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Abstract: Artificial intelligence (Al is increasingly shaping the evolution of urban ecosystems, yet
current implementations often optimize isolated objectives—such as efficiency or automation—
without integrating environmental and social dimensions. This study proposes a three-layer
framework for sustainable urban intelligence, encompassing cognitive, behavioral, and
environmental layers to harmonize personalization, mobility optimization, and carbon
management. The cognitive layer leverages large language models and knowledge graphs for
sustainability-oriented recommendation; the behavioral layer employs reinforcement learning and
graph neural networks for adaptive mobility optimization; and the environmental layer integrates
Al-enabled carbon forecasting and energy management. Through cross-layer data flow and
dynamic feedback loops, the framework establishes an adaptive Al ecosystem that connects human
decision-making, technological performance, and ecological feedback. The proposed model
advances the conceptual transition from “smart cities” to sustainably intelligent cities, providing a
blueprint for future urban Al systems that optimize not only for humans, but with humans—
aligning personal actions with collective sustainability goals.
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1. Introduction
1.1. Context and Motivation

Artificial intelligence has evolved from isolated intelligent systems toward complex
socio-technical ecosystems embedded in cities. In the early stages, Al applications were
primarily focused on process automation, operational efficiency, and isolated problem-
solving, such as automated manufacturing lines, traffic signal optimization, and energy
management. These early Al systems, while groundbreaking, often operated in narrow,
siloed domains, with limited consideration of broader urban dynamics or long-term
sustainability.

Modern cities, however, are experiencing exponential growth in population,
mobility demand, and resource consumption, which exacerbate challenges such as traffic
congestion, air pollution, energy scarcity, and greenhouse gas emissions. Traditional Al
systems are insufficient to address these intertwined issues because they often optimize a
single objective metric, like minimizing travel time or maximizing energy efficiency,
without integrating social, economic, and ecological consequences [1].

201



Journal of Science, Innovation & Social Impact Vol. 1 No. 1 (2025)

Sustainable urban intelligence represents a paradigm shift, where Al systems are
designed to simultaneously optimize for human well-being, system efficiency, and
ecological resilience [2]. Cities now function as living laboratories, integrating human
behavior, digital infrastructure, and environmental feedback into a continuous loop of
data-driven learning. This transformation requires Al to be adaptive, multi-layered, and
context-aware, capable of mediating interactions among citizens, infrastructure, and the
environment in real time.

1.2. Problem Statement

Despite advancements in Al-driven urban management, most systems remain
fragmented. Traffic optimization algorithms may reduce congestion but ignore carbon
emissions; energy management platforms may improve consumption efficiency without
considering user mobility or behavioral patterns. These siloed approaches fail to capture
the complex interdependencies between cognition (user intention), behavior (mobility
patterns), and environment (carbon footprint), which are critical for achieving sustainable
urban outcomes [3].

Urban sustainability requires integrated intelligence that learns across human,
technical, and ecological dimensions. Al must support contextualized decision-making,
enabling cities to anticipate demand, allocate resources efficiently, and promote
environmentally responsible behavior. Achieving this goal demands new frameworks
that connect individual decisions to collective impacts, transforming Al from a reactive
tool into a proactive partner for sustainability.

1.3. Objective

This study proposes a three-layer framework for sustainable urban intelligence:

1) Cognitive Layer: Captures user preferences, intentions, and perceptions to

provide personalized recommendations.

2) Behavioral Layer: Translates cognitive insights into real-world mobility and

activity behaviors, optimizing efficiency and equity.

3) Environmental Layer: Monitors and manages carbon and energy flows,

integrating behavioral and mobility data to reduce ecological impact.

By combining these layers, the framework aims to harmonize individual decision-
making, urban system efficiency, and ecological balance through adaptive learning and
closed-loop feedback mechanisms. The ultimate objective is to enable cities to self-
optimize across human, technical, and environmental dimensions, achieving sustainable
outcomes at scale [4].

2. The Cognitive Layer: Personalized Recommendation Systems as Urban Intelligence
Interfaces

2.1. AI-Enhanced Personalization

Personalized recommendation systems have evolved from basic content delivery to
context-aware urban decision support systems. SeqUDA-Rec (Luo et al., 2025) applies
unsupervised data augmentation to improve sequential recommendations, enabling
systems to infer latent preferences from sparse data. Li et al. (2025) integrate BERT-based
sentiment analysis with user clustering, providing dynamic personalization that adapts
to individual preferences, moods, and contextual factors [5-9].

