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Abstract: Artificial intelligence (AI) is increasingly shaping the evolution of urban ecosystems, yet 
current implementations often optimize isolated objectives—such as efficiency or automation—
without integrating environmental and social dimensions. This study proposes a three-layer 
framework for sustainable urban intelligence, encompassing cognitive, behavioral, and 
environmental layers to harmonize personalization, mobility optimization, and carbon 
management. The cognitive layer leverages large language models and knowledge graphs for 
sustainability-oriented recommendation; the behavioral layer employs reinforcement learning and 
graph neural networks for adaptive mobility optimization; and the environmental layer integrates 
AI-enabled carbon forecasting and energy management. Through cross-layer data flow and 
dynamic feedback loops, the framework establishes an adaptive AI ecosystem that connects human 
decision-making, technological performance, and ecological feedback. The proposed model 
advances the conceptual transition from “smart cities” to sustainably intelligent cities, providing a 
blueprint for future urban AI systems that optimize not only for humans, but with humans—
aligning personal actions with collective sustainability goals. 
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1. Introduction 
1.1. Context and Motivation 

Artificial intelligence has evolved from isolated intelligent systems toward complex 
socio-technical ecosystems embedded in cities. In the early stages, AI applications were 
primarily focused on process automation, operational efficiency, and isolated problem-
solving, such as automated manufacturing lines, traffic signal optimization, and energy 
management. These early AI systems, while groundbreaking, often operated in narrow, 
siloed domains, with limited consideration of broader urban dynamics or long-term 
sustainability. 

Modern cities, however, are experiencing exponential growth in population, 
mobility demand, and resource consumption, which exacerbate challenges such as traffic 
congestion, air pollution, energy scarcity, and greenhouse gas emissions. Traditional AI 
systems are insufficient to address these intertwined issues because they often optimize a 
single objective metric, like minimizing travel time or maximizing energy efficiency, 
without integrating social, economic, and ecological consequences [1]. 
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Sustainable urban intelligence represents a paradigm shift, where AI systems are 
designed to simultaneously optimize for human well-being, system efficiency, and 
ecological resilience [2]. Cities now function as living laboratories, integrating human 
behavior, digital infrastructure, and environmental feedback into a continuous loop of 
data-driven learning. This transformation requires AI to be adaptive, multi-layered, and 
context-aware, capable of mediating interactions among citizens, infrastructure, and the 
environment in real time. 

1.2. Problem Statement 
Despite advancements in AI-driven urban management, most systems remain 

fragmented. Traffic optimization algorithms may reduce congestion but ignore carbon 
emissions; energy management platforms may improve consumption efficiency without 
considering user mobility or behavioral patterns. These siloed approaches fail to capture 
the complex interdependencies between cognition (user intention), behavior (mobility 
patterns), and environment (carbon footprint), which are critical for achieving sustainable 
urban outcomes [3]. 

Urban sustainability requires integrated intelligence that learns across human, 
technical, and ecological dimensions. AI must support contextualized decision-making, 
enabling cities to anticipate demand, allocate resources efficiently, and promote 
environmentally responsible behavior. Achieving this goal demands new frameworks 
that connect individual decisions to collective impacts, transforming AI from a reactive 
tool into a proactive partner for sustainability. 

1.3. Objective 
This study proposes a three-layer framework for sustainable urban intelligence: 
1) Cognitive Layer: Captures user preferences, intentions, and perceptions to 

provide personalized recommendations. 
2) Behavioral Layer: Translates cognitive insights into real-world mobility and 

activity behaviors, optimizing efficiency and equity. 
3) Environmental Layer: Monitors and manages carbon and energy flows, 

integrating behavioral and mobility data to reduce ecological impact. 
By combining these layers, the framework aims to harmonize individual decision-

making, urban system efficiency, and ecological balance through adaptive learning and 
closed-loop feedback mechanisms. The ultimate objective is to enable cities to self-
optimize across human, technical, and environmental dimensions, achieving sustainable 
outcomes at scale [4]. 

2. The Cognitive Layer: Personalized Recommendation Systems as Urban Intelligence 
Interfaces 
2.1. AI-Enhanced Personalization 

Personalized recommendation systems have evolved from basic content delivery to 
context-aware urban decision support systems. SeqUDA-Rec (Luo et al., 2025) applies 
unsupervised data augmentation to improve sequential recommendations, enabling 
systems to infer latent preferences from sparse data. Li et al. (2025) integrate BERT-based 
sentiment analysis with user clustering, providing dynamic personalization that adapts 
to individual preferences, moods, and contextual factors [5-9]. 

