 15-20%
in medical domains, underscoring the need for specialised algorithms to ensure factual
reliability.
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Medical QA systems must therefore confront multifaceted challenges related to
precision, trustworthiness, and safety-factors that are fundamental to healthcare
applications. Given the complexity of medical terminology, the subtlety of clinical context,
and the critical need for factual correctness in medical advice, language models must be
adapted to effectively process and interpret clinical data. Consequently, integrating
domain expertise with computational methodologies is essential to develop reliable
systems that support both clinical applications and patient education.

1.2. Hallucination Challenges in Large Language Models for Healthcare Applications

Because factual inaccuracies can result in patient harm or adverse healthcare
outcomes, hallucination represents a particularly serious risk in medical language model
applications. A factuality mechanism can help mitigate such risks by systematically
reducing hallucination rates. As indicated in, incorporating self-alignment mechanisms
enables the implementation of factuality controls through iterative verification of model
outputs [2].

In medical contexts, hallucinations may lead to the generation of false or misleading
content, such as non-existent diseases, incorrect treatment recommendations, or
fabricated statistics that could distort healthcare decisions. Within clinical hallucination
taxonomies, four primary categories are commonly identified:

Factual medical errors, including incorrect diagnoses or treatments;

1) Fabricated statistical data;

2)  Nonexistent drug interactions; and

3) Inadequate clinical decisions.

Studies such as have reported that a majority of hallucinations in medical natural
language processing systems involve factual inaccuracies, while a smaller portion stem
from logical inconsistencies in clinical reasoning. The inherently probabilistic nature of
LLMs contributes to hallucination occurrence, especially when models encounter queries
requiring highly detailed, domain-specific knowledge not present in their training data.

The medical field presents unique challenges due to its extensive technical
terminology, intricate conceptual interrelations, and the necessity for information to be
conveyed with absolute precision. As shown in, medical concept normalization plays an
important role in improving the reliability of clinical text processing. Further comparative
studies, such as, have demonstrated notable discrepancies between physician-generated
responses and LLM outputs, particularly in factual accuracy and reasoning consistency
[3,4].

Understanding hallucination patterns specific to medical applications therefore
requires comprehensive insight into model behavior and the precise factual standards
demanded within each clinical domain.

1.3. Research Objectives and Main Contributions

The primary objective of this study is to propose a systematic approach to reducing
hallucination rates in medical question-answering systems. The method integrates refined
medical terminology definitions into a retrieval-augmented generation (RAG) framework,
formulating the process as a structured pipeline that minimizes hallucinations without
compromising the overall quality of medical responses.

From the perspective of medical terminology, the retrieval mechanism ensures
precision and contextual appropriateness in handling clinical issues. The main
contributions of this research can be summarized as follows:

1) A medical terminology definition enhancement framework supported by
structured medical knowledge bases, designed to improve the semantic
representation and contextual understanding of clinical terms.

2) Aretrieval-augmented generation architecture tailored for medical applications,
integrating factual verification and domain-specific reasoning into a unified
framework.
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This proposed method incorporates multiple layers of validation alongside medical
domain knowledge, achieving performance gains comparable to or exceeding those of
previous approaches, as indicated in [5]. The translation of these mechanisms into
practical cross-modal strategies provides a foundation for subsequent research. The
outcomes of this study hold practical value for both real-world clinical consultations and
clinical decision support systems.

2. Related Work
2.1. Large Language Models in Medical Domain Applications

Early research in biomedical text mining and clinical information extraction laid the
groundwork for medical natural language processing. Initial efforts such as MedLEE and
MetaMap demonstrated the value of integrating structured medical knowledge,
establishing a foundation that continues to support the development of advanced medical
Al systems.

The adoption of large language models (LLMs) in medical domains has progressed
rapidly, driven by their transformative potential in healthcare delivery and clinical
decision support. As noted in, the incorporation of self-reflection mechanisms has been
effective in mitigating hallucinations, improving factual reliability in domain-specific
applications. Adapting general-purpose language models to clinical contexts requires a
detailed understanding of medical terminology, diagnostic reasoning, and evidence-
based medical knowledge [6].

Recent advancements in medical language models have shown impressive
capabilities in processing clinical documentation, supporting differential diagnosis, and
assisting in medical education. As demonstrated in, domain-specific architectures such as
BioBERT-NLI and FLAN-T5 highlight the potential of tailored models for symptom-based
diagnostic tasks. Integrating biomedical knowledge graphs with language model
architectures has further enabled complex reasoning over medical concepts [7].

The evolution of medical LLMs has introduced innovations in domain-specific
pretraining, knowledge-enhanced fine-tuning, and multimodal integration.
Comprehensive reviews such as have summarized the technological trends, application
domains, and trustworthiness concerns associated with medical LLMs. The inclusion of
clinical guidelines, medical ontologies, and evidence-based protocols in training processes
has enhanced both the clinical utility and safety of these systems [8].

2.2. Retrieval-Augmented Generation Techniques and Medical Knowledge Integration

Retrieval-augmented generation (RAG) represents a significant advancement in
language model design, addressing limitations in knowledge retention and factual
accuracy by integrating external knowledge sources. As shown in, knowledge-enhanced
medical consultation systems demonstrate strong performance through the combination
of matching mechanisms and response generation, particularly in evidence-based
response systems. Structured medical databases coupled with retrieval interfaces enable
dynamic access to up-to-date medical information and clinical guidelines [9].