Beyond technical improvements, these methods represent a conceptual shift in urban
intelligence: personalization is no longer about engagement or efficiency alone. It is
increasingly seen as a gateway to sustainable behavior, helping citizens navigate urban
complexity while making ecologically and socially responsible choices.

2.2. Urban Relevance

In urban environments, recommendation systems extend beyond digital media into
mobility, energy, retail, and public services. Examples include:
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1)  Mobility: Suggesting low-carbon transportation routes, shared mobility options,
or multimodal commuting plans based on real-time traffic and carbon intensity.
2)  Energy: Guiding households on adaptive electricity consumption, load shifting,
and renewable integration.
3) Retail & Services: Nudging consumers toward sustainable purchasing decisions,
such as energy-efficient appliances or eco-friendly products.
4)  Public Engagement: Informing citizens of air quality, noise pollution, or energy-
saving opportunities through personalized alerts and recommendations.
These cognitive interventions act as mediators between individual intentions and
collective sustainability goals, creating a subtle but measurable influence on urban
behavior patterns [10].

2.3. Methods and Implications

Modern Al methods, including large language models (LLMs), knowledge graphs,
and multi-modal learning, enable semantic-level understanding of user intent. LLMs
interpret complex preferences and contextual signals, while knowledge graphs connect
individual decisions to urban infrastructure, energy networks, and carbon metrics.

The implications are profound: Al systems can nudge citizens toward low-carbon
behaviors, optimize energy usage, and facilitate informed mobility choices. This cognitive
layer forms the foundation of sustainable urban intelligence, linking digital interactions
to physical, social, and ecological outcomes [11].

3. The Behavioral Layer: Mobility Optimization through Multi-Agent AI Systems
3.1. Behavioral Intelligence in Urban Mobility

Behavioral intelligence focuses on understanding, predicting, and coordinating
human movement. The IMAGE framework captures macro-level mobility patterns for
traffic and transport planning. Researchers use LLM-driven multi-agent taxi repositioning,
enabling fleets to dynamically adapt to demand, reduce idle times, and minimize
emissions [12]. Vision-language models are combined for street-level perception,
improving pedestrian safety, traffic flow, and inclusivity.

These methods illustrate how behavioral Al translates cognitive preferences into
concrete actions, creating actionable insights for urban planners and policy-makers [13].

3.2. Al Methodologies

Reinforcement learning (RL) and graph neural networks (GNNs) underpin adaptive
routing, demand prediction, and flow balancing. Multi-agent collaboration improves
system efficiency, fairness, and resilience, crucial for sustainable transport ecosystems [14].

As shown in Table 1, core Al methodologies applied in the behavioral layer
contribute to both operational efficiency and environmental sustainability.

Table 1. Core Al Methodologies in the Behavioral Layer.

Methodology Application Sustainability Contribution

. . Real-time route Reduced congestion, energy
Reinforcement Learning o .
optimization savings

Flow and network

Graph Neural Networks . Improved traffic balance
prediction
Multi-Agent Systems Fleet coordination Fair resource allocation
Vision-Language . . .
Models Perceptual mapping Safety and inclusiveness

3.3. Link to Cognitive Layer

The behavioral layer of sustainable urban intelligence operates in close synergy with
the cognitive layer, forming a continuous feedback loop between individual-level
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perception and system-level action. While the cognitive layer focuses on understanding
user preferences and contextual intentions through personalized recommendation
systems, the behavioral layer translates these insights into collective mobility behaviors
and operational adjustments across the urban network [15].

In this regard, mobility recommendation can be viewed as an extension of
personalized recommendation at the behavioral scale. Rather than suggesting digital
content or localized services, it provides context-aware guidance for movement—such as
recommending sustainable travel modes, multimodal route choices, or shared mobility
options—based on user profiles, environmental conditions, and system objectives. This
integration ensures that individual preferences are not isolated from collective dynamics
but instead contribute to adaptive equilibrium within the broader mobility ecosystem [16].

By linking cognitive personalization with behavioral optimization, cities can enable
closed-loop learning systems where user-level feedback continuously refines system
policies, and system outcomes, in turn, reshape user behavior [17]. This cross-layer
interaction represents a key characteristic of sustainable urban intelligence: the co-
evolution of cognition and behavior toward efficiency, equity, and environmental
responsibility.

