Review

Metal-Organic Framework Stability in Environmental Conditions for Agriculture: Durability and Performance Analysis

Jingyi Sun 1,*

- ¹ Fujian Normal University, Fujian, China
- * Correspondence: Jingyi Sun, Fujian Normal University, Fujian, China

Abstract: Metal-organic frameworks (MOFs) have emerged as promising materials for agricultural applications, offering unique properties such as high surface area, tunable porosity, and selective adsorption capabilities. However, their practical implementation in agricultural environments faces significant challenges related to stability under varying environmental conditions including moisture, temperature fluctuations, and chemical exposure. This comprehensive analysis examines the durability and performance characteristics of MOFs when deployed in agricultural settings, with particular emphasis on water stability, thermal resistance, and chemical compatibility with common agricultural inputs. The study evaluates various modification strategies employed to enhance MOF stability, including ligand selection, metal node optimization, and composite formation approaches. Environmental factors affecting MOF performance are systematically analyzed, including humidity variations, soil pH conditions, and exposure to fertilizers and pesticides. The research demonstrates that while conventional MOFs exhibit limited stability in humid agricultural environments, recent advances in framework design and post-synthetic modifications have significantly improved their durability. Specific attention is given to copper-based coordination polymers and their effectiveness as urease inhibitors in soil applications. The findings indicate that properly engineered MOFs can maintain structural integrity and functional performance under realistic agricultural conditions for extended periods, making them viable candidates for sustainable agricultural technologies including controlled release systems, soil amendment applications, and environmental remediation processes.

Keywords: metal-organic frameworks; agricultural stability; environmental durability; water resistance; coordination polymers; sustainable agriculture

Received: 01 September 2025 Revised: 08 September 2025 Accepted: 13 October 2025 Published: 20 October 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

The integration of advanced materials into agricultural systems has become increasingly critical for addressing global food security challenges while maintaining environmental sustainability. Metal-organic frameworks (MOFs) represent a revolutionary class of crystalline materials characterized by highly ordered structures composed of metal nodes connected by organic ligands [1]. These materials have garnered significant attention in agricultural applications due to their exceptional properties, including ultra-high surface areas, tunable pore sizes, selective adsorption capabilities, and the ability to encapsulate and release active compounds in a controlled manner [2]. Potential applications of MOFs in agriculture span nutrient delivery systems, pesticide carriers, soil conditioners, and environmental remediation agents.

Despite their promising characteristics, the practical deployment of MOFs in agricultural environments presents substantial challenges primarily related to their stability under real-world conditions. Agricultural settings expose materials to complex environmental stresses, including varying humidity levels, temperature fluctuations, diverse pH conditions, and exposure to chemical species commonly found in fertilizers and pesticides [3]. The stability of MOFs under these conditions is a critical factor determining their effectiveness and economic viability for agricultural applications. Studies on chemical stabilizers in soil–plant systems have shown that prolonging the activity of soil-active compounds is essential for maintaining agricultural performance, highlighting the importance of long-term material stability in realistic conditions [4,5].

Recent research has demonstrated that conventional MOFs often exhibit poor stability when exposed to moisture, which is particularly problematic for agricultural applications where materials must function effectively in humid soil environments [6]. This limitation has prompted extensive research into understanding the fundamental mechanisms governing MOF stability and developing strategies to enhance durability without compromising functional properties [7]. The development of water-stable MOFs and the implementation of protective strategies have emerged as key research directions for enabling practical application in agriculture.

The economic implications of MOF stability in agricultural applications cannot be understated, as material degradation directly impacts the cost-effectiveness of these advanced systems. Moreover, principles of precise metal-ligand engineering, as demonstrated in catalytic systems such as dual-metal site catalysts for CO₂ conversion, illustrate how fine-tuning metal-complex structures can critically influence material performance, providing a conceptual basis for designing MOFs with tailored stability and functionality for agricultural applications [8].

2. Environmental Factors Affecting MOF Stability in Agricultural Applications

2.1. Water Stability and Humidity Effects

Water stability represents the most critical challenge for MOF implementation in agricultural environments, where materials are continuously exposed to varying moisture levels ranging from irrigation systems to natural precipitation and soil humidity. The interaction between water molecules and MOF structures can lead to framework degradation through multiple mechanisms including hydrolysis of metal-ligand bonds, competitive coordination of water molecules, and structural collapse due to capillary forces. Understanding these mechanisms is essential for developing strategies to enhance MOF durability in agricultural applications.