The application of RAG to medical domains requires careful consideration of
knowledge reliability, timeliness, and clinical validation. As discussed in, domain-specific
retrieval strategies such as token factorization enhance retrieval precision for technical
domains. Medical knowledge integration must account for hierarchical taxonomies,
temporal elements of clinical guidelines, and contextual dependencies inherent in medical
decision-making [10].

State-of-the-art retrieval frameworks in medical Al incorporate semantic similarity
measures, clinical relevance scoring, and evidence quality assessment to ensure the
selection of appropriate knowledge. As indicated in, multimodal retrieval models for
medical consultation integrate heterogeneous information sources to improve knowledge
retrieval processes. Optimization in retrieval design must balance precision and recall
while maintaining sufficient efficiency for real-time consultation systems [11].

Relation with Classical RAG:
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Compared with classical retrieval-augmented generation as defined in 11, which
focused primarily on knowledge-intensive natural language processing tasks, medical
applications demand customized adaptations beyond generic retrieval schemes. Classical
RAG employs fixed similarity metrics and retrieval rules, but it does not address dynamic
confidence calibration based on clinical risk assessment, hierarchical medical concept
comprehension, or multi-source knowledge validation essential for ensuring patient
safety in medical question-answering systems.

2.3. Hallucination Detection and Mitigation Strategies in Healthcare Al

Hallucination detection and mitigation in healthcare Al systems constitute a critical
area of research with direct implications for clinical safety and system reliability. As
shown in, self-evolving multi-agent consultation frameworks reduce factual errors
through consensus-based mechanisms. Detecting hallucinations in clinical contexts
requires precise validation methods aligned with medical accuracy standards [12].

Current mitigation strategies include confidence estimation, knowledge verification,
and multi-source validation. The implementation of self-reflection mechanisms, as
described in, has demonstrated notable improvements in factual accuracy across multiple
application areas. Applying such mechanisms to healthcare requires compliance with
clinical validation criteria and integration with domain-specific medical databases [13].

Effective deployment of hallucination mitigation strategies in medical systems
involves balancing accuracy gains with computational efficiency and response latency. As
explored in, federated learning approaches can preserve data privacy while sustaining
system effectiveness in distributed medical environments. Developing real-time
hallucination detection pipelines capable of assessing clinical accuracy without
compromising responsiveness remains a key challenge for future research in medical Al
applications [14].

3. Methodology
3.1. Medical Terminology Definition Enhancement Framework

Our method builds upon a definition enhancement framework that resolves semantic
ambiguities and establishes an integrated pipeline combining retrieval and generation
processes. By incorporating medical ontologies with dynamic definition mechanisms, the
system ensures that clinical concepts maintain consistent and precise meanings across
multiple medical specialties and application contexts. This framework leverages
hierarchical taxonomies such as SNOMED CT, ICD-10, and UMLS to provide
comprehensive semantic relationships among medical terms, improving both accuracy
and interpretability in medical question answering.

Core Innovation: Medical-Adaptive Confidence Calibration (MACC) Framework

The proposed Medical-Adaptive Confidence Calibration (MACC) framework
introduces several innovations that distinguish it from classical retrieval-augmented
generation (RAG) architectures [15].

1) Hierarchical Medical Concept Understanding: Traditional RAG systems
employ generic semantic similarity measures, while MACC utilizes hierarchical
relationships among medical concepts derived from SNOMED CT to model
semantic depth and precision.

2) Dynamic Risk-Based Threshold Adaptation: Unlike static retrieval thresholds
used in standard RAG, MACC dynamically adjusts confidence thresholds
according to the assessed clinical risk of each query.

3) Multi-Source Medical Knowledge Fusion: MACC integrates multiple
structured knowledge graphs-SNOMED CT, UMLS, and ICD-10-through
ensemble-based learning to improve cross-source consistency and factual
reliability.

Algorithm 1. Medical-Adaptive Confidence Calibration (MACC)

Input: Medical query Q, knowledge bases KB = {SNOMED, UMLS, ICD-10}, risk

threshold t
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Output: Risk-calibrated enhanced query Q'

1) Phase 1: Medical Entity Hierarchical Understanding

Extract entities E = MedicalNER(Q) using BioBERT-CRF.

For each entity e € E:

Compute hierarchy depth from SNOMED_tree and calculate

semantic_weight = hierarchy_score / max_depth.

2)  Phase 2: Dynamic Confidence Optimization

Initialize weights w = [w_authority, w_semantic, w_consensus].

For each medical domain d € {cardiology, oncology, neurology, ...}:

Compute loss = CrossEntropyLoss (predicted_risk, ground_truth_risk).

Update weights w using gradient descent with learning rate 0.001.

3) Phase 3: Clinical Risk-Based Threshold Adaptation

Assess clinical risk level: High / Medium / Low.

If High: ©_adapted =t x 1.5 (more stringent threshold)

If Medium: t_adapted =t x 1.2

Else: t_adapted =t

4)  Phase 4: Multi-Source Knowledge Fusion

For each knowledge base KB in {SNOMED, UMLS, ICD-10}:

Retrieve definitions definitions = RetrieveDefinitions (E, KB)

Compute confidence = ComputeConfidence (definitions, w, T_adapted)

Append result to confidence_scores

Perform ensemble fusion with domain-specific weighting:

final_confidence = Z(domain_weight[i] x confidence_scores[i])

5)  Output: Return AugmentedQuery (Q, final_confidence) if final_confidence >
t_adapted.

Theoretical Foundation for Weight Optimization

The weight optimization procedure is grounded in a Bayesian diagnostic reasoning

framework:

1)  w_authority represents the evidence strength derived from medical knowledge
bases (e.g., higher weights for high-grade clinical evidence).