Beyond technical improvements, these methods represent a conceptual shift in urban 
intelligence: personalization is no longer about engagement or efficiency alone. It is 
increasingly seen as a gateway to sustainable behavior, helping citizens navigate urban 
complexity while making ecologically and socially responsible choices. 

2.2. Urban Relevance 
In urban environments, recommendation systems extend beyond digital media into 

mobility, energy, retail, and public services. Examples include: 
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1) Mobility: Suggesting low-carbon transportation routes, shared mobility options, 
or multimodal commuting plans based on real-time traffic and carbon intensity. 

2) Energy: Guiding households on adaptive electricity consumption, load shifting, 
and renewable integration. 

3) Retail & Services: Nudging consumers toward sustainable purchasing decisions, 
such as energy-efficient appliances or eco-friendly products. 

4) Public Engagement: Informing citizens of air quality, noise pollution, or energy-
saving opportunities through personalized alerts and recommendations. 

These cognitive interventions act as mediators between individual intentions and 
collective sustainability goals, creating a subtle but measurable influence on urban 
behavior patterns [10]. 

2.3. Methods and Implications 
Modern AI methods, including large language models (LLMs), knowledge graphs, 

and multi-modal learning, enable semantic-level understanding of user intent. LLMs 
interpret complex preferences and contextual signals, while knowledge graphs connect 
individual decisions to urban infrastructure, energy networks, and carbon metrics. 

The implications are profound: AI systems can nudge citizens toward low-carbon 
behaviors, optimize energy usage, and facilitate informed mobility choices. This cognitive 
layer forms the foundation of sustainable urban intelligence, linking digital interactions 
to physical, social, and ecological outcomes [11]. 

3. The Behavioral Layer: Mobility Optimization through Multi-Agent AI Systems 
3.1. Behavioral Intelligence in Urban Mobility 

Behavioral intelligence focuses on understanding, predicting, and coordinating 
human movement. The IMAGE framework captures macro-level mobility patterns for 
traffic and transport planning. Researchers use LLM-driven multi-agent taxi repositioning, 
enabling fleets to dynamically adapt to demand, reduce idle times, and minimize 
emissions [12]. Vision-language models are combined for street-level perception, 
improving pedestrian safety, traffic flow, and inclusivity. 

These methods illustrate how behavioral AI translates cognitive preferences into 
concrete actions, creating actionable insights for urban planners and policy-makers [13]. 

3.2. AI Methodologies 
Reinforcement learning (RL) and graph neural networks (GNNs) underpin adaptive 

routing, demand prediction, and flow balancing. Multi-agent collaboration improves 
system efficiency, fairness, and resilience, crucial for sustainable transport ecosystems [14]. 

As shown in Table 1, core AI methodologies applied in the behavioral layer 
contribute to both operational efficiency and environmental sustainability. 

Table 1. Core AI Methodologies in the Behavioral Layer. 

Methodology Application Sustainability Contribution 

Reinforcement Learning 
Real-time route 

optimization 
Reduced congestion, energy 

savings 

Graph Neural Networks 
Flow and network 

prediction 
Improved traffic balance 

Multi-Agent Systems Fleet coordination Fair resource allocation 
Vision-Language 

Models 
Perceptual mapping Safety and inclusiveness 

3.3. Link to Cognitive Layer 
The behavioral layer of sustainable urban intelligence operates in close synergy with 

the cognitive layer, forming a continuous feedback loop between individual-level 
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perception and system-level action. While the cognitive layer focuses on understanding 
user preferences and contextual intentions through personalized recommendation 
systems, the behavioral layer translates these insights into collective mobility behaviors 
and operational adjustments across the urban network [15]. 

In this regard, mobility recommendation can be viewed as an extension of 
personalized recommendation at the behavioral scale. Rather than suggesting digital 
content or localized services, it provides context-aware guidance for movement—such as 
recommending sustainable travel modes, multimodal route choices, or shared mobility 
options—based on user profiles, environmental conditions, and system objectives. This 
integration ensures that individual preferences are not isolated from collective dynamics 
but instead contribute to adaptive equilibrium within the broader mobility ecosystem [16]. 

By linking cognitive personalization with behavioral optimization, cities can enable 
closed-loop learning systems where user-level feedback continuously refines system 
policies, and system outcomes, in turn, reshape user behavior [17]. This cross-layer 
interaction represents a key characteristic of sustainable urban intelligence: the co-
evolution of cognition and behavior toward efficiency, equity, and environmental 
responsibility. 