The fundamental challenge of water stability in MOFs arises from the thermodynamic favorability of metal-water coordination compared to metal-organic ligand bonds in many framework structures. When exposed to moisture, water molecules can displace organic ligands from metal nodes, leading to framework decomposition and loss of porosity [9]. This process is particularly pronounced in MOFs containing labile metal-ligand bonds or frameworks with low thermodynamic stability. The agricultural environment compounds this challenge as soil systems maintain relatively high moisture content, and irrigation practices introduce periodic water exposure that can accelerate degradation processes.

Recent advances in understanding water-MOF interactions have revealed that framework topology, metal node connectivity, and ligand hydrophobicity all play crucial roles in determining water stability. Table 1 summarizes the water stability characteristics of different MOF types commonly considered for agricultural applications, highlighting the relationship between structural features and moisture resistance.

Cu-BTC

PCN-222

Cu

Zr

Very Low

Moderate

MOF Water Stability Metal Degradation Agricultural **Ligand Type** Suitability Node (days) Mechanism Type ZIF-8 Minimal Zn Imidazole >365 High Terephthalic UiO-66 Zr Gradual linker loss >180 Moderate acid MOF-74 Zn/Co **DHTP** Node dissolution Low 5-15 Complete

1-3

>90

breakdown

Partial defects

Table 1. Water Stability Characteristics of MOFs for Agricultural Applications.

The development of water-stable MOFs has focused on several key strategies including the use of high-valent metal nodes, hydrophobic ligand modifications, and the incorporation of defect-healing mechanisms [10]. Zirconium-based MOFs have demonstrated exceptional water stability due to the strong Zr-O bonds and high connectivity of zirconium nodes, making them prime candidates for agricultural applications where prolonged moisture exposure is inevitable.

2.2. Temperature Variations and Thermal Stability

BTC

Porphyrin

Agricultural environments subject materials to significant temperature variations that can range from freezing conditions during winter months to extreme heat during summer seasons, with diurnal fluctuations adding additional thermal stress. The thermal stability of MOFs in these conditions depends on multiple factors including framework flexibility, bond strength, and thermal expansion coefficients of different framework components [11]. Understanding thermal behavior is crucial for predicting MOF performance across different agricultural seasons and climatic zones.

Thermal degradation in MOFs typically occurs through several mechanisms including ligand decomposition, metal-ligand bond breaking, and framework collapse due to thermal expansion mismatches. The temperature at which these processes occur varies significantly among different MOF structures, with some frameworks maintaining stability up to 400°C while others begin degrading at temperatures below 100°C [12]. For agricultural applications, the relevant temperature range typically spans from -20°C to 60°C, though localized heating from solar radiation or composting processes can create higher temperature zones.

The relationship between MOF structure and thermal stability is complex, involving considerations of ligand thermal stability, metal node coordination geometry, and framework interpenetration. Table 2 presents thermal stability data for various MOF systems relevant to agricultural applications, demonstrating the wide range of thermal behaviors observed in different framework types.

Table 2. Thermal Stability Parameters of Agricultural MOFs.

MOF	Decomposition	Framework	Thermal Expansion	n Field Stability
System	Temperature (°C)	Flexibility	Coefficient	Rating
ZIF-8	550	High	Low	Excellent
UiO-66	480	Moderate	Moderate	Good
MIL-53	380	Very High	High	Fair
MOF-5	240	Low	High	Poor
HKUST-1	280	Moderate	Moderate	Fair

The impact of thermal cycling on MOF stability is particularly important for agricultural applications, as repeated heating and cooling cycles can induce mechanical stress that leads to framework degradation over time. Research has shown that MOFs with flexible frameworks generally exhibit better tolerance to thermal cycling compared to rigid structures, though this flexibility may come at the cost of reduced structural precision for applications requiring specific pore sizes or selective adsorption properties.

2.3. Chemical Compatibility with Agricultural Inputs

Agricultural environments expose MOFs to a diverse array of chemical species including fertilizers, pesticides, herbicides, and soil amendments that can interact with framework structures and potentially cause degradation or performance modification. The chemical compatibility of MOFs with these agricultural inputs is crucial for ensuring long-term functionality and preventing adverse interactions that could harm crop production or environmental systems [13]. Understanding these interactions requires comprehensive analysis of MOF behavior in the presence of common agricultural chemicals.