2) w_semantic measures semantic similarity using medical BERT models trained
on PubMed and clinical corpora.

3) w_consensus quantifies the agreement level across different medical knowledge
sources, reflecting inter-database consensus.

The optimization objective function is defined as:

Llw) = Z[CrossEntropy(P(risk | Q,w), true )] + A1l wll;]

Our methodology incorporates semantic embedding models trained on large-scale
medical literature and clinical documentation to capture subtle semantic relationships
between medical concepts. The definition enhancement process utilizes graph-based
knowledge representation to model complex interconnections among symptoms, diseases,
treatments, and diagnostic procedures. This structured approach enables advanced
reasoning that accounts for clinical context and patient-specific variables, enhancing the
precision and contextual relevance of medical terminology definitions in downstream
processing tasks (As shown in Table 1).

Table 1. Medical Terminology Enhancement Performance Metrics.

Enhancement Type Precision Recall F1-Score Coverage
Symptom Terms 0.924 0.887 0.905 94.3%
Disease Entities 0.941 0.912 0.926 96.8%

Treatment Options 0.889 0.856 0.872 91.2%
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Diagnostic Procedures 0.907 0.893 0.900 93.7%

The framework implements confidence scoring mechanisms to assess the reliability
of terminology definitions based on source authority, clinical validation status, and
consensus among medical knowledge bases. We employ ensemble approaches that
combine multiple definition sources to generate comprehensive and accurate
representations of medical concepts. The system also incorporates temporal
considerations, accounting for evolving clinical guidelines and emerging research
findings that may influence terminology definitions and clinical recommendations.

Computational Complexity Analysis:

The MACC algorithm exhibits a time complexity of O(|E|-K-logN+M-T), where |E|
represents the number of medical entities, K denotes the number of knowledge bases (3),
NNN indicates concepts per knowledge base, M represents medical domains (15), and T
signifies the number of optimization iterations (typically fewer than 100). Compared to
traditional RAG, which has a complexity of O(IQI-logN), our medical-specific processing
introduces an additional O(|E|-K) overhead. This overhead is mitigated through
parallelized knowledge base querying, maintaining acceptable latency (under 300 ms).

3.2. Retrieval-Augmented Generation Architecture with Semantic Understanding

Our retrieval-augmented generation model combines semantic understanding with
advanced retrieval strategies to deliver precise and contextually appropriate medical
information. The architecture employs a multistage retrieval scheme that integrates lexical
matching, semantic similarity measures, and a clinical relevance scoring model to identify
optimal reference sources for query response generation.

The semantic comprehension module utilizes domain-oriented transformers, with
the encoder fine-tuned on medical literature and clinical notes to capture domain-specific
language patterns and semantic relationships. Attention mechanisms are applied to
clinically relevant terms and phrases while maintaining awareness of the broader context
necessary for generating comprehensive responses.

The model leverages medical knowledge graph embeddings to represent complex
semantics among medical entities, facilitating advanced reasoning over clinical queries.
This integration ensures that generated responses are accurate, clinically relevant, and
aligned with the most current medical knowledge (Figure 1).

Medical Query Input
Data Flow:
- Query Processing

l « Entity Extraction
l. dical Entity R g |fermino|ogy" h IlL» Q ic Embedding | + Semantic Analysis

+ Krowledge Retrieval
- Response Generation

Processing Stages:

O Input Layer
O Enhancement Layer

O Retrieval Layer
/\ /\ O synthesis Layer

| Drug Information

Knowledge Graph Integration

| Attention Mechanisms |

Clinical Guidelines Research Literature

N /

Confidence Scoring

Retrieval Pipeline

| Clinical Relevance |

Response Synthesis

Figure 1. Multi-Layer Semantic Understanding Architecture for Medical RAG System.

Computational Complexity Analysis:
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The semantic understanding component exhibits a complexity of O(n-d-logk), where
nnn represents the query length, ddd is the embedding dimension (768), and kkk denotes
the size of the knowledge base. The retrieval process maintains a complexity of O(logN)
through efficient indexing, where N corresponds to the total number of medical
documents, approximately 2.3 million clinical guidelines and research papers.

Scalability Considerations:

To achieve horizontal scaling, the system architecture leverages distributed retrieval
mechanisms and semantic embedding caches. Empirical testing demonstrates linear
scaling up to 10,000 concurrent queries, with an expected availability of 99.5%.

An integrated architectural diagram illustrates how medical terminology
enhancement is embedded within the semantic understanding layer, which in turn
supports the retrieval-augmented generation modules. The diagram highlights data flow
through multiple processing stages, including medical entity recognition, semantic
embedding generation, knowledge graph integration, and response synthesis.

Within the diagram, color-coded pathways represent attention mechanism flows
across interconnection modules, revealing the relationships between semantic
understanding components and retrieval mechanisms. Multiple parallel processing
streams converge at decision points where the system selects information for response
generation based on confidence scores and relevance to the clinical context.

The retrieval mechanism applies sophisticated ranking algorithms to prioritize
medical information according to clinical authority, evidence quality, and contextual
relevance. Dynamic knowledge base selection strategies adjust to the complexity of
queries and the requirements of specific medical specialties, ensuring that diverse clinical
scenarios are served with appropriate knowledge sources.

Different retrieval pipelines are maintained for various categories of medical
information, including clinical guidelines, research literature, drug information, and
diagnostic criteria. This architecture enables specialized processing tailored to each type
of knowledge, enhancing the accuracy and reliability of the generated responses.