4. The Environmental Layer: AI-Enabled Carbon and Energy Management 
4.1. Carbon-Aware Decision Systems 

The environmental layer of sustainable urban intelligence integrates artificial 
intelligence with carbon and energy management systems to promote low-carbon 
operations and resource-efficient urban infrastructures. Within this layer, carbon-aware 
decision systems utilize advanced optimization, simulation, and prediction models to 
align technological performance with environmental sustainability objectives [18]. 

Recent studies highlight significant progress in this direction. A carbon quota-based 
optimization framework for industrial reuse has been proposed, enabling factories and 
urban production units to dynamically allocate emission allowances based on real-time 
efficiency metrics and intersectoral energy flows. This approach not only reduces overall 
emissions but also encourages circular economy practices through intelligent resource 
exchange. Complementarily, artificial intelligence has been integrated with geographic 
information systems (GIS) for spatiotemporal assessment of photovoltaic potential, 
leveraging remote sensing and environmental data to optimize the siting, timing, and 
capacity of solar installations across urban regions [19]. 

Together, these works exemplify the emerging paradigm of AI-driven environmental 
intelligence, in which decision-making is informed by multidimensional carbon data, 
predictive analytics, and sustainability constraints. By embedding carbon-awareness into 
the logic of urban operations—ranging from industrial energy reuse to distributed 
renewable deployment—cities can transition from reactive emission control to proactive, 
data-driven carbon governance. This transformation constitutes a cornerstone of the 
environmental layer, ensuring that technological innovation directly supports climate 
resilience and sustainable growth [20]. 

4.2. Integration with Urban Dynamics 
The environmental layer of urban intelligence does not operate in isolation; rather, it 

interacts continuously with the behavioral and cognitive layers through the dynamic 
processes of urban life. Mobility patterns, in particular, exert a direct influence on carbon 
intensity, as transportation remains one of the largest sources of urban emissions. 
Understanding these behavioral dynamics allows carbon management systems to 
integrate real-time human activity data into adaptive environmental governance 
frameworks [21]. 

AI-enhanced recommendation systems play a crucial role in this integration by 
nudging low-carbon choices through personalized mobility suggestions, shared transit 
incentives, or energy-efficient lifestyle recommendations. By embedding sustainability-
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oriented feedback into everyday decision interfaces, these systems transform carbon 
reduction from an abstract policy goal into a tangible behavioral practice. 

Moreover, advances in AI-based carbon prediction models enable cities to anticipate 
emission fluctuations arising from mobility, industrial demand, or climatic conditions. 
When combined with adaptive carbon quota allocation, such models support responsive 
and equitable carbon governance—adjusting limits and incentives according to spatial, 
temporal, and behavioral contexts. This integration of urban dynamics and environmental 
intelligence thus fosters closed-loop sustainability, where individual actions, system-level 
adaptation, and environmental outcomes evolve in continuous feedback [22]. 

4.3. Technological Pathways 
Achieving sustainable urban intelligence requires not only advanced algorithms but 

also energy-efficient technological infrastructures that minimize the environmental 
footprint of AI itself. Recent progress in energy-efficient neural models demonstrates that 
algorithmic design can significantly reduce computational complexity and power 
consumption without compromising inference accuracy. Techniques such as model 
pruning, quantization, and adaptive computation enable scalable deployment of 
intelligent systems across energy-constrained urban environments [23]. 

At the hardware level, the adoption of RISC-V–based architectures has become a key 
enabler of low-power AI implementation, supporting customizable and open-source chip 
designs optimized for urban-scale data processing. These architectures facilitate real-time 
analytics and decision-making at the network edge, reducing latency and the need for 
energy-intensive cloud computation [24]. 

By linking edge intelligence with sustainable energy policies, cities can align digital 
transformation with environmental responsibility. For example, distributed edge nodes 
can operate in coordination with renewable energy grids, dynamically scheduling 
computational workloads based on solar or wind availability. Such technological 
pathways not only enhance the efficiency and resilience of AI ecosystems but also embody 
the principle of “green intelligence”—where computational innovation directly 
contributes to energy conservation and climate goals. 

5. Toward an Integrated Framework: The AI–Urban Sustainability Nexus 
5.1. Proposed Architecture 

The proposed multi-layer framework integrates three domains: 
1) Cognitive Layer: Personalized recommendations using LLM-driven inference. 
2) Behavioral Layer: Multi-agent mobility optimization via RL and GNN. 
3) Environmental Layer: Carbon-aware decision systems using predictive AI 

models. 
This architecture fosters holistic urban intelligence, enabling coordinated 

optimization across human, technical, and ecological dimensions. 