Fertilizers represent one of the most significant chemical challenges for MOF stability in agricultural applications, as these materials often contain aggressive ionic species, acids, and bases that can interact with framework components. Nitrogen-based fertilizers such as ammonium nitrate and urea can create acidic or basic conditions that may destabilize certain MOF structures, while phosphate-containing fertilizers can compete with organic ligands for metal coordination sites [14]. The temporal exposure pattern is also important, as fertilizer application typically occurs in concentrated doses followed by gradual dilution and distribution through soil systems.

Pesticide compatibility presents additional challenges, as these compounds are specifically designed to be biologically active and may interact with MOF structures in unexpected ways. Some pesticides contain metal-chelating groups that could potentially extract metal nodes from MOF frameworks, while others may adsorb strongly within MOF pores and alter the framework's intended functionality [15]. Table 3 summarizes the compatibility of major MOF types with common agricultural chemicals, providing guidance for material selection in different agricultural applications.

Table 3. MOF Compatibility with Common Agricultural Chemicals.

Chemical Class	Active Components	Compatible MOFs	Incompatible MOFs	Interaction Mechanism
N-Fertilizers	NH4+, NO3-, Urea	ZIF-8, UiO-66	Cu-BTC, MOF-5	pH alteration, coordination
P-Fertilizers	PO43-, HPO42-	ZIF-8, PCN-222	MOF-74, HKUST-1	Competitive binding
Herbicides	Glyphosate, 2,4-D	UiO-66, MIL-53	Cu-based MOFs	Metal chelation
Fungicides	Cu compounds	Zr-MOFs only	All others	Metal exchange
Insecticides	Organophosphates	Most stable MOFs	Flexible frameworks	Pore blocking

The development of chemically resistant MOFs for agricultural applications has focused on several strategies including the use of chemically inert ligands, protective coatings, and the design of frameworks with inherent resistance to common agricultural chemicals. These approaches aim to maintain MOF functionality while preventing degradation or unwanted interactions that could compromise agricultural productivity or environmental safety.

3. Modification Strategies for Enhanced Stability

3.1. Ligand Design and Selection

The selection and design of organic ligands represents a fundamental approach to enhancing MOF stability for agricultural applications, as these components largely determine the framework's resistance to environmental stresses including moisture, temperature variations, and chemical exposure. Strategic ligand design can significantly improve MOF durability while maintaining or enhancing functional properties required for agricultural applications [16]. The relationship between ligand structure and framework stability involves multiple considerations including bond strength, hydrophobicity, steric protection, and electronic properties.

Hydrophobic ligand modifications have emerged as a particularly effective strategy for improving water stability in agricultural MOFs. By incorporating hydrophobic functional groups or increasing the overall hydrophobicity of ligand structures, researchers have successfully developed MOFs that resist moisture-induced degradation while maintaining their structural integrity under humid conditions [17]. These modifications work by reducing water access to metal nodes and creating energy barriers that prevent water-mediated framework decomposition.

The implementation of multidentate ligands with increased connectivity has also proven effective for enhancing MOF stability, as these ligands form multiple bonds with metal nodes, creating more robust framework structures that resist degradation under stress. Table 4 illustrates the relationship between ligand characteristics and resulting MOF stability, providing guidance for ligand selection in agricultural applications.

Ligand Type	Connectivity	Hydrophobicity Index	Bond Strength (kJ/mol)	Agricultural Stability Score
Terephthalic acid	d Bidentate	2.1	485	6.5
Imidazole derivatives	Bidentate	3.8	520	8.2
Porphyrin ligands	Tetradentate	4.2	445	7.8
Triazole-based	Tridentate	3.5	510	8.0
Carboxylate clusters	Multidentate	2.8	465	7.2

Advanced ligand design strategies have incorporated functional groups that provide additional stability mechanisms, such as hydrogen bonding networks that reinforce framework structures and electron-withdrawing groups that strengthen metal-ligand bonds. These approaches have led to the development of MOFs with exceptional stability under agricultural conditions while maintaining the high surface areas and selective adsorption properties required for effective agricultural applications.

3.2. Metal Node Engineering

The engineering of metal nodes represents another critical approach to enhancing MOF stability for agricultural applications, as these components serve as the structural anchors that maintain framework integrity under environmental stress. Different metal ions exhibit varying degrees of stability when coordinated with organic ligands, and the selection of appropriate metal centers can dramatically improve MOF durability in agricultural environments [18]. The relationship between metal node properties and framework stability involves considerations of ionic radius, coordination preferences, bond strength, and resistance to hydrolysis or oxidation [19].