Training Data Construction:

1. PubMed Abstracts: 2,847,392 medical paper abstracts published 2019-2023

2. Clinical Guidelines: 89,334 clinical guideline segments from Mayo Clinic,
UpToDate, Cochrane

3. Medical Textbooks: 234,567 segments from authoritative texts, including Grey's
Anatomy, Harrison's Principles

4. EHR Data: De-identified electronic health records (IRB approved), 123,445 records

Preprocessing Pipeline:

Algorithm 2: Medical Text Preprocessing

Input: Raw medical text T

Output: Preprocessed and standardised text T'

1. // Step 1: Medical entity standardisation

E = MedicalNER.extract(T)

For each entity e € E:

e_standard = UMLS_Normalizer.normalize(e)

T =Replace(T, e.span, e_standard)

2. // Step 2: Abbreviation expansion

T = Medical AbbreviationExpander.expand(T)

3. // Step 3: Medical notation standardisation

T = HandleMedicalNotation(T)

// Examples: "mg/dl" — "milligrams per deciliter'

1

// "gq6h" — "every 6 hours"

/! "NPO" — "nothing by mouth"
4. Return T

Model Architecture:

Base Model: BioBERT-large (340M parameters)
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Medical Specialisation Layers: Additional 12 Transformer layers for medical concept
hierarchies

Loss Function: InfoNCE + medical concept hierarchy loss

L_total = L_InfoNCE + a-L_hierarchy + 3-L_clinical_relevance

where: a=0.3, $=0.2 (optimised via grid search)

Training Hyperparameters:

Learning rate: 2e-5 (cosine annealing scheduler)

Batch size: 32 (gradient accumulation steps: 4)

Training epochs: 15 (early stopping patience=3)

Optimizer: AdamW ($:=0.9, 3.=0.999, weight_decay=0.01)

Hardware: 8xA100 40GB, mixed precision training

Total training time: 127 hours

Knowledge Base Integration Implementation:

Algorithm 3: Multi-Source Knowledge Fusion

Input: Medical concept C, Knowledge bases KB = {[SNOMED, UMLS, ICD-10}

Output: Fused definition D_fused

1. // Retrieve definitions from all knowledge sources

For each kb € KB:

DI[kb] = kb.get_definition(C)

2. // Compute inter-definition semantic similarity

S = ComputeSemanticSimilarity(D.values())

3. // Generate fusion weights based on similarity consensus

W = Softmax (Mean (S, axis=1))

4. /| Weighted fusion of definitions

D_fused = WeightedFusion (D, W)

5. Return D_fused

As shown in Table 2, retrieval performance varies significantly across different
medical knowledge categories.

Table 2. Retrieval Performance Across Medical Knowledge Categories.

Knowledge Category  Retrieval Accuracy Response Time (ms)  Source Coverage

Clinical Guidelines 0.943 145 98.7%

Drug Information 0.928 132 96.4%
Diagnostic Criteria 0.915 158 94.8%
Treatment Protocols 0.937 141 97.2%
Research Literature 0.902 167 92.6%

3.3. Hallucination Mitigation Algorithm Design and Implementation

The core innovation in our approach is the hallucination mitigation algorithm. This
is implemented with multi-layered validation mechanisms that meet authenticity testing
requirements and also consider the suitability of responses generated from a clinical point
of view.

Our algorithm checks facts on the fly, employing procedures that compare the
material generated against official medical knowledge repositories and globally
recognised evidence-based clinical guidelines. The resulting model employs ensemble
verification techniques in which various detection strategies are integrated together to
achieve the most comprehensive possible approach for detecting-and circumventing-
hallucinations once more.

Confidence estimates may be calculated from several sources, such as the provenance
of the original information, consensus among experts, and the degree to which evidence
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supports it. Procedures for dynamic threshold adjustment are set in motion at the time of
query, making sure that we employ validation criteria appropriate to both the complexity
in question and clinical significance. This ensures an accurate standard appropriate for
different types of medical information.

Validation outcomes are continuously used as training data-through feedback loops,
the program learns from the information thus obtained. Expert clinical reviews of these
validations also influence the next round multifandomly (Figure 2).

/uery complexi
Simpll
Complex
Simple Validation Multi-layer Validation
o] [
1

II': i Check I IAumority idati I | i Quality I
\ / ‘
1
1
Confidence Scoring !
1
1
1
S ‘
Risk Level? !
1
A// \\‘~
1
1
fpprove Response | foae : I { _
\ \ |
1
A4 !
Validated Output Learning Update
Processing Times: Risk Levels: Detection Accuracy:
Simple: 145ms © Low (0.0-0.3) Overall: 91.2%
Complex: 267ms O Medium (0.3-0.6) False Positives: 7.8%

Validation: 89ms © High (0.6-0.8) Mitigation Success: 94.6%

Figure 2. Hallucination Detection and Mitigation Workflow Diagram.

A case in point is this flowchart of the entire hallucinatory reduction process, which
regards query input review, semantic analysis, confidence scoring mechanisms, and
response verification strategy for a paradigm.

These diagrams contain decision trees from which many branches stream different
validation scenarios, along with the corresponding ways of tackling them. Colored risk
assessment indicators mark the main decision points where possible illusions might arise-
and how they were dealt with.

The visualisation continues a tradition of including, with each processing stage, time
measures and graphic diagrams showing which validation streams run in parallel to
converge into the final answer approval place. Interactive parts demonstrate the model's
process of changing validation criteria based on query traits and context in clinical
practice.

Our program involves hostile validation methods that test if the produced responses
might have inaccuracies or fail appraisals by comparing them to evidence sources in the
live system. The ultimate goal of the algorithm is to achieve liberalism and naturalness.
After numerous modifications, it deduces many invariants that eventually help fix these
same, more flexible system errors.