4. The Environmental Layer: AI-Enabled Carbon and Energy Management
4.1. Carbon-Aware Decision Systems

The environmental layer of sustainable urban intelligence integrates artificial
intelligence with carbon and energy management systems to promote low-carbon
operations and resource-efficient urban infrastructures. Within this layer, carbon-aware
decision systems utilize advanced optimization, simulation, and prediction models to
align technological performance with environmental sustainability objectives [18].

Recent studies highlight significant progress in this direction. A carbon quota-based
optimization framework for industrial reuse has been proposed, enabling factories and
urban production units to dynamically allocate emission allowances based on real-time
efficiency metrics and intersectoral energy flows. This approach not only reduces overall
emissions but also encourages circular economy practices through intelligent resource
exchange. Complementarily, artificial intelligence has been integrated with geographic
information systems (GIS) for spatiotemporal assessment of photovoltaic potential,
leveraging remote sensing and environmental data to optimize the siting, timing, and
capacity of solar installations across urban regions [19].

Together, these works exemplify the emerging paradigm of Al-driven environmental
intelligence, in which decision-making is informed by multidimensional carbon data,
predictive analytics, and sustainability constraints. By embedding carbon-awareness into
the logic of urban operations—ranging from industrial energy reuse to distributed
renewable deployment—cities can transition from reactive emission control to proactive,
data-driven carbon governance. This transformation constitutes a cornerstone of the
environmental layer, ensuring that technological innovation directly supports climate
resilience and sustainable growth [20].

4.2. Integration with Urban Dynamics

The environmental layer of urban intelligence does not operate in isolation; rather, it
interacts continuously with the behavioral and cognitive layers through the dynamic
processes of urban life. Mobility patterns, in particular, exert a direct influence on carbon
intensity, as transportation remains one of the largest sources of urban emissions.
Understanding these behavioral dynamics allows carbon management systems to
integrate real-time human activity data into adaptive environmental governance
frameworks [21].

Al-enhanced recommendation systems play a crucial role in this integration by
nudging low-carbon choices through personalized mobility suggestions, shared transit
incentives, or energy-efficient lifestyle recommendations. By embedding sustainability-
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oriented feedback into everyday decision interfaces, these systems transform carbon
reduction from an abstract policy goal into a tangible behavioral practice.

Moreover, advances in Al-based carbon prediction models enable cities to anticipate
emission fluctuations arising from mobility, industrial demand, or climatic conditions.
When combined with adaptive carbon quota allocation, such models support responsive
and equitable carbon governance—adjusting limits and incentives according to spatial,
temporal, and behavioral contexts. This integration of urban dynamics and environmental
intelligence thus fosters closed-loop sustainability, where individual actions, system-level
adaptation, and environmental outcomes evolve in continuous feedback [22].

4.3. Technological Pathways

Achieving sustainable urban intelligence requires not only advanced algorithms but
also energy-efficient technological infrastructures that minimize the environmental
footprint of Al itself. Recent progress in energy-efficient neural models demonstrates that
algorithmic design can significantly reduce computational complexity and power
consumption without compromising inference accuracy. Techniques such as model
pruning, quantization, and adaptive computation enable scalable deployment of
intelligent systems across energy-constrained urban environments [23].

At the hardware level, the adoption of RISC-V-based architectures has become a key
enabler of low-power Al implementation, supporting customizable and open-source chip
designs optimized for urban-scale data processing. These architectures facilitate real-time
analytics and decision-making at the network edge, reducing latency and the need for
energy-intensive cloud computation [24].

By linking edge intelligence with sustainable energy policies, cities can align digital
transformation with environmental responsibility. For example, distributed edge nodes
can operate in coordination with renewable energy grids, dynamically scheduling
computational workloads based on solar or wind availability. Such technological
pathways not only enhance the efficiency and resilience of Al ecosystems but also embody
the principle of “green intelligence” —where computational innovation directly
contributes to energy conservation and climate goals.

5. Toward an Integrated Framework: The AI-Urban Sustainability Nexus
5.1. Proposed Architecture

The proposed multi-layer framework integrates three domains:
1)  Cognitive Layer: Personalized recommendations using LLM-driven inference.
2) Behavioral Layer: Multi-agent mobility optimization via RL and GNN.
3) Environmental Layer: Carbon-aware decision systems using predictive Al
models.
This architecture fosters holistic urban intelligence, enabling coordinated
optimization across human, technical, and ecological dimensions.