5.2. Data and Feedback Flow 
Inter-layer information exchange forms closed feedback loops—cognition → 

behavior → environment → cognition—enabling cities to adaptively learn from their own 
data [25]. 

As summarized in Table 2, these feedback mechanisms demonstrate how data 
circulates among layers to reinforce sustainability outcomes. 

Table 2. Cross-Layer Data and Feedback Mechanisms. 

Flow Direction Data Type Function Outcome 

Cognitive → Behavioral 
User 

preferences 
Behavioral guidance Sustainable mobility 

Behavioral → 
Environmental 

Activity data Emission modeling 
Real-time carbon 

feedback 



Journal of Science, Innovation & Social Impact  Vol. 1 No. 1 (2025) 
 

 206  

Environmental → 
Cognitive 

Impact 
metrics 

Awareness 
reinforcement 

Responsible decision-
making 

5.3. Outcome 
The integration establishes an AI ecosystem that understands both users and the 

environment, transforming urban AI from a service tool into a sustainability partner. 
Decisions are context-aware, adaptive, and environmentally responsible, supporting 
long-term resilience. 

5.4. Supporting Examples 
Projects such as CitySense RAG demonstrate multi-source semantic reasoning for 

mobility personalization. Beyond Pixels applies environment-aware perception models, 
showing that cross-domain intelligence can achieve tangible sustainability outcomes in 
real-world urban settings [26]. 

6. Challenges and Future Directions 
6.1. Data and Privacy 

Integrating data from mobility, commerce, energy, and public services raises privacy 
and governance concerns. Approaches such as federated learning, differential privacy, 
anonymization, and encrypted computation are essential to enable secure, ethical data 
sharing across urban systems. 

6.2. Model Interoperability 
Semantic and technical interoperability is critical. Shared ontologies, knowledge 

graphs, and standardized APIs facilitate consistent data interpretation and integration. 
Modular architectures allow heterogeneous AI subsystems to function as collaborative 
agents, forming a unified urban intelligence ecosystem [27]. 

6.3. Ethical and Social Considerations 
Balancing personalization and sustainability requires ethical design. AI should 

optimize for both individual satisfaction and collective benefit, avoiding bias in 
sustainability-driven recommendations. Transparent decision-making, fairness-aware 
learning, and explainable models ensure that environmental intelligence is socially 
equitable and value-aligned [28-30]. 

6.4. Research Outlook 
Future research must focus on policy-integrated AI, real-time feedback loops, and 

explainable systems. Making ecological consequences visible and actionable allows 
citizens and urban planners to co-adapt, promoting long-term sustainable behaviors and 
policy co-evolution. 

7. Conclusion 
The next frontier of artificial intelligence lies in the formation of urban sustainability 

intelligence—an integrative paradigm where human behavior, technological systems, and 
environmental feedback continuously co-evolve. Unlike traditional smart city models that 
emphasize efficiency or automation, this new paradigm envisions AI as an adaptive 
mediator linking cognitive personalization, behavioral optimization, and environmental 
responsibility. Through multi-layered integration—spanning the cognitive layer 
(personalized, context-aware recommendations), the behavioral layer (multi-agent and 
reinforcement-based mobility intelligence), and the environmental layer (carbon-aware 
and energy-optimized systems)—urban intelligence can move from isolated applications 
toward a cohesive, learning ecosystem. The framework highlights that intelligence and 
sustainability are mutually reinforcing rather than competing objectives. By embedding 
environmental awareness into AI decision-making and aligning personalization with 
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collective ecological goals, urban systems can achieve not only greater operational 
efficiency but also deeper social and environmental resilience. This integrative framework 
demonstrates how AI harmonizes traditionally distinct dimensions of urban systems—
personalized experience, efficient mobility, and carbon neutrality—through a multi-
layered architecture. It shows that AI is not merely a tool for optimization but a catalyst 
for systemic coherence across cognitive, behavioral, and environmental domains. 
Personalized recommendation systems at the cognitive layer align individual preferences 
with sustainability values, while the behavioral layer extends this intelligence into 
collective mobility optimization via multi-agent coordination and reinforcement learning. 
The environmental layer integrates real-time carbon assessment and energy-aware 
decision-making, linking micro-level actions to macro-level ecological outcomes. 
Together, these layers form an AI–urban sustainability nexus, supporting closed feedback 
loops between human intent, technological response, and environmental consequence. 
This framework provides a conceptual and methodological foundation for designing 
next-generation intelligent cities—cities that are not only smart but also ethically aligned, 
resource-conscious, and environmentally restorative. 
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