The research team advocates making minor adjustments to language-model training
based upon their observations; above all, one should not slavishly follow any set theory.
A careful approach ensures that the overall meaning being conveyed is correct, then
makes gradual changes according to local conditions along those lines-never seeking more
than a few adjustments at one time without verification.

If its content can become part of an essay with quotation marks only if it appears
elsewhere, then replace any quotation marks from the EFLMATCH command by
parentheses (Table 3).
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Table 3. Hallucination Detection Performance by Medical Domain.

Medical Detection False Mitigation Processing
Domain Rate Positives Success Time
Cardiology 0.912 0.078 0.946 234ms
Oncology 0.897 0.085 0.931 267ms
Neurology 0.923 0.071 0.952 245ms
Endocrinology 0.889 0.092 0.925 289ms
Infectious 0.934 0.063 0.961 223ms
Disease

The approach employs hierarchical verification schemes that dynamically modulate
certifying efforts according to query complexity and risk perception. Straightforward
factual queries experience smooth validations, whereas multifaceted diagnostic or
therapeutic queries go through in-depth multi-tiered validations. The architecture logs
validation decisions and results, enabling gradual training of more robust hallucination
detectors, and logs errors for systematic evaluation of failure modes in ongoing work to
improve the algorithms.

4. Experimental Design and Results
4.1. Dataset Construction and Evaluation Metrics for Medical Question Answering

The validation of the experimental procedure presented requires extensive
construction of a dataset that covers various medical consultation contexts and clinical
query cases. We created a multi-domain medical QA dataset comprising 12,847 genuine
medical questions, obtained from verified clinical consultation platforms, medical
teaching materials, and expert-validated medical exam questions.

The compilation of the dataset involved stringent quality assurance mechanisms,
expert medical review and fact-checking from authoritative clinical sources, and the
standardisation of response formats for uniform assessment protocols.

Dataset Construction Protocol:

1. Primary Sources: 12,847 medical queries were systematically collected from:

Mayo Clinic patient portal (3,247 queries, IRB approval 2023-045)

Medical education platforms (4,156 queries, anonymised)

Expert-validated medical examinations (3,892 queries)

Clinical consultation transcripts (1,552 queries, patient consent obtained)

2. Quality Assurance Process:

Stage 1: Automated filtering for query completeness (removal of 847 incomplete

queries)

Stage 2: Clinical expert review by board-certified physicians (inter-rater agreement k
=0.89)

Stage 3: Fact verification against clinical guidelines (using UpToDate, Cochrane
Reviews)

Stage 4: Stratified sampling to ensure domain balance (chi-square test, p = 0.23,
indicating adequate balance)

3. Ethical Considerations:

All patient materials were de-identified under proper HIPAA guidelines. The
research was approved by Columbia University IRB (Protocol 2023-AAAU2856).

The evaluation contains several assessment dimensions that are tailored towards
medical question answering systems, including factual correctness, clinical relevance,
preservative considerations, and response completeness. We created specialised metrics
that took into consideration the specific needs of information delivery in medicine,
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including penalty information for harmfully inaccurate information and bonus points for
clinically responsible cautions and disclaimers.

The evaluation framework encompasses computer-based assessments
complemented by expert clinician review for high-stakes medical questions that require
professional judgment (Table 4).

Table 4. Dataset Composition and Evaluation Metrics Framework.

Medical Query Complexity Expert Automated Clinical
Specialty Count Level Validation Metrics Safety Score
Cardiology 1,247 High 100% ROBULCI}EE - 0.943
Oncology 1,089 Very High 100% ROBI?CJ;S, ’Fl 0.956
Neurology 967 High 100% RO%(];:]S, ’Fl 0.932
Endocrinology 834 Medium 100% RO%(I;:][EJ, ,Fl 0.918
I‘I‘)ff:;;‘;‘gs 921 High 100% Ro%gg - 0.951
E;Aneef;‘l‘;y 1,156 Very High 100% RoBung - 0.967
spgcti};iies 6,633 Variable 100% ROBULCI}EE - 0.924

4.1.1. Medical-Specific Evaluation Metrics with Rigorous Definitions

1. Clinical Safety Score (CSS) Detailed Computation:
CSS = wy:(1 - P_harm) + w(1 - P_contraindication) + ws'P_completeness

where:
P_harm: Potential harm probability via expert annotation (5-point scale converted
to [0,1])
P_contraindication: Contraindication detection accuracy (drug interaction
screening)

P_completeness: Response completeness score (information coverage)
Weights: w1=0.5, w»=0.3, w3=0.2 (determined by clinical importance)
Expert Annotation Protocol:
5 board-certified physicians conducted independent scoring
Modified Likert scale (1=high risk, 5=no risk)
Krippendorff's a = 0.847 (high inter-rater reliability)
Conflicting cases resolved through expert panel discussion
2. Medical Accuracy Index (MAI) Rigorous Definition:
MAI = Zi(c,--a,--wi) / Zi(Ci'Wi)
Where:
ci: Binary indicator of concept i's presence in response
a;: Accuracy score for concept i (expert-rated 0-1)
wi: Clinical importance weight for concept i
Clinical importance weights determined by:
Diagnostic concepts: w; = 1.0
Treatment concepts: wi=0.9
Symptom concepts: w; = 0.7
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General medical knowledge: wi=0.5
3. Expert Agreement Coefficient (EAC) Calculation Details:
Fleiss' kappa for multi-rater consistency
5 specialists: cardiology, oncology, neurology, emergency, family medicine
Rating criteria: 1=completely incorrect, 2=partially incorrect, 3=acceptable, 4=good,
5=excellent
Weighted kappa accounts for the severity of rating differences
Results Summary:
CSS: 0.943 (vs. 0.812 for best baseline)
MALI: 0.887 (vs. 0.704 for GPT-4 baseline)
EAC: 4.2/5.0 (vs. 3.1/5.0 for Med-PalLM 2)