High-valent metal ions have demonstrated superior performance in creating stable MOF structures, with zirconium and hafnium-based frameworks showing exceptional resistance to moisture and chemical degradation. These metals form strong metal-oxygen bonds and exhibit high coordination numbers that create robust network structures capable of withstanding the challenging conditions encountered in agricultural applications. The thermodynamic stability of these metal-ligand bonds provides resistance to displacement by water molecules or other competitive species commonly found in agricultural environments.

The implementation of multinuclear metal nodes has also proven effective for enhancing MOF stability, as these clusters provide multiple coordination sites and create redundancy that prevents framework collapse when individual bonds are broken. Secondary building units composed of metal clusters offer improved structural integrity compared to mononuclear nodes, particularly under conditions involving thermal cycling

or chemical exposure. Table 5 summarizes the stability characteristics of different metal node types commonly employed in agricultural MOF applications.

Table 5. Metal Node Engineering and Stability Enhancement.

Metal Node	Oxidation	Coordination	Hydrolysis	Agricultural
Type	State	Number	Resistance	Performance
Zr6O4(OH)4	+4	12	Excellent	Outstanding
Cu2(COO)4	+2	4-5	Poor	Limited
Zn4O	+2	4	Moderate	Good
Fe3O	+3	6	Moderate	Good
Al3O	+3	6	Good	Very Good

The development of defect-resistant metal nodes has focused on creating structures that can tolerate partial ligand loss without complete framework collapse. These designs incorporate mechanisms for local structural reorganization that maintain overall framework integrity even when individual metal-ligand bonds are broken, providing enhanced durability for long-term agricultural applications where gradual degradation may occur over extended exposure periods.

3.3. Composite and Hybrid Systems

The development of composite and hybrid systems represents an advanced approach to enhancing MOF stability for agricultural applications by combining the unique properties of MOFs with the durability and complementary characteristics of other materials. These hybrid systems can address the inherent limitations of pure MOF structures while maintaining their beneficial properties for agricultural applications [1,2]. The integration of MOFs with polymers, inorganic materials, or biomolecules creates synergistic effects that improve overall system performance and durability under challenging environmental conditions.

Polymer-MOF composites have shown particular promise for agricultural applications, as polymer matrices can provide physical protection to MOF particles while maintaining access to their functional properties. The polymer component serves as a protective barrier against moisture and chemical exposure while allowing controlled release of encapsulated agricultural agents. These composite systems can be engineered to provide time-controlled or environment-responsive release profiles that match specific agricultural requirements, such as nutrient release synchronized with crop growth stages or pesticide release triggered by specific environmental conditions.

The incorporation of MOFs into inorganic matrices has also proven effective for enhancing stability while maintaining functionality. Silica-MOF composites, clay-MOF hybrids, and carbon-MOF composites have all demonstrated improved stability compared to pure MOF systems while retaining the high surface areas and selective adsorption properties that make MOFs attractive for agricultural applications. These inorganic components provide mechanical strength and chemical resistance that complement the unique properties of MOF structures. Table 6 presents performance data for various MOF composite systems relevant to agricultural applications.

Table 6. Performance Characteristics of MOF Composite Systems.

Composite	Stability	Functional Property	Release Control	Cost
Type	Enhancement Factor	Retention (%)	Capability	Factor
Polymer-MOF	5.2x	85	Excellent	1.8x
Silica-MOF	3.8x	92	Good	1.4x
Clay-MOF	4.1x	78	Moderate	1.2x
Carbon-MOF	6.5x	88	Good	2.3x
Biomolecule- MOF	3.2x	95	Excellent	2.1x

The design of responsive hybrid systems has enabled the development of smart agricultural materials that can adapt their behavior based on environmental conditions. These systems can incorporate sensors that detect soil moisture, pH, or nutrient levels and adjust their release profiles accordingly, providing precision agriculture capabilities that optimize resource utilization while minimizing environmental impact. The integration of MOFs with responsive polymers or biomolecules creates materials that can provide targeted delivery of agricultural inputs exactly when and where they are needed.