5.2. Data and Feedback Flow

Inter-layer information exchange forms closed feedback loops—cognition —
behavior — environment — cognition —enabling cities to adaptively learn from their own
data [25].

As summarized in Table 2, these feedback mechanisms demonstrate how data
circulates among layers to reinforce sustainability outcomes.

Table 2. Cross-Layer Data and Feedback Mechanisms.

Flow Direction Data Type Function Outcome
U
Cognitive — Behavioral set Behavioral guidance  Sustainable mobility
preferences
Behavioral — Real-time carbon

Activity data Emission modeling

Environmental feedback
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Environmental — Impact Awareness Responsible decision-
Cognitive metrics reinforcement making
5.3. Outcome

The integration establishes an Al ecosystem that understands both users and the
environment, transforming urban Al from a service tool into a sustainability partner.
Decisions are context-aware, adaptive, and environmentally responsible, supporting
long-term resilience.

5.4. Supporting Examples

Projects such as CitySense RAG demonstrate multi-source semantic reasoning for
mobility personalization. Beyond Pixels applies environment-aware perception models,
showing that cross-domain intelligence can achieve tangible sustainability outcomes in
real-world urban settings [26].

6. Challenges and Future Directions
6.1. Data and Privacy

Integrating data from mobility, commerce, energy, and public services raises privacy
and governance concerns. Approaches such as federated learning, differential privacy,
anonymization, and encrypted computation are essential to enable secure, ethical data
sharing across urban systems.

6.2. Model Interoperability

Semantic and technical interoperability is critical. Shared ontologies, knowledge
graphs, and standardized APIs facilitate consistent data interpretation and integration.
Modular architectures allow heterogeneous Al subsystems to function as collaborative
agents, forming a unified urban intelligence ecosystem [27].

6.3. Ethical and Social Considerations

Balancing personalization and sustainability requires ethical design. Al should
optimize for both individual satisfaction and collective benefit, avoiding bias in
sustainability-driven recommendations. Transparent decision-making, fairness-aware
learning, and explainable models ensure that environmental intelligence is socially
equitable and value-aligned [28-30].

6.4. Research Outlook

Future research must focus on policy-integrated Al, real-time feedback loops, and
explainable systems. Making ecological consequences visible and actionable allows
citizens and urban planners to co-adapt, promoting long-term sustainable behaviors and
policy co-evolution.

7. Conclusion

The next frontier of artificial intelligence lies in the formation of urban sustainability
intelligence —an integrative paradigm where human behavior, technological systems, and
environmental feedback continuously co-evolve. Unlike traditional smart city models that
emphasize efficiency or automation, this new paradigm envisions Al as an adaptive
mediator linking cognitive personalization, behavioral optimization, and environmental
responsibility. Through multi-layered integration—spanning the cognitive layer
(personalized, context-aware recommendations), the behavioral layer (multi-agent and
reinforcement-based mobility intelligence), and the environmental layer (carbon-aware
and energy-optimized systems)—urban intelligence can move from isolated applications
toward a cohesive, learning ecosystem. The framework highlights that intelligence and
sustainability are mutually reinforcing rather than competing objectives. By embedding
environmental awareness into Al decision-making and aligning personalization with
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collective ecological goals, urban systems can achieve not only greater operational
efficiency but also deeper social and environmental resilience. This integrative framework
demonstrates how Al harmonizes traditionally distinct dimensions of urban systems—
personalized experience, efficient mobility, and carbon neutrality —through a multi-
layered architecture. It shows that Al is not merely a tool for optimization but a catalyst
for systemic coherence across cognitive, behavioral, and environmental domains.
Personalized recommendation systems at the cognitive layer align individual preferences
with sustainability values, while the behavioral layer extends this intelligence into
collective mobility optimization via multi-agent coordination and reinforcement learning.
The environmental layer integrates real-time carbon assessment and energy-aware
decision-making, linking micro-level actions to macro-level ecological outcomes.
Together, these layers form an Al-urban sustainability nexus, supporting closed feedback
loops between human intent, technological response, and environmental consequence.
This framework provides a conceptual and methodological foundation for designing
next-generation intelligent cities —cities that are not only smart but also ethically aligned,
resource-conscious, and environmentally restorative.
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