4.1.2. Public Benchmark Dataset Validation

To ensure generalizability and enable fair comparisons, we conducted
comprehensive evaluations on authoritative medical QA benchmarks:

Primary Benchmark Datasets:

1. MedQA (USMLE): United States Medical Licensing Examination questions
containing 12,723 multiple-choice items

Training set: 10,178 questions

Validation set: 1,272 questions

Testing set: 1,273 questions

2. PubMedQA: Biomedical question answering based on PubMed abstracts

Expert-annotated: 1,000 question-answer pairs

Automatically generated: 61,249 question-answer pairs

Expert validation accuracy: 91.3%

3. BioASQ: Biomedical semantic indexing and QA challenge dataset

Task B data: 2,747 factoid questions

Four question types: yes/no, factoid, list, summary

Fair Comparison Protocol:

To ensure comparison fairness, all baseline methods employ identical configurations:

Knowledge Base Access: All methods utilise identical SNOMED-CT v20230901,
UMLS 2023AB versions

Computational Resources: Unified 8xA100 GPU configuration with identical
inference batch sizes

Evaluation Metrics: Standardized accuracy@1, F1-score, clinical safety score across
all methods

Random Seeds: Fixed at 42 for reproducible results

MedQA Benchmark Results are shown in Table 5

Table 5. MedQA Benchmark Results.

Method Accuracy@1 F1-Score Clinical Safety Infetrence
Time
GPT-4
(medical 67.2% 0.678 0.823 1.2s
tuned)
Med-PalM 2 71.3% 0.721 0.847 0.9s
PMC-LLaMA 64.8% 0.651 0.798 1.4s
MACCRAG 78.9% 0.801 0.912 0.8s
(Ours)

PubMedQA Benchmark Results:

Accuracy improvement: 76.4% vs best baseline 69.1% (+7.3%)
F1-score enhancement: 0.784 vs 0.708 (+10.7%)

Clinical safety score: 0.891 vs 0.834 (+6.8%)

Statistical Significance Validation:
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Dual validation using paired t-test and Wilcoxon signed-rank test:
MedQA: p <0.001 (t-test), p <0.001 (Wilcoxon)

PubMedQA: p <0.001 (t-test), p <0.001 (Wilcoxon)

BioASQ: p = 0.002 (t-test), p = 0.001 (Wilcoxon)

4.2. Comparative Analysis with Baseline Methods and Performance Evaluation

Statistical Significance Testing:

All performance improvements were validated using paired t-tests with Bonferroni
correction for multiple comparisons. The hallucination reduction results show:

Mean improvement: 23.7% (SD = 4.2%)

95% Confidence Interval: [19.4%, 28.0%]
p-value: <0.001 (highly significant)

Effect size (Cohen's d): 1.84 (considerable effect)

Baseline Methods Comparison:

Our evaluation includes state-of-the-art medical LLMs:

1. GPT-4 with medical fine-tuning (OpenAl, 2023)

2. Med-PaLM 2 (Google, 2023)

3. PMC-LLaMA (Wu et al., 2023)

4. ClinicalBERT (Alsentzer et al., 2019)

5. BioBERT (Lee et al., 2020)

Statistical Analysis Rigour Assurance:

1. Confidence Interval Calculation Method:

Bootstrap methodology (10,000 resamples) for 95% confidence intervals:

23.7% improvement CI: [19.4%, 28.0%]

Bootstrap standard error: SE =2.1%

Bias correction: Bias-corrected and accelerated (BCa) method

2. Multiple Comparison Correction:

Bonferroni-Holm step-down procedure:

Original « level: 0.05

Corrected significance thresholds:

Smallest p-value: a/15 = 0.0033

Second smallest: a/14 = 0.0036

Sequential adjustment continues...

3. Effect Size Validity Verification:

Cohen's d = 1.84 validity confirmed through:

Domain Comparison: Medical Al effect sizes are typically large (Topol, 2019)

Baseline Disparity: Traditional methods demonstrate poor medical domain
performance

Sample Size Calculation: Post-hoc power analysis reveals statistical power > 0.99

4. Potential Bias Controls:

Selection Bias: Stratified random sampling implementation

Measurement Bias: Double-blind evaluation (assessors unaware of method source)

Confounding Variables: Query complexity, medical speciality, and query length
controls

We systematically evaluated our approach, comparing it with established
benchmarks, including standard question generation systems augmented by conventional
retrieval techniques, standard question answering systems in medicine, and state-of-the-
art language models adapted for medical use.

To ensure fair and meaningful comparisons of divergent methodological approaches
across datasets, computational resources, and evaluation standards, our experiments
were conducted under stringent controls.

Our results include the GPT-4 model fine-tuned for medical text use; BIOBERT-
associated question answering systems; Med-PaLM and ClinicalBERT-a pair of
specialised medical language models that have been explicitly trained on medical texts.
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In terms of performance, the evaluation framework defined many measures such as
response accuracy, clinical security, hallucination rates, response speed, as well as
efficiency consumed during computations since inspection of its predecessors (Young et
al., 2019; theoretical perspective).

The consistency of our approach is particularly evident in the extensive ablation
experiments that were run. We found it necessary to solicit the views of specialists on this
point since no prior work had been done in controlled experiments (Figure 3).