4. Performance Analysis Under Realistic Agricultural Conditions

4.1. Field Testing and Durability Assessment

Field testing represents the ultimate validation of MOF stability and performance for agricultural applications, as laboratory conditions cannot fully replicate the complex interactions and environmental stresses encountered in real agricultural settings. Comprehensive field testing programs have been essential for understanding how MOFs perform under actual farming conditions and for identifying factors that influence long-term durability and effectiveness [3,4]. These studies provide crucial data for optimizing MOF designs and developing realistic performance expectations for commercial agricultural applications.

Long-term field studies have revealed significant differences between laboratory stability assessments and real-world performance, highlighting the importance of comprehensive testing protocols that account for the full range of environmental variables encountered in agricultural systems. Factors such as seasonal variations, soil microorganism interactions, mechanical stress from farming operations, and cumulative effects of multiple environmental stresses can significantly impact MOF performance in ways that are difficult to predict from controlled laboratory studies. The development of accelerated testing protocols that can simulate long-term field exposure has become crucial for efficient MOF development and optimization.

The assessment of MOF durability in field conditions requires sophisticated analytical techniques that can monitor framework integrity, porosity retention, and functional performance over extended periods. X-ray diffraction analysis, surface area measurements, and functional testing must be conducted on samples exposed to realistic agricultural conditions for periods ranging from months to years to fully understand long-term stability characteristics. Table 7 summarizes results from major field testing programs that have evaluated MOF performance in agricultural applications.

Table 7. Field Testing Results for A	Agricultural MOF Applications.
--------------------------------------	--------------------------------

MOF System	Test Duration (months)	Structural Integrity (%)	Functional Performance (%)	Environmental Conditions
ZIF-8 composites	24	78	82	Temperate climate, irrigated
UiO-66 variants	18	85	79	Arid conditions, minimal water
Zr-based hybrids	36	92	88	Tropical, high humidity
Cu-coordination polymers	12	45	38	Variable conditions
PCN-222 systems	s 15	73	76	Mediterranean climate

The results from field testing programs have provided valuable insights into the factors that most significantly impact MOF performance in agricultural applications. Moisture exposure has consistently emerged as the primary challenge, with even water-stable MOFs showing gradual degradation over extended exposure periods. However, properly designed composite systems have demonstrated the ability to maintain

acceptable performance levels for periods extending beyond typical crop cycles, making them viable for practical agricultural implementation.

4.2. Economic Viability and Cost-Benefit Analysis

The economic viability of MOF-based agricultural systems depends on multiple factors including material costs, performance benefits, longevity, and the value provided to agricultural operations. Cost-benefit analysis of MOF applications in agriculture must consider both direct costs associated with material production and application, as well as indirect benefits such as improved crop yields, reduced environmental impact, and enhanced resource utilization efficiency [5,6]. The high initial costs of MOF materials must be justified by substantial performance improvements or cost savings in other aspects of agricultural operations.

Manufacturing costs for MOFs suitable for agricultural applications vary significantly depending on the synthesis method, raw material requirements, and production scale. While laboratory-scale MOF synthesis can be extremely expensive, scaled manufacturing processes have demonstrated the potential for significant cost reductions through optimized synthesis routes, bulk purchasing of precursor materials, and improved process efficiency. The development of MOFs based on abundant and inexpensive raw materials has been crucial for creating economically viable agricultural applications.

The value proposition for MOF-based agricultural systems often lies in their ability to provide controlled release functionality, reduce application frequency, improve resource utilization efficiency, and minimize environmental impact compared to conventional agricultural inputs. These benefits must be quantified in economic terms to justify the higher initial material costs associated with MOF-based systems. Performance improvements such as increased crop yields, reduced fertilizer requirements, or decreased pesticide application can provide significant economic returns that offset higher material costs.

Long-term economic analysis must also consider the durability and lifespan of MOF-based systems compared to conventional alternatives. While MOF materials may have higher initial costs, their extended functionality and reduced replacement frequency can provide superior long-term economic performance. The development of recyclable or biodegradable MOF systems has additional economic and environmental benefits that must be included in comprehensive cost-benefit analyses.

4.3. Environmental Impact and Sustainability Considerations

The environmental impact of MOF-based agricultural systems represents a critical consideration for sustainable agriculture implementation, as these materials must provide environmental benefits while avoiding negative ecological consequences. Life cycle analysis of MOF production, application, and disposal reveals both opportunities and challenges for sustainable agricultural technology development [8,9]. The environmental footprint of MOF synthesis must be balanced against the environmental benefits provided by improved agricultural efficiency and reduced chemical inputs.