Panel B: Performance by Specialty

Cardiology

Accuracy Oncology

Neurology

Emergency

Acc  Prec Rec  F1 Saf Rel Eff Qual Cov
Low High
Reliability
== Proposed Method
== Baseline Methods
Panel A: Method Comparison
Panel C: Improvement Statistics Panel D: Statistical Significance
100 Metric p-value Significance
& Hallucination Reduction <0.001  ***
60 Accuracy Improvement < 0.001
0 789 ] Safety Enhancement < 0.01 -
Response Quality < 0.05
20 Computational Efficiency0.087 ns
0
AccuracPrecision Recall F1-Score Safety Overall b < 0,001 *p <005
**p <001 ns: not significant
Key Performance Advantages Experimental Setup

+ 23.7% reduction in hallucination rates - Dataset: 12,847 medical queries
« 18.4% improvement in precision « 15 medical specialties evaluated
« 15.2% enhancement in recall « 5-fold cross-validation protocol
« Maintained computational efficiency - Expert clinical validation included
« Superior safety across all medical domains « Multiple baseline comparisons conducted

Figure 3. Comparative Performance Analysis Across Medical Specialities and Baseline Methods.

The performance contrast of different medical specialities and baseline strategies is
shown in a comprehensive multi-panel visualisation.

We use radar charts to compare our approach with baselines using multiple
evaluation metrics, such as accuracy, safety at both response levels, and computational
efficiency.

Heatmaps demonstrate that performance varies across different medical disciplines;
the colour gradient shows how well or poorly the indicators of relative performance levels.

Statistically significant differences in performance improvements are demonstrated
by bar charts that illustrate confidence intervals and P values.

Annotations and callouts highlight various significant performance advantages of
the proposed methodology.

The visualisation incorporates interactive features so that individual aspects of
performance can be examined in detail and annotated with their impressions as well as
their measurements.

The experimental results show that our proposed method is substantially better in all
performance indicators. When comparing it to the best baseline approach, the incidence
of hallucinations was reduced by 23.7%.

Depending on the occupation and degree, similar queries were given back; this
improvement of response accuracy varied from 15.2% ~ 28.9%.

The system maintains computational efficiency on par with baseline approaches
while yielding enhanced accuracy and security.

4.3. Ablation Studies and Error Analysis on Hallucination Reduction
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In comprehensive ablation trials, each element of the system was obliterated to
examine what contribution it makes towards achieving excellence in reducing
hallucinations on average. We turned off various parts of the framework as a whole,
including medical term enhancement, understanding semantics, and multistage checks,
to see how these different operations affected system performance individually. A
readjusting analysis showed that the ablation of medical term definition enhanced 34.2%
of overall hallucination reduction, while understanding semantics modes contributed
28.7%.

The error analysis dug into the continued occurrences of hallucinations. It broke
down the patterns and attributes of these problems that can inform future improvements
for our system. Hallucination types were categorised as factual errors, logical
contradictions, contextual awkwardness, or safety breaches, and their distribution was
examined across fields of medicine and requests made. Our analysis shows that
complicated multi-step reasoning scenarios offer the most significant impetus for making
errors of a hallucinogenic nature. This is particularly true when respondents must link
together several different medical concepts or think of issues specific to patients.

Our error analysis uncovered where, in particular, the system should be improved,
such as how it learns about new moments to arise in medicine, fresh forms of treatment,
and possible problems caused by complex drug interactions between multiple agents
within the body. We noticed that the system has immense power in fields like general
medicine FAQs and established clinical rules, yet there is plenty of room for improvement
left when it comes to applying this knowledge to cutting-edge medical studies in general
and highly specialised sub-disciplines like these. As a result, the analysis served as an
entry point for targeted improvement on aspects of knowledge base coverage and
validation schemes that will enhance system performance in some measure or another.

The folk song-style ablation results reveal our total system approach to be more
effective than the sum of its parts, with combined system performance levels far exceeding
those produced by individual component contributions. With fine detail and precision,
the medical term subtraction framework showed its role in terminological interpretation.
At the same time, the semantic understanding facilities provided a comprehensive
understanding of context required for an appropriate response. Multi-layered validation
procedures were critical to maintaining clinical safety standards while also ensuring that
our responses bore some relationship whatsoever (albeit slight) with reality (Table 6).

Table 6. Systematic Failure Case Deep Analysis (n=156).

I t E ted
Failure Type  Cases Root Cause mprovemen xpecte
Strategy Effect
47 Enh i 409
Rare Disease Training data nhanced rare disease . 0%
. . (30.1 ) dataset; Few-shot improvement
Misdiagnosis scarcity )
%) learning expected
Drug 38 Insufficient multi- Graph neural 35%
Interaction (244 drug interaction networks for drug improvement
Complexity %) modelling interaction modelling expected
Multi-System 34 Limited cross- Causal reasoning 45%
Disease (21.8  system reasoning mechanism improvement
Reasoning %) capability introduction expected
Emerging 23 . . 60%
Knowledge base Real-time literature .
Treatment (14.7 update la monitoring svstem improvement
Modalities %) P & &5 expected
14 309
Personalised Lack of patient- Genomics data . °
. (9.0% o . . improvement
Medicine specific factors integration
) expected

Specific Failure Case Analysis:
Case 1: Erdheim-Chester Disease Misdiagnosis
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Query: 54-year-old male with bone pain, polyuria, polydipsia, exophthalmos
System Response: Recommended diabetes and thyroid disease evaluation
Correct Diagnosis: Erdheim-Chester disease (rare histiocytosis)
Failure Cause: Only 3 relevant cases in training data
Improvement Measures: Rare disease expert system construction, few-shot learning
implementation
Case 2: Warfarin-Aspirin-Clopidogrel Triple Therapy
Query: Atrial fibrillation patient requiring antithrombotic therapy, drug selection
System Response: Recommended conventional dual antiplatelet therapy
Correct Recommendation: Careful bleeding risk assessment required,
individualised dosage adjustment
Failure Cause: Insufficient modelling of complex multi-drug interaction network
effects
Improvement Measures: Graph attention network-based drug interaction
prediction model development
Systematic Improvement Strategies:
1. Knowledge Graph Enhancement: Disease-symptom-treatment triplet knowledge
graph construction
2. Uncertainty Quantification: Bayesian deep learning for prediction uncertainty
estimation
3.Human-AI Collaboration: Automatic expert referral for high-uncertainty cases
4. Continual Learning Framework: Continuous model parameter updates from
failure cases

5. Conclusion and Future Work
5.1. Summary of Key Findings and Technical Contributions

This study provides a holistic solution for hallucination control in medical
information systems using semantic understanding, retrieval reinforcement, and multi-
level validation. The results show that our approach is statistically superior: compared to
the baselines established by most at present, it achieves a significant reduction in
hallucinations of 23.7% (p < 0.001), 18.4% higher accuracy from ground truth, and a 15.2%
greater recall success rate.

The technical contributions now range over novel terminology enhancement
algorithms, adaptive confidence score mechanisms for automated information systems,
and complete safety validation protocols with a specific focus on clinical practice. The
technical contributions of this study include developing a novel medical terminology
definition enhancement framework, which uses structured medical knowledge bases to
improve the semantic understanding of clinical terms. Our multi-level validation method
offers comprehensive hallucination detection and control for specific use in a medical
environment. Confidence score methods integrated with dynamic threshold adjustment
procedures lead to an adaptive validation strategy compatible with differing clinical
judgments.

The experiment results show that our approach is practical for real-world medical
advice-giving applications, with precision, recall, and clinical safety measurements all
being significantly improved. At the same time, the computational efficiency of our
system architecture, combined with significantly improved accuracy levels, makes it
suitable for use in resource-constrained medical settings. Our methodology bridges a
critical gap between currently available medical Al systems and future possibilities in
artificial intelligence for healthcare.

5.2. Practical Implications for Medical Consultation Services

The practical applications of our research have connections with different aspects of
medical care and consulting practice. Our system provides better reliability for automatic
medical information systems and supports both patient education projects and clinical
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decision support. The improved accuracy and decreased hallucination percentage make
it possible to use the system in the delicate and sensitive medical environment.

Your medical institution can use the process of our team to upgrade Al medical
consultation services while reducing the risk of misdirection of medical information,
which could incorrectly result in harm. The system can be deployed to scale for multiple
medical specialities and kinds of consultation. This makes it possible to achieve
comprehensive coverage at consistent quality levels and conform to medical safety
standards. This, coupled with integration capabilities, keeps our methodology practical
for application in clinical workflow and patient care processes.

Our approach encourages greater use of Al in healthcare, ensuring that high-quality
medical data is available without delay and encouraging healthcare workers to adopt new
attitudes and skills. The methodology creates a foundation for developing more advanced
medical Al systems. These can help to make decisions when treating patients in hospitals
or companies, but they must have adequate human oversight and medical judgment.

5.3. Limitations and Directions for Future Research

Although the results of this study are remarkable, there are several limitations and
open questions that warrant further research. To the present day, our system must rely on
previously established medical knowledge bases and does not incorporate the latest
findings of medical research or emerging clinical guidelines. The computational
requirements for comprehensive validation procedures can be daunting in resource-
restricted healthcare settings, making it essential to devise optimisation strategies for
practical application.

A proper subject for future research would be to expand this methodology,
introducing real-time medical literature updates as well as the latest clinical evidence into
our knowledge enhancement framework. Another central line of inquiry is to increase the
sophistication and reasoning abilities of Al systems. They must be capable of more
complex medical challenge scenarios and multi-step queries. Finally, integration with
electronic health record systems and consideration of a personalised medical history
would improve the clinical usefulness and significance of responses.

Adapting our methodology such that it could be used for multilingual medical
counselling and in an environment where different cultures mix presents an opportunity
that is tailor-made for improving global health. Investigating federated learning methods
may set up a model with the capability of improving applications while at the same time
ensuring patients' privacy and hospital security requirements. Specialised versions for
particular medical categories or healthcare facilities may make them additionally useful
and bring higher adoption in diverse healthcare environments.

5.4. Safety Considerations and Risk Mitigation

Clinical Risk Assessment:

Medical Al systems carry inherent risks that demand systematic mitigation:

1. Patient Safety Protocols:

Mandatory clinical disclaimers for all medical advice

Automatic referral recommendations for emergency symptoms

Integration with clinical decision support alerts

2. Failure Mode Analysis:

False confidence scenarios: Implemented confidence calibration using temperature
scaling

Out-of-distribution queries: Deploy uncertainty estimation with entropy-based
detection

Adversarial inputs: Robust input validation and semantic coherence checking

3. Regulatory Compliance:

FDA AI/ML guidance adherence for medical device software

GDPR compliance for patient data processing in EU deployments

Integration with existing clinical workflows and EHR systems
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Safety Guardrails:

Real-time monitoring dashboard for hallucination detection
Automatic escalation protocols for high-risk queries
Continuous learning from clinical feedback loops
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