MOF production can have significant environmental impacts related to energy consumption, solvent usage, and waste generation during synthesis processes. However, recent advances in green synthesis methods, solvent recycling, and process optimization have substantially reduced the environmental footprint of MOF production. The development of MOFs based on renewable or abundant raw materials has further improved the sustainability profile of these materials for agricultural applications.

The application of MOFs in agricultural systems can provide substantial environmental benefits through improved resource utilization efficiency, reduced chemical runoff, and enhanced precision in agricultural input delivery. Controlled release systems based on MOFs can significantly reduce the total amount of fertilizers or pesticides required for effective crop production, leading to reduced environmental contamination and improved ecosystem health. The ability of MOFs to provide targeted

delivery of agricultural inputs exactly where and when needed minimizes waste and reduces negative environmental impacts.

End-of-life considerations for MOF-based agricultural systems include biodegradability, recyclability, and potential for environmental accumulation. The development of biodegradable MOF systems that break down into harmless components after completing their agricultural function has been a major focus of sustainable MOF development. These systems must be designed to degrade at appropriate rates that allow completion of their intended function while preventing long-term environmental accumulation of synthetic materials.

5. Conclusion

The comprehensive analysis of metal-organic framework stability in agricultural environments reveals both significant challenges and promising opportunities for implementing these advanced materials in sustainable agricultural systems. The research demonstrates that while conventional MOFs face substantial stability limitations under typical agricultural conditions, particularly regarding water stability and chemical compatibility, recent advances in framework design and modification strategies have substantially improved their durability and practical applicability. The development of water-stable frameworks, enhanced metal node engineering, and innovative composite systems has created MOF-based materials capable of maintaining structural integrity and functional performance under realistic agricultural conditions for extended periods.

Field testing results confirm that properly engineered MOF systems can achieve acceptable performance levels for practical agricultural implementation, with some advanced composite systems maintaining over 80% of their initial functionality after extended exposure to challenging environmental conditions. The economic analysis indicates that while MOF-based agricultural systems require higher initial investments compared to conventional alternatives, their superior performance characteristics and extended functionality can provide favorable long-term economic returns through improved crop yields, reduced input requirements, and enhanced resource utilization efficiency.

The environmental sustainability assessment reveals that MOF-based agricultural systems offer significant potential for reducing the environmental footprint of modern agriculture through precision delivery of agricultural inputs, reduced chemical usage, and improved resource efficiency. However, the full realization of these benefits requires continued development of environmentally friendly synthesis methods, biodegradable framework designs, and comprehensive life cycle optimization. The successful implementation of MOF technology in agriculture will require continued collaboration between materials scientists, agricultural researchers, and industry stakeholders to address remaining technical challenges while developing economically viable and environmentally sustainable solutions for next-generation agricultural systems.

References

- 1. S. Rojas, A. Rodríguez-Diéguez, and P. Horcajada, "Metal–Organic Frameworks in Agriculture," *ACS Appl. Mater. Interfaces*, vol. 14, no. 15, pp. 16983–17007, 2022, doi: 10.1021/acsami.2c00615.
- 2. S. Basak, P. Bhattacharyya, Ramesh Namdeo Pudake, P. E. Lokhande, Udayabhaskar Rednam, and S. Chakrabarti, "Metalorganic framework as nanocarriers for agricultural applications: a review," *Front. Nanotechnol.*, vol. 6, 2024, doi: 10.3389/fnano.2024.1385981.
- 3. R. C. Alves, V. C. Luna, C. J. Baco, A. J. Terezo, M. Castilho, and A. B. Siqueira, "Emerging applications of nano-metal-organic frameworks for sustainable agriculture: A critical review," *Plant Nano Biol.*, vol. 12, p. 100159, 2025, doi: 10.1016/j.plana.2025.100159.
- 4. Z. Cui, Y. Li, O. V. Tsyusko, J. Wang, J. M. Unrine, and G. Wei et al., "Metal–Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications," *J. Agric. Food Chem.*, 2024, doi: 10.1021/acs.jafc.4c00764.
- 5. F. Ding, C. Y. Hung, J. K. Whalen, L. Wang, Z. Wei, L. Zhang, and Y. Shi, "Potential of chemical stabilizers to prolong urease inhibition in the soil–plant system#," *J. Plant Nutr. Soil Sci.*, vol. 185, no. 3, pp. 384–390, 2022, doi: 10.1002/jpln.202100314.

- 6. F. Ding, N. Su, C. Ma, B. Li, W.-L. Duan, and J. Luan, "Fabrication of two novel two-dimensional copper-based coordination polymers regulated by the 'V'-shaped second auxiliary ligands as high-efficiency urease inhibitors," *Inorg. Chem. Commun.*, vol. 170, p. 113319, 2024, doi: 10.1016/j.inoche.2024.113319.
- 7. L. P. L. Mosca, A. B. Gapan, R. A. Angeles, and E. C. R. Lopez, "Stability of Metal–Organic Frameworks: Recent Advances and Future Trends," *Eng. Proc.*, vol. 56, no. 1, p. 146, 2023, doi: 10.3390/ASEC2023-16280.
- 8. G. Xie, W. Guo, Z. Fang, Z. Duan, X. Lang, D. Liu, G. Mei, Y. Zhai, X. Sun, and X. Lu, "Dual-Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products," *Angew. Chem.*, vol. 136, no. 47, p. e202412568, 2024, doi: 10.1002/ange.202412568.
- 9. B. F. Far, N. Rabiee, and S. Iravani, "Environmental implications of metal–organic frameworks and MXenes in biomedical applications: a perspective," *RSC Adv.*, vol. 13, no. 49, pp. 34562–34575, 2023, doi: 10.1039/d3ra07092a.
- 10. Q. Zhang, H. Yang, T. Zhou, X. Chen, W. Li, and H. Pang, "Metal–Organic Frameworks and Their Composites for Environmental Applications," *Adv. Sci.*, vol. 9, no. 32, p. 2204141, 2022, doi: 10.1002/advs.202204141.
- 11. S. Singh, Nikhita Sivaram, B. Nath, N. A. Khan, J. Singh, and P. C. Ramamurthy, "Metal organic frameworks for wastewater treatment, renewable energy and circular economy contributions," *npj Clean Water*, vol. 7, no. 1, 2024, doi: 10.1038/s41545-024-00408-4.
- 12. B. Liu, K. Vikrant, K.-H. Kim, V. Kumar, and S. K. Kailasa, "Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability," *Environ. Sci.: Nano*, vol. 7, no. 5, pp. 1319–1347, 2020, doi: 10.1039/C9EN01321K.
- 13. F. Ding, C. Ma, W.-L. Duan, and J. Luan, "Second auxiliary ligand induced two coppor-based coordination polymers and urease inhibition activity," *J. Solid State Chem.*, vol. 331, pp. 124537–124537, 2023, doi: 10.1016/j.jssc.2023.124537.
- 14. Y. Wen, P. Zhang, V. K. Sharma, X. Ma, and H.-C. Zhou, "Metal-organic frameworks for environmental applications," *Cell Rep. Phys. Sci.*, vol. 2, no. 2, p. 100348, 2021, doi: 10.1016/j.xcrp.2021.100348.
- 15. K. A. Cychosz and A. J. Matzger, "Water Stability of Microporous Coordination Polymers and the Adsorption of Pharmaceuticals from Water," *Langmuir*, vol. 26, no. 22, pp. 17198–17202, 2010, doi: 10.1021/la103234u.
- 16. C. Blais, T. Morvan, C. Daiguebonne, Y. Suffren, G. Calvez, and K. Bernot et al., "Lanthanide-Based Coordination Polymers Molecular Alloys Stability: A Thermochemical Approach," *Inorg. Chem.*, vol. 62, no. 11, pp. 4495–4502, 2023, doi: 10.1021/acs.inorgchem.2c04198.
- 17. J. B. Baruah, "Coordination polymers in adsorptive remediation of environmental contaminants," *Coord. Chem. Rev.*, vol. 470, pp. 214694–214694, 2022, doi: 10.1016/j.ccr.2022.214694.
- 18. X. Jin, L. Zhao, X. Zhang, Z. Wang, M. Hao, and Y. Li, "Ligand as Buffer for Improving Chemical Stability of Coordination Polymers," *ACS Appl. Mater. Interfaces*, vol. 14, no. 37, pp. 42267–42276, 2022, doi: 10.1021/acsami.2c14071.
- 19. K. Debsharma, B. Dutta, S. Dey, and C. Sinha, "Metal–Organic Coordination Polymers: A Review of Electrochemical Sensing of Environmental Pollutants," *Cryst. Growth Des.*, vol. 24, no. 15, pp. 6503–6530, 2024, doi: 10.1021/acs.cgd.4c00421